TRANSLATED CONTENT: ===== PAGE: https://docs.tigerdata.com/getting-started/try-key-features-timescale-products/ =====
Tiger Cloud offers managed database services that provide a stable and reliable environment for your applications.
Each Tiger Cloud service is a single optimised Postgres instance extended with innovations such as TimescaleDB in the database engine, in a cloud infrastructure that delivers speed without sacrifice. A radically faster Postgres for transactional, analytical, and agentic workloads at scale.
Tiger Cloud scales Postgres to ingest and query vast amounts of live data. Tiger Cloud provides a range of features and optimizations that supercharge your queries while keeping the costs down. For example:
The following figure shows how TimescaleDB optimizes your data for superfast real-time analytics:
This page shows you how to rapidly implement the features in Tiger Cloud that enable you to ingest and query data faster while keeping the costs low.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Time-series data represents the way a system, process, or behavior changes over time. Hypertables are Postgres tables that help you improve insert and query performance by automatically partitioning your data by time. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table. You can also tune hypertables to increase performance even more.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Hypertables exist alongside regular Postgres tables. You use regular Postgres tables for relational data, and interact with hypertables and regular Postgres tables in the same way.
This section shows you how to create regular tables and hypertables, and import relational and time-series data from external files.
Import some time-series data into hypertables
<local folder>.This test dataset contains:
- Second-by-second data for the most-traded crypto-assets. This time-series data is best suited for
optimization in a [hypertable][hypertables-section].
- A list of asset symbols and company names. This is best suited for a regular relational table.
To import up to 100 GB of data directly from your current Postgres-based database, migrate with downtime using native Postgres tooling. To seamlessly import 100GB-10TB+ of data, use the live migration tooling supplied by Tiger Data. To add data from non-Postgres data sources, see Import and ingest data.
To more fully understand how to create a hypertable, how hypertables work, and how to optimize them for performance by tuning chunk intervals and enabling chunk skipping, see the hypertables documentation.
The Tiger Cloud Console data upload creates hypertables and relational tables from the data you are uploading:
1. In [Tiger Cloud Console][portal-ops-mode], select the service to add data to, then click `Actions` > `Import data` > `Upload .CSV`.
1. Click to browse, or drag and drop `<local folder>/tutorial_sample_tick.csv` to upload.
1. Leave the default settings for the delimiter, skipping the header, and creating a new table.
1. In `Table`, provide `crypto_ticks` as the new table name.
1. Enable `hypertable partition` for the `time` column and click `Process CSV file`.
The upload wizard creates a hypertable containing the data from the CSV file.
1. When the data is uploaded, close `Upload .CSV`.
If you want to have a quick look at your data, press `Run` .
1. Repeat the process with `<local folder>/tutorial_sample_assets.csv` and rename to `crypto_assets`.
There is no time-series data in this table, so you don't see the `hypertable partition` option.
In Terminal, navigate to <local folder> and connect to your service.
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>"
You use your connection details to fill in this Postgres connection string.
Create tables for the data to import:
For the time-series data:
In your sql client, create a hypertable:
Create a hypertable for your time-series data using CREATE TABLE.
For efficient queries, remember to segmentby the column you will
use most often to filter your data. For example:
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby = 'symbol'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
For the relational data:
In your sql client, create a normal Postgres table:
CREATE TABLE crypto_assets (
symbol TEXT NOT NULL,
name TEXT NOT NULL
);
Speed up data ingestion:
When you set timescaledb.enable_direct_compress_copy your data gets compressed in memory during ingestion with COPY statements.
By writing the compressed batches immediately in the columnstore, the IO footprint is significantly lower.
Also, the columnstore policy you set is less important, INSERT already produces compressed chunks.
Please note that this feature is a tech preview and not production-ready. Using this feature could lead to regressed query performance and/or storage ratio, if the ingested batches are not correctly ordered or are of too high cardinality.
To enable in-memory data compression during ingestion:
SET timescaledb.enable_direct_compress_copy=on;
Important facts
COPY is support, INSERT will eventually follow.Continous Aggregates are not supported at the moment.
Upload the dataset to your service:
\COPY crypto_ticks from './tutorial_sample_tick.csv' DELIMITER ',' CSV HEADER;
\COPY crypto_assets from './tutorial_sample_assets.csv' DELIMITER ',' CSV HEADER;
Have a quick look at your data
You query hypertables in exactly the same way as you would a relational Postgres table. Use one of the following SQL editors to run a query and see the data you uploaded:
Hypercore is the TimescaleDB hybrid row-columnar storage engine, designed specifically for real-time analytics and powered by time-series data. The advantage of hypercore is its ability to seamlessly switch between row-oriented and column-oriented storage. This flexibility enables TimescaleDB to deliver the best of both worlds, solving the key challenges in real-time analytics.
