# Active Skills Design - Demand-Driven Documentation Loading **Date:** 2025-10-24 **Type:** Architecture Design **Status:** Phase 1 Implemented ✅ **Author:** Edgar + Claude (Brainstorming Session) --- ## Executive Summary Transform Skill_Seekers from creating **passive documentation dumps** into **active, intelligent skills** that load documentation on-demand. This eliminates context bloat (300k → 5-10k per query) while maintaining full access to complete documentation. **Key Innovation:** Skills become lightweight routers with heavy tools in `scripts/`, not documentation repositories. --- ## Problem Statement ### Current Architecture: Passive Skills **What happens today:** ``` Agent: "How do I use Hono middleware?" ↓ Skill: *Claude loads 203k llms-txt.md into context* ↓ Agent: *answers using loaded docs* ↓ Result: Context bloat, slower performance, hits limits ``` **Issues:** 1. **Context Bloat**: 319k llms-full.txt loaded entirely into context 2. **Wasted Resources**: Agent needs 5k but gets 319k 3. **Truncation Loss**: 36% of content lost (319k → 203k) due to size limits 4. **File Extension Bug**: llms.txt files stored as .txt instead of .md 5. **Single Variant**: Only downloads one file (usually llms-full.txt) ### Current File Structure ``` output/hono/ ├── SKILL.md ──────────► Documentation dump + instructions ├── references/ │ └── llms-txt.md ───► 203k (36% truncated from 319k original) ├── scripts/ ──────────► EMPTY (placeholder only!) └── assets/ ───────────► EMPTY (placeholder only!) ``` --- ## Proposed Architecture: Active Skills ### Core Concept **Skills = Routers + Tools**, not documentation dumps. **New workflow:** ``` Agent: "How do I use Hono middleware?" ↓ Skill: *runs scripts/search.py "middleware"* ↓ Script: *loads llms-full.md, extracts middleware section, returns 8k* ↓ Agent: *answers using ONLY 8k* (CLEAN CONTEXT!) ↓ Result: 40x less context, no truncation, full access to docs ``` ### Benefits | Metric | Before | After | Improvement | |--------|--------|-------|-------------| | Context per query | 203k | 5-10k | **20-40x reduction** | | Content loss | 36% truncated | 0% (no truncation) | **Full fidelity** | | Variants available | 1 | 3 | **User choice** | | File format | .txt (wrong) | .md (correct) | **Fixed** | | Agent workflow | Passive read | Active tools | **Autonomous** | --- ## Design Components ### Component 1: Multi-Variant Download **Change:** Download ALL 3 variants, not just one. **File naming (FIXED):** - `https://hono.dev/llms-full.txt` → `llms-full.md` ✅ - `https://hono.dev/llms.txt` → `llms.md` ✅ - `https://hono.dev/llms-small.txt` → `llms-small.md` ✅ **Sizes (Hono example):** - `llms-full.md` - 319k (complete documentation) - `llms-small.md` - 176k (curated essentials) - `llms.md` - 5.4k (quick reference) **Storage:** ``` output/hono/references/ ├── llms-full.md # 319k - everything (RENAMED from .txt) ├── llms-small.md # 176k - curated (RENAMED from .txt) ├── llms.md # 5.4k - quick ref (RENAMED from .txt) └── catalog.json # Generated index (NEW) ``` **Implementation in `_try_llms_txt()`:** ```python def _try_llms_txt(self) -> bool: """Download ALL llms.txt variants for active skills""" # 1. Detect all available variants detector = LlmsTxtDetector(self.base_url) variants = detector.detect_all() # NEW method downloaded = {} for variant_info in variants: url = variant_info['url'] # https://hono.dev/llms-full.txt variant = variant_info['variant'] # 'full', 'standard', 'small' downloader = LlmsTxtDownloader(url) content = downloader.download() if content: # ✨ FIX: Rename .txt → .md immediately clean_name = f"llms-{variant}.md" downloaded[variant] = { 'content': content, 'filename': clean_name } # 2. Save ALL variants (not just one) for variant, data in downloaded.items(): path = os.path.join(self.skill_dir, "references", data['filename']) with open(path, 'w', encoding='utf-8') as f: f.write(data['content']) # 3. Generate catalog from smallest variant if 'small' in downloaded: self._generate_catalog(downloaded['small']['content']) return True ``` --- ### Component 2: The Catalog System **Purpose:** Lightweight index of what exists, not the content itself. **File:** `assets/catalog.json` **Structure:** ```json { "metadata": { "framework": "hono", "version": "auto-detected", "generated": "2025-10-24T14:30:00Z", "total_sections": 