| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- UI/UX Pro Max Core - BM25 search engine for UI/UX style guides
- """
- import csv
- import re
- from pathlib import Path
- from math import log
- from collections import defaultdict
- # ============ CONFIGURATION ============
- DATA_DIR = Path(__file__).parent.parent / "data"
- MAX_RESULTS = 3
- CSV_CONFIG = {
- "style": {
- "file": "styles.csv",
- "search_cols": ["Style Category", "Keywords", "Best For", "Type"],
- "output_cols": ["Style Category", "Type", "Keywords", "Primary Colors", "Effects & Animation", "Best For", "Performance", "Accessibility", "Framework Compatibility", "Complexity"]
- },
- "prompt": {
- "file": "prompts.csv",
- "search_cols": ["Style Category", "AI Prompt Keywords (Copy-Paste Ready)", "CSS/Technical Keywords"],
- "output_cols": ["Style Category", "AI Prompt Keywords (Copy-Paste Ready)", "CSS/Technical Keywords", "Implementation Checklist"]
- },
- "color": {
- "file": "colors.csv",
- "search_cols": ["Product Type", "Keywords", "Notes"],
- "output_cols": ["Product Type", "Keywords", "Primary (Hex)", "Secondary (Hex)", "CTA (Hex)", "Background (Hex)", "Text (Hex)", "Border (Hex)", "Notes"]
- },
- "chart": {
- "file": "charts.csv",
- "search_cols": ["Data Type", "Keywords", "Best Chart Type", "Accessibility Notes"],
- "output_cols": ["Data Type", "Keywords", "Best Chart Type", "Secondary Options", "Color Guidance", "Accessibility Notes", "Library Recommendation", "Interactive Level"]
- },
- "landing": {
- "file": "landing.csv",
- "search_cols": ["Pattern Name", "Keywords", "Conversion Optimization", "Section Order"],
- "output_cols": ["Pattern Name", "Keywords", "Section Order", "Primary CTA Placement", "Color Strategy", "Conversion Optimization"]
- },
- "product": {
- "file": "products.csv",
- "search_cols": ["Product Type", "Keywords", "Primary Style Recommendation", "Key Considerations"],
- "output_cols": ["Product Type", "Keywords", "Primary Style Recommendation", "Secondary Styles", "Landing Page Pattern", "Dashboard Style (if applicable)", "Color Palette Focus"]
- },
- "ux": {
- "file": "ux-guidelines.csv",
- "search_cols": ["Category", "Issue", "Description", "Platform"],
- "output_cols": ["Category", "Issue", "Platform", "Description", "Do", "Don't", "Code Example Good", "Code Example Bad", "Severity"]
- },
- "typography": {
- "file": "typography.csv",
- "search_cols": ["Font Pairing Name", "Category", "Mood/Style Keywords", "Best For", "Heading Font", "Body Font"],
- "output_cols": ["Font Pairing Name", "Category", "Heading Font", "Body Font", "Mood/Style Keywords", "Best For", "Google Fonts URL", "CSS Import", "Tailwind Config", "Notes"]
- }
- }
- STACK_CONFIG = {
- "html-tailwind": {"file": "stacks/html-tailwind.csv"},
- "react": {"file": "stacks/react.csv"},
- "nextjs": {"file": "stacks/nextjs.csv"},
- "vue": {"file": "stacks/vue.csv"},
- "svelte": {"file": "stacks/svelte.csv"},
- "swiftui": {"file": "stacks/swiftui.csv"},
- "react-native": {"file": "stacks/react-native.csv"},
- "flutter": {"file": "stacks/flutter.csv"}
- }
- # Common columns for all stacks
- _STACK_COLS = {
- "search_cols": ["Category", "Guideline", "Description", "Do", "Don't"],
- "output_cols": ["Category", "Guideline", "Description", "Do", "Don't", "Code Good", "Code Bad", "Severity", "Docs URL"]
- }
- AVAILABLE_STACKS = list(STACK_CONFIG.keys())
- # ============ BM25 IMPLEMENTATION ============
- class BM25:
- """BM25 ranking algorithm for text search"""
- def __init__(self, k1=1.5, b=0.75):
- self.k1 = k1
- self.b = b
- self.corpus = []
- self.doc_lengths = []
- self.avgdl = 0
- self.idf = {}
- self.doc_freqs = defaultdict(int)
- self.N = 0
- def tokenize(self, text):
- """Lowercase, split, remove punctuation, filter short words"""
- text = re.sub(r'[^\w\s]', ' ', str(text).lower())
- return [w for w in text.split() if len(w) > 2]
- def fit(self, documents):
- """Build BM25 index from documents"""
- self.corpus = [self.tokenize(doc) for doc in documents]
- self.N = len(self.corpus)
- if self.N == 0:
- return
- self.doc_lengths = [len(doc) for doc in self.corpus]