When TimescaleDB converts chunks from the rowstore to the columnstore, multiple records are grouped into a single row. The columns of this row hold an array-like structure that stores all the data. Because a single row takes up less disk space, you can reduce your chunk size by up to 98%, and can also speed up your queries. This helps you save on storage costs, and keeps your queries operating at lightning speed.
hypercore is enabled by default when you call CREATE TABLE. Best practice is to compress data that is no longer needed for highest performance queries, but is still accessed regularly in the columnstore. For example, yesterday's market data.
For example, yesterday's data:
CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '1d');
If you have not configured a segmentby column, TimescaleDB chooses one for you based on the data in your
hypertable. For more information on how to tune your hypertables for the best performance, see
efficient queries.
When you convert data to the columnstore, as well as being optimized for analytics, it is compressed by more than
90%. This helps you save on storage costs and keeps your queries operating at lightning speed. To see the amount of space
saved, click Explorer > public > crypto_ticks.
Aggregation is a way of combing data to get insights from it. Average, sum, and count are all examples of simple aggregates. However, with large amounts of data, aggregation slows things down, quickly. Continuous aggregates are a kind of hypertable that is refreshed automatically in the background as new data is added, or old data is modified. Changes to your dataset are tracked, and the hypertable behind the continuous aggregate is automatically updated in the background.
You create continuous aggregates on uncompressed data in high-performance storage. They continue to work on data in the columnstore and rarely accessed data in tiered storage. You can even create continuous aggregates on top of your continuous aggregates.
You use time buckets to create a continuous aggregate. Time buckets aggregate data in hypertables by time interval. For example, a 5-minute, 1-hour, or 3-day bucket. The data grouped in a time bucket uses a single timestamp. Continuous aggregates minimize the number of records that you need to look up to perform your query.
This section shows you how to run fast analytical queries using time buckets and continuous aggregate in Tiger Cloud Console. You can also do this using psql.
This feature is not available under the Free pricing plan.
Connect to your service
In Tiger Cloud Console, select your service in the connection drop-down in the top right.
Create a continuous aggregate
For a continuous aggregate, data grouped using a time bucket is stored in a
Postgres MATERIALIZED VIEW in a hypertable. timescaledb.continuous ensures that this data
is always up to date.
In data mode, use the following code to create a continuous aggregate on the real-time data in
the crypto_ticks table:
CREATE MATERIALIZED VIEW assets_candlestick_daily
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 day', "time") AS day,
symbol,
max(price) AS high,
first(price, time) AS open,
last(price, time) AS close,
min(price) AS low
FROM crypto_ticks srt
GROUP BY day, symbol;
This continuous aggregate creates the candlestick chart data you use to visualize the price change of an asset.
Create a policy to refresh the view every hour
SELECT add_continuous_aggregate_policy('assets_candlestick_daily',
start_offset => INTERVAL '3 weeks',
end_offset => INTERVAL '24 hours',
schedule_interval => INTERVAL '3 hours');
Have a quick look at your data
You query continuous aggregates exactly the same way as your other tables. To query the assets_candlestick_daily
continuous aggregate for all assets:
In Tiger Cloud Console, select the service you uploaded data to
Click Explorer > Continuous Aggregates > Create a Continuous Aggregate next to the crypto_ticks hypertable
Create a view called assets_candlestick_daily on the time column with an interval of 1 day, then click Next step

Update the view SQL with the following functions, then click Run
CREATE MATERIALIZED VIEW assets_candlestick_daily
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 day', "time") AS bucket,
symbol,
max(price) AS high,
first(price, time) AS open,
last(price, time) AS close,
min(price) AS low
FROM "public"."crypto_ticks" srt
GROUP BY bucket, symbol;
When the view is created, click Next step
Define a refresh policy with the following values:
How far back do you want to materialize?: 3 weeksWhat recent data to exclude?: 24 hoursHow often do you want the job to run?: 3 hoursClick Next step, then click Run
Tiger Cloud creates the continuous aggregate and displays the aggregate ID in Tiger Cloud Console. Click DONE to close the wizard.