93, "variants": { "quick": "llms-small.md", "standard": "llms.md", "complete": "llms-full.md" } }, "sections": [ { "id": "routing", "title": "Routing", "h1_marker": "# Routing", "topics": ["routes", "path", "params", "wildcard"], "size_bytes": 4800, "variants": ["quick", "complete"], "complexity": "beginner" }, { "id": "middleware", "title": "Middleware", "h1_marker": "# Middleware", "topics": ["cors", "auth", "logging", "compression"], "size_bytes": 8200, "variants": ["quick", "complete"], "complexity": "intermediate" } ], "search_index": { "cors": ["middleware"], "routing": ["routing", "path-parameters"], "authentication": ["middleware", "jwt"], "context": ["context-handling"], "streaming": ["streaming-responses"] } } ``` **Generation (from llms-small.md):** ```python def _generate_catalog(self, llms_small_content): """Generate catalog.json from llms-small.md TOC""" catalog = { "metadata": {...}, "sections": [], "search_index": {} } # Split by h1 headers sections = re.split(r'\n# ', llms_small_content) for section_text in sections[1:]: lines = section_text.split('\n') title = lines[0].strip() # Extract h2 topics topics = re.findall(r'^## (.+)$', section_text, re.MULTILINE) topics = [t.strip().lower() for t in topics] section_info = { "id": title.lower().replace(' ', '-'), "title": title, "h1_marker": f"# {title}", "topics": topics + [title.lower()], "size_bytes": len(section_text), "variants": ["quick", "complete"] } catalog["sections"].append(section_info) # Build search index for topic in section_info["topics"]: if topic not in catalog["search_index"]: catalog["search_index"][topic] = [] catalog["search_index"][topic].append(section_info["id"]) # Save to assets/catalog.json catalog_path = os.path.join(self.skill_dir, "assets", "catalog.json") with open(catalog_path, 'w', encoding='utf-8') as f: json.dump(catalog, f, indent=2) ``` --- ### Component 3: Active Scripts **Location:** `scripts/` directory (currently empty) #### Script 1: `scripts/search.py` **Purpose:** Search and return only relevant documentation sections. ```python #!/usr/bin/env python3 """ ABOUTME: Searches framework documentation and returns relevant sections ABOUTME: Loads only what's needed - keeps agent context clean """ import json import sys import re from pathlib import Path def search(query, detail="auto"): """ Search documentation and return relevant sections. Args: query: Search term (e.g., "middleware", "cors", "routing") detail: "quick" | "standard" | "complete" | "auto" Returns: Markdown text of relevant sections only """ # Load catalog catalog_path = Path(__file__).parent.parent / "assets" / "catalog.json" catalog = json.load(open(catalog_path)) # 1. Find matching sections using search index query_lower = query.lower() matching_section_ids = set() for keyword, section_ids in catalog["search_index"].items(): if query_lower in keyword or keyword in query_lower: matching_section_ids.update(section_ids) # Get section details matches = [s for s in catalog["sections"] if s["id"] in matching_section_ids] if not matches: return f"❌ No sections found for '{query}'. Try: python scripts/list_topics.py" # 2. Determine detail level if detail == "auto": # Use quick for overview, complete for deep dive total_size = sum(s["size_bytes"] for s in matches) if total_size > 50000: # > 50k variant = "quick" else: variant = "complete" else: variant = detail variant_file = catalog["metadata"]["variants"].get(variant, "complete") # 3. Load documentation file doc_path = Path(__file__).parent.parent / "references" / variant_file doc_content = open(doc_path, 'r', encoding='utf-8').read() # 4. Extract matched sections results = [] for match in matches: h1_marker = match["h1_marker"] # Find section boundaries start = doc_content.find(h1_marker) if start == -1: continue # Find next h1 (or end of file) next_h1 = doc_content.find("\n# ", start + len(h1_marker)) if next_h1 == -1: section_text = doc_content[start:] else: section_text = doc_content[start:next_h1] results.append({ 'title': match['title'], 'size': len(section_text), 'content': section_text }) # 5. Format output output = [f"# Search Results for '{query}' ({len(results)} sections found)\n"] output.append(f"**Variant used:** {variant} ({variant_file})") output.append(f"**Total size:** {sum(r['size'] for r in results):,} bytes\n") output.append("---\n") for result in results: output.append(result['content']) output.append("\n---\n") return '\n'.join(output) if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python search.py [detail]") print("Example: python search.py middleware") print("Example: python search.py routing --detail quick") sys.exit(1) query = sys.argv[1] detail = sys.argv[2] if len(sys.argv) > 2 else "auto" print(search(query, detail)) ``` #### Script 2: `scripts/list_topics.py` **Purpose:** Show all available documentation sections. ```python #!