- self.avgdl = sum(self.doc_lengths) / self.N
- for doc in self.corpus:
- seen = set()
- for word in doc:
- if word not in seen:
- self.doc_freqs[word] += 1
- seen.add(word)
- for word, freq in self.doc_freqs.items():
- self.idf[word] = log((self.N - freq + 0.5) / (freq + 0.5) + 1)
- def score(self, query):
- """Score all documents against query"""
- query_tokens = self.tokenize(query)
- scores = []
- for idx, doc in enumerate(self.corpus):
- score = 0
- doc_len = self.doc_lengths[idx]
- term_freqs = defaultdict(int)
- for word in doc:
- term_freqs[word] += 1
- for token in query_tokens:
- if token in self.idf:
- tf = term_freqs[token]
- idf = self.idf[token]
- numerator = tf * (self.k1 + 1)
- denominator = tf + self.k1 * (1 - self.b + self.b * doc_len / self.avgdl)
- score += idf * numerator / denominator
- scores.append((idx, score))
- return sorted(scores, key=lambda x: x[1], reverse=True)
- # ============ SEARCH FUNCTIONS ============
- def _load_csv(filepath):
- """Load CSV and return list of dicts"""
- with open(filepath, 'r', encoding='utf-8') as f:
- return list(csv.DictReader(f))
- def _search_csv(filepath, search_cols, output_cols, query, max_results):
- """Core search function using BM25"""
- if not filepath.exists():
- return []
- data = _load_csv(filepath)
- # Build documents from search columns
- documents = [" ".join(str(row.get(col, "")) for col in search_cols) for row in data]
- # BM25 search
- bm25 = BM25()
- bm25.fit(documents)
- ranked = bm25.score(query)
- # Get top results with score > 0
- results = []
- for idx, score in ranked[:max_results]:
- if score > 0:
- row = data[idx]
- results.append({col: row.get(col, "") for col in output_cols if col in row})
- return results
- def detect_domain(query):
- """Auto-detect the most relevant domain from query"""
- query_lower = query.lower()
- domain_keywords = {
- "color": ["color", "palette", "hex", "#", "rgb"],
- "chart": ["chart", "graph", "visualization", "trend", "bar", "pie", "scatter", "heatmap", "funnel"],
- "landing": ["landing", "page", "cta", "conversion", "hero", "testimonial", "pricing", "section"],
- "product": ["saas", "ecommerce", "e-commerce", "fintech", "healthcare", "gaming", "portfolio", "crypto", "dashboard"],
- "prompt": ["prompt", "css", "implementation", "variable", "checklist", "tailwind"],
- "style": ["style", "design", "ui", "minimalism", "glassmorphism", "neumorphism", "brutalism", "dark mode", "flat", "aurora"],
- "ux": ["ux", "usability", "accessibility", "wcag", "touch", "scroll", "animation", "keyboard", "navigation", "mobile"],
- "typography": ["font", "typography", "heading", "serif", "sans"]
- }
- scores = {domain: sum(1 for kw in keywords if kw in query_lower) for domain, keywords in domain_keywords.items()}
- best = max(scores, key=scores.get)
- return best if scores[best] > 0 else "style"
- def search(query, domain=None, max_results=MAX_RESULTS):
- """Main search function with auto-domain detection"""
- if domain is None:
- domain = detect_domain(query)
- config = CSV_CONFIG.get(domain, CSV_CONFIG["style"])
- filepath = DATA_DIR / config["file"]
- if not filepath.exists():
- return {"error": f"File not found: {filepath}", "domain": domain}
- results = _search_csv(filepath, config["search_cols"], config["output_cols"], query, max_results)
- return {
- "domain": domain,
- "query": query,
- "file": config["file"],
- "count": len(results),
- "results": results
- }
- def search_stack(query, stack, max_results=MAX_RESULTS):
- """Search stack-specific guidelines"""
- if stack not in STACK_CONFIG:
- return {"error": f"Unknown stack: {stack}. Available: {', '.join(AVAILABLE_STACKS)}"}
- filepath = DATA_DIR / STACK_CONFIG[stack]["file"]
- if not filepath.exists():
- return {"error": f"Stack file not found: {filepath}", "stack": stack}
- results = _search_csv(filepath, _STACK_COLS["search_cols"], _STACK_COLS["output_cols"], query, max_results)
- return {
- "domain": "stack",
- "stack": stack,
- "query": query,
- "file": STACK_CONFIG[stack]["file"],
- "count": len(results),
- "results": results
- }
|