To see the change in terms of query time and data returned between a regular query and
a continuous aggregate, run the query part of the continuous aggregate
( SELECT ...GROUP BY day, symbol; ) and compare the results.
In the previous sections, you used continuous aggregates to make fast analytical queries, and hypercore to reduce storage costs on frequently accessed data. To reduce storage costs even more, you create tiering policies to move rarely accessed data to the object store. The object store is low-cost bottomless data storage built on Amazon S3. However, no matter the tier, you can query your data when you need. Tiger Cloud seamlessly accesses the correct storage tier and generates the response.
To set up data tiering:
Enable data tiering
In Tiger Cloud Console, select the service to modify.
In Explorer, click Storage configuration > Tiering storage, then click Enable tiered storage.
When tiered storage is enabled, you see the amount of data in the tiered object storage.
Set the time interval when data is tiered
In Tiger Cloud Console, click Data to switch to the data mode, then enable data tiering on a hypertable with the following query:
SELECT add_tiering_policy('assets_candlestick_daily', INTERVAL '3 weeks');
Query tiered data
You enable reads from tiered data for each query, for a session or for all future sessions. To run a single query on tiered data:
Enable reads on tiered data:
set timescaledb.enable_tiered_reads = true
Query the data:
SELECT * FROM crypto_ticks srt LIMIT 10
Disable reads on tiered data:
set timescaledb.enable_tiered_reads = false;
For more information, see Querying tiered data.
By default, all Tiger Cloud services have rapid recovery enabled. However, if your app has very low tolerance for downtime, Tiger Cloud offers high-availability replicas. HA replicas are exact, up-to-date copies of your database hosted in multiple AWS availability zones (AZ) within the same region as your primary node. HA replicas automatically take over operations if the original primary data node becomes unavailable. The primary node streams its write-ahead log (WAL) to the replicas to minimize the chances of data loss during failover.
Operations, then select High availability.Choose your replication strategy, then click Change configuration.
In Change high availability configuration, click Change config.
For more information, see High availability.
What next? See the use case tutorials, interact with the data in your Tiger Cloud service using your favorite programming language, integrate your Tiger Cloud service with a range of third-party tools, plain old Use Tiger Data products, or dive into the API.
===== PAGE: https://docs.tigerdata.com/getting-started/start-coding-with-timescale/ =====
Easily integrate your app with Tiger Cloud or self-hosted TimescaleDB. Use your favorite programming language to connect to your Tiger Cloud service, create and manage hypertables, then ingest and query data.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Every Tiger Cloud service is a 100% Postgres database hosted in Tiger Cloud with Tiger Data extensions such as TimescaleDB. You connect to your Tiger Cloud service from a standard Rails app configured for Postgres.
Create a new Rails app configured for Postgres
Rails creates and bundles your app, then installs the standard Postgres Gems.
rails new my_app -d=postgresql
cd my_app
Install the TimescaleDB gem
Open Gemfile, add the following line, then save your changes:
gem 'timescaledb'
In Terminal, run the following command:
bundle install
Connect your app to your Tiger Cloud service
In <my_app_home>/config/database.yml update the configuration to read securely connect to your Tiger Cloud service
by adding url: <%= ENV['DATABASE_URL'] %> to the default configuration:
default: &default
adapter: postgresql
encoding: unicode
pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
url: <%= ENV['DATABASE_URL'] %>
Set the environment variable for DATABASE_URL to the value of Service URL from
your connection details
export DATABASE_URL="value of Service URL"
Create the database:
Self-hosted TimescaleDB, create the database for the project:
rails db:create
Run migrations:
rails db:migrate
Verify the connection from your app to your Tiger Cloud service:
echo "\dx" | rails dbconsole
The result shows the list of extensions in your Tiger Cloud service
| Name | Version | Schema | Description | | -- | -- | -- | -- | | pg_buffercache | 1.5 | public | examine the shared buffer cache| | pg_stat_statements | 1.11 | public | track planning and execution statistics of all SQL statements executed| | plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language| | postgres_fdw | 1.1 | public | foreign-data wrapper for remote Postgres servers| | timescaledb | 2.18.1 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)| | timescaledb_toolkit | 1.19.0 | public | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities|
Hypertables are Postgres tables designed to simplify and accelerate data analysis. Anything you can do with regular Postgres tables, you can do with hypertables - but much faster and more conveniently.
In this section, you use the helpers in the TimescaleDB gem to create and manage a hypertable.
Generate a migration to create the page loads table
rails generate migration create_page_loads
This creates the <my_app_home>/db/migrate/<migration-datetime>_create_page_loads.rb migration file.
Replace the contents of <my_app_home>/db/migrate/<migration-datetime>_create_page_loads.rb
with the following:
```ruby
class CreatePageLoads < ActiveRecord::Migration[8.0]
def change
hypertable_options = {
time_column: 'created_at',
chunk_time_interval: '1 day',
compress_segmentby: 'path',
compress_orderby: 'created_at',
compress_after: '7 days',
drop_after: '30 days'
}
create_table :page_loads, id: false, primary_key: [:created_at, :user_agent, :path], hypertable: hypertable_options do |t|
t.timestamptz :created_at, null: false
t.string :user_agent
t.string :path
t.float :performance
end
end
end
```
The `id` column is not included in the table. This is because TimescaleDB requires that any `UNIQUE` or `PRIMARY KEY`
indexes on the table include all partitioning columns. In this case, this is the time column. A new
Rails model includes a `PRIMARY KEY` index for id by default: either remove the column or make sure that the index
includes time as part of a "composite key."
For more information, check the Roby docs around composite primary keys.
Create a PageLoad model
Create a new file called <my_app_home>/app/models/page_load.rb and add the following code:
class PageLoad < ApplicationRecord
extend Timescaledb::ActsAsHypertable
include Timescaledb::ContinuousAggregatesHelper
acts_as_hypertable time_column: "created_at",
segment_by: "path",
value_column: "performance"
scope :chrome_users, -> { where("user_agent LIKE ?", "%Chrome%") }
scope :firefox_users, -> { where("user_agent LIKE ?", "%Firefox%") }
scope :safari_users, -> { where("user_agent LIKE ?", "%Safari%") }
scope :performance_stats, -> {
select("stats_agg(#{value_column}) as stats_agg")
}
scope :slow_requests, -> { where("performance > ?", 1.0) }
scope :fast_requests, -> { where("performance < ?", 0.1) }
continuous_aggregates scopes: [:performance_stats],
timeframes: [:minute, :hour, :day],
refresh_policy: {
minute: {
start_offset: '3 minute',
end_offset: '1 minute',
schedule_interval: '1 minute'
},
hour: {
start_offset: '3 hours',
end_offset: '1 hour',
schedule_interval: '1 minute'
},
day: {
start_offset: '3 day',
end_offset: '1 day',
schedule_interval: '1 minute'
}
}
end
Run the migration
rails db:migrate
The TimescaleDB gem provides efficient ways to insert data into hypertables. This section shows you how to ingest test data into your hypertable.
Create a controller to handle page loads
Create a new file called <my_app_home>/app/controllers/application_controller.rb and add the following code:
class ApplicationController < ActionController::Base
around_action :track_page_load
private
def track_page_load
start_time = Time.current
yield
end_time = Time.current
PageLoad.create(
path: request.path,
user_agent: request.user_agent,
performance: (end_time - start_time)
)
end
end
Generate some test data
Use bin/console to join a Rails console session and run the following code
to define some random page load access data:
def generate_sample_page_loads(total: 1000)
time = 1.month.ago
paths = %w[/ /about /contact /products /blog]
browsers = [
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15"
]
total.times.map do
time = time + rand(60).seconds
{
path: paths.sample,
user_agent: browsers.sample,
performance: rand(0.1..2.0),
created_at: time,
updated_at: time
}
end
end
Insert the generated data into your Tiger Cloud service
PageLoad.insert_all(generate_sample_page_loads, returning: false)
Validate the test data in your Tiger Cloud service
PageLoad.count
PageLoad.first
This section lists the most common tasks you might perform with the TimescaleDB gem.
The TimescaleDB gem provides several convenient scopes for querying your time-series data.
Built-in time-based scopes:
PageLoad.last_hour.count
PageLoad.today.count
PageLoad.this_week.count
PageLoad.this_month.count
Browser-specific scopes:
PageLoad.chrome_users.last_hour.count
PageLoad.firefox_users.last_hour.count
PageLoad.safari_users.last_hour.count
PageLoad.slow_requests.last_hour.count
PageLoad.fast_requests.last_hour.count
Query continuous aggregates:
This query fetches the average and standard deviation from the performance stats for the /products path over the last day.
```ruby
PageLoad::PerformanceStatsPerMinute.last_hour
PageLoad::PerformanceStatsPerHour.last_day
PageLoad::PerformanceStatsPerDay.last_month
stats = PageLoad::PerformanceStatsPerHour.last_day.where(path: '/products').select("average(stats_agg) as average, stddev(stats_agg) as stddev").first
puts "Average: #{stats.average}"
puts "Standard Deviation: #{stats.stddev}"
```
The TimescaleDB gem provides utility methods to access hypertable and chunk information. Every model that uses
the acts_as_hypertable method has access to these methods.
View chunk or hypertable information:
PageLoad.chunks.count
PageLoad.hypertable.detailed_size
Compress/Decompress chunks:
PageLoad.chunks.uncompressed.first.compress! # Compress the first uncompressed chunk
PageLoad.chunks.compressed.first.decompress! # Decompress the oldest chunk
PageLoad.hypertable.compression_stats # View compression stats
You collect hypertable stats using methods that provide insights into your hypertable's structure, size, and compression status:
Get basic hypertable information:
hypertable = PageLoad.hypertable
hypertable.hypertable_name # The name of your hypertable
hypertable.schema_name # The schema where the hypertable is located
Get detailed size information:
hypertable.detailed_size # Get detailed size information for the hypertable
hypertable.compression_stats # Get compression statistics
hypertable.chunks_detailed_size # Get chunk information
hypertable.approximate_row_count # Get approximate row count
hypertable.dimensions.map(&:column_name) # Get dimension information
hypertable.continuous_aggregates.map(&:view_name) # Get continuous aggregate view names
The continuous_aggregates method generates a class for each continuous aggregate.
Get all the continuous aggregate classes:
PageLoad.descendants # Get all continuous aggregate classes
Manually refresh a continuous aggregate:
PageLoad.refresh_aggregates
Create or drop a continuous aggregate:
Create or drop all the continuous aggregates in the proper order to build them hierarchically. See more about how it works in this blog post.
PageLoad.create_continuous_aggregates
PageLoad.drop_continuous_aggregates
Now that you have integrated the ruby gem into your app:
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
psycopg2 library.For more information, see the psycopg2 documentation.
In this section, you create a connection to TimescaleDB using the psycopg2
library. This library is one of the most popular Postgres libraries for
Python. It allows you to execute raw SQL queries efficiently and safely, and
prevents common attacks such as SQL injection.
Import the psycogpg2 library:
import psycopg2
Locate your TimescaleDB credentials and use them to compose a connection
string for psycopg2.
You'll need:
Compose your connection string variable as a libpq connection string, using this format:
CONNECTION = "postgres://username:password@host:port/dbname"
If you're using a hosted version of TimescaleDB, or generally require an SSL connection, use this version instead:
CONNECTION = "postgres://username:password@host:port/dbname?sslmode=require"
Alternatively you can specify each parameter in the connection string as follows
CONNECTION = "dbname=tsdb user=tsdbadmin password=secret host=host.com port=5432 sslmode=require"
This method of composing a connection string is for test or development purposes only. For production, use environment variables for sensitive details like your password, hostname, and port number.
Use the psycopg2 connect function to create a new
database session and create a new cursor object to
interact with the database.
In your main function, add these lines:
CONNECTION = "postgres://username:password@host:port/dbname"
with psycopg2.connect(CONNECTION) as conn:
cursor = conn.cursor()
# use the cursor to interact with your database
# cursor.execute("SELECT * FROM table")
Alternatively, you can create a connection object and pass the object around as needed, like opening a cursor to perform database operations:
CONNECTION = "postgres://username:password@host:port/dbname"
conn = psycopg2.connect(CONNECTION)
cursor = conn.cursor()
# use the cursor to interact with your database
cursor.execute("SELECT 'hello world'")
print(cursor.fetchone())
In this section, you create a table called sensors which holds the ID, type,
and location of your fictional sensors. Additionally, you create a hypertable
called sensor_data which holds the measurements of those sensors. The
measurements contain the time, sensor_id, temperature reading, and CPU
percentage of the sensors.
Compose a string which contains the SQL statement to create a relational
table. This example creates a table called sensors, with columns id,
type and location:
query_create_sensors_table = """CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type VARCHAR(50),
location VARCHAR(50)
);
"""
Open a cursor, execute the query you created in the previous step, and commit the query to make the changes persistent. Afterward, close the cursor to clean up:
cursor = conn.cursor()
# see definition in Step 1
cursor.execute(query_create_sensors_table)
conn.commit()
cursor.close()
When you have created the relational table, you can create a hypertable. Creating tables and indexes, altering tables