/usr/bin/env python3 """ ABOUTME: Lists all available documentation sections with sizes ABOUTME: Helps agent discover what documentation exists """ import json from pathlib import Path def list_topics(): """List all available documentation sections.""" catalog_path = Path(__file__).parent.parent / "assets" / "catalog.json" catalog = json.load(open(catalog_path)) print(f"# Available Documentation Topics ({catalog['metadata']['framework']})\n") print(f"**Total sections:** {catalog['metadata']['total_sections']}") print(f"**Variants:** {', '.join(catalog['metadata']['variants'].keys())}\n") print("---\n") # Group by complexity if available by_complexity = {} for section in catalog["sections"]: complexity = section.get("complexity", "general") if complexity not in by_complexity: by_complexity[complexity] = [] by_complexity[complexity].append(section) for complexity in ["beginner", "intermediate", "advanced", "general"]: if complexity not in by_complexity: continue sections = by_complexity[complexity] print(f"## {complexity.title()} ({len(sections)} sections)\n") for section in sections: size_kb = section["size_bytes"] / 1024 topics_str = ", ".join(section["topics"][:3]) print(f"- **{section['title']}** ({size_kb:.1f}k)") print(f" Topics: {topics_str}") print(f" Search: `python scripts/search.py {section['id']}`\n") if __name__ == "__main__": list_topics() ``` #### Script 3: `scripts/get_section.py` **Purpose:** Extract a complete section by exact title. ```python #!/usr/bin/env python3 """ ABOUTME: Extracts a complete documentation section by title ABOUTME: Returns full section from llms-full.md (no truncation) """ import json import sys from pathlib import Path def get_section(title, variant="complete"): """ Get a complete section by exact title. Args: title: Section title (e.g., "Middleware", "Routing") variant: Which file to use (quick/standard/complete) Returns: Complete section content """ catalog_path = Path(__file__).parent.parent / "assets" / "catalog.json" catalog = json.load(open(catalog_path)) # Find section section = None for s in catalog["sections"]: if s["title"].lower() == title.lower(): section = s break if not section: return f"❌ Section '{title}' not found. Try: python scripts/list_topics.py" # Load doc variant_file = catalog["metadata"]["variants"].get(variant, "complete") doc_path = Path(__file__).parent.parent / "references" / variant_file doc_content = open(doc_path, 'r', encoding='utf-8').read() # Extract section h1_marker = section["h1_marker"] start = doc_content.find(h1_marker) if start == -1: return f"❌ Section '{title}' not found in {variant_file}" next_h1 = doc_content.find("\n# ", start + len(h1_marker)) if next_h1 == -1: section_text = doc_content[start:] else: section_text = doc_content[start:next_h1] return section_text if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python get_section.py [variant]") print("Example: python get_section.py Middleware") print("Example: python get_section.py Routing quick") sys.exit(1) title = sys.argv[1] variant = sys.argv[2] if len(sys.argv) > 2 else "complete" print(get_section(title, variant)) ``` --- ### Component 4: Active SKILL.md Template **New template for llms.txt-based skills:** ```markdown --- name: {name} description: {description} type: active --- # {Name} Skill **⚡ This is an ACTIVE skill** - Uses scripts to load documentation on-demand instead of dumping everything into context. ## 🎯 Strategy: Demand-Driven Documentation **Traditional approach:** - Load 300k+ documentation into context - Agent reads everything to answer one question - Context bloat, slower performance **Active approach:** - Load 5-10k of relevant sections on-demand - Agent calls scripts to fetch what's needed - Clean context, faster performance ## 📚 Available Documentation This skill provides access to {num_sections} documentation sections across 3 detail levels: - **Quick Reference** (`llms-small.md`): {small_size}k - Curated essentials - **Standard** (`llms.md`): {standard_size}k - Core concepts - **Complete** (`llms-full.md`): {full_size}k - Everything ## 🔧 Tools Available ### 1. Search Documentation Find and load only relevant sections: ```bash python scripts/search.py "middleware" python scripts/search.py "routing" --detail quick ``` **Returns:** 5-10k of relevant content (not 300k!) ### 2. List All Topics See what documentation exists: ```bash python scripts/list_topics.py ``` **Returns:** Table of contents with section sizes and search hints ### 3. Get Complete Section Extract a full section by title: ```bash python scripts/get_section.py "Middleware" python scripts/get_section.py "Routing" quick ``` **Returns:** Complete section from chosen variant ## 💡 Recommended Workflow 1. **Discover:** `python scripts/list_topics.py` to see what's available 2. **Search:** `python scripts/search.py "your topic"` to find relevant sections 3. **Deep Dive:** Use returned content to answer questions in detail 4. **Iterate:** Search more specific topics as needed ## ⚠️ Important **DON'T:** Read `references/*.md` files directly into context **DO:** Use scripts to fetch only what you need This keeps your context clean and focused! ## 📊 Index Complete section catalog available in `assets/catalog.json` with search mappings and size information. ## 🔄 Updating To refresh with latest documentation: ```bash python3 cli/doc_scraper.py --config configs/{name}.json ``` ``` --- ## Implementation Plan ### Phase 1: Foundation (Quick Fixes) **Tasks:** 1. Fix `.txt` → `.md` renaming in downloader 2. Download all 3 variants (not just one) 3. Store all variants in `references/` with correct names 4. Remove content truncation (2500 chars → unlimited) **Time:** 1-2 hours **Files:** `cli/doc_scraper.py`, `cli/llms_txt_downloader.py` ### Phase 2: Catalog System **Tasks:** 1. Implement `_generate_catalog()` method 2. Parse llms-small.md to extract sections 3. Build search index from topics 4. Generate `assets/catalog.json` **Time:** 2-3 hours **Files:** `cli/doc_scraper.py` ### Phase 3: Active Scripts **Tasks:** 1. Create `scripts/search.py` 2. Create `scripts/list_topics.py` 3. Create `scripts/get_section.py` 4. Make scripts executable (`chmod +x`) **Time:** 2-3 hours **Files:** New scripts in `scripts/` template directory ### Phase 4: Template Updates **Tasks:** 1. Create new active SKILL.md template 2. Update `create_enhanced_skill_md()` to use active template for llms.txt skills 3. Update documentation to explain active skills **Time:** 1 hour **Files:** `cli/doc_scraper.py`, `README.md`, `CLAUDE.md` ### Phase 5: Testing & Refinement **Tasks:** 1. Test with Hono skill (has all 3 variants) 2. Test search accuracy 3. Measure context reduction 4. Document examples **Time:** 2-3 hours **Total Estimated Time:** 8-12 hours --- ## Migration Path ### Backward Compatibility **Existing skills:** No changes (passive skills still work) **New llms.txt skills:** Automatically use active architecture **User choice:** Can disable via config flag ### Config Option ```json { "name": "hono", "llms_txt_url": "https://hono.dev/llms-full.txt", "active_skill": true, // NEW: Enable active architecture (default: true) "base_url": "https://hono.dev/docs" } ``` ### Detection Logic ```python # In _try_llms_txt() active_mode = self.config.get('active_skill', True) # Default true if active_mode: # Download all variants, generate catalog, create scripts self._build_active_skill(downloaded) else: # Traditional: single file, no scripts self._build_passive_skill(downloaded) ``` --- ## Benefits Analysis ### Context Efficiency | Scenario | Passive Skill | Active Skill | Improvement | |----------|---------------|--------------|-------------| | Simple query | 203k loaded | 5k loaded | **40x reduction** | | Multi-topic query | 203k loaded | 15k loaded | **13x reduction** | | Deep dive | 203k loaded | 30k loaded | **6x reduction** | ### Data Fidelity | Aspect | Passive | Active | |--------|---------|--------| | Content truncation | 36% lost | 0% lost | | Code truncation | 600 chars max | Unlimited | | Variants available | 1 | 3 | ### Agent Capabilities **Passive Skills:** - ❌ Cannot choose detail level - ❌ Cannot search efficiently - ❌ Must read entire context - ❌ Limited by context window **Active Skills:** - ✅ Chooses appropriate detail level - ✅ Searches catalog efficiently - ✅ Loads only what's needed - ✅ Unlimited documentation access --- ## Trade-offs ### Advantages 1. **Massive context reduction** (20-40x less per query) 2. **No content loss** (all 3 variants preserved) 3. **Correct file format** (.md not .txt) 4. **Agent autonomy** (tools to fetch docs) 5. **Scalable** (works with 1MB+ docs) ### Disadvantages 1. **Complexity** (scripts + catalog vs simple files) 2. **Initial overhead** (catalog generation) 3. **Agent learning curve** (must learn to use scripts) 4. **Dependency** (Python required to run scripts) ### Risk Mitigation **Risk:** Scripts don't work in Claude's sandbox **Mitigation:** Test thoroughly, provide fallback to passive mode **Risk:** Catalog generation fails **Mitigation:** Graceful degradation to single-file mode **Risk:** Agent doesn't use scripts **Mitigation:** Clear SKILL.md instructions, examples in quick reference --- ## Success Metrics ### Technical Metrics - ✅ Context per query < 20k (down from 203k) - ✅ All 3 variants downloaded and named correctly - ✅ 0% content truncation - ✅ Catalog generation < 5 seconds - ✅ Search script < 1 second response time ### User Experience Metrics - ✅ Agent successfully uses scripts without prompting - ✅ Answers are equally or more accurate than passive mode - ✅ Agent can handle queries about all documentation sections - ✅ No "context limit exceeded" errors --- ## Future Enhancements ### Phase 6: Smart Caching Cache frequently accessed sections in SKILL.md quick reference: ```python # Track access frequency in catalog.json "sections": [ { "id": "middleware", "access_count": 47, # NEW: Track usage "last_accessed": "2025-10-24T14:30:00Z" } ] # Include top 10 most-accessed sections directly in SKILL.md ``` ### Phase 7: Semantic Search Use embeddings for better search: ```python # Generate embeddings for each section "sections": [ { "id": "middleware", "embedding": [...], # NEW: Vector embedding "topics": ["cors", "auth"] } ] # In search.py: Use cosine similarity for better matches ``` ### Phase 8: Progressive Loading Load increasingly detailed docs: ```python # First: Load llms.md (5.4k - overview) # If insufficient: Load llms-small.md section (15k) # If still insufficient: Load llms-full.md section (30k) ``` --- ## Conclusion Active skills represent a fundamental shift from **documentation repositories** to **documentation routers**. By treating skills as intelligent intermediaries rather than static dumps, we can: 1. **Eliminate context bloat** (40x reduction) 2. **Preserve full fidelity** (0% truncation) 3. **Enable agent autonomy** (tools to fetch docs) 4. **Scale indefinitely** (no size limits) This design maintains backward compatibility while unlocking new capabilities for modern, LLM-optimized documentation sources like llms.txt. **Recommendation:** Implement in phases, starting with foundation fixes, then catalog system, then active scripts. Test thoroughly with Hono before making it the default for all llms.txt-based skills. --- ## References - Original brainstorming session: 2025-10-24 - llms.txt convention: https://llmstxt.org/ - Hono example: https://hono.dev/llms-full.txt - Skill_Seekers repository: Current project --- ## Appendix: Example Workflows ### Example 1: Agent Searches for "Middleware" ```bash # Agent runs: python scripts/search.py "middleware" # Script returns ~8k of middleware documentation from llms-full.md # Agent uses that 8k to answer the question # Total context used: 8k (not 319k!) ``` ### Example 2: Agent Explores Documentation ```bash # 1. Agent lists topics python scripts/list_topics.py # Returns: Table of contents (2k) # 2. Agent picks a topic python scripts/get_section.py "Routing" # Returns: Complete Routing section (5k) # 3. Agent searches related topics python scripts/search.py "path parameters" # Returns: Routing + Path section (7k) # Total context used across 3 queries: 14k (not 3 × 319k = 957k!) ``` ### Example 3: Agent Needs Quick Answer ```bash # Agent uses quick variant for overview python scripts/search.py "cors" --detail quick # Returns: Short CORS explanation from llms-small.md (2k) # If insufficient, agent can follow up with: python scripts/get_section.py "Middleware" # Full section from llms-full.md ``` --- **Document Status:** Ready for review and implementation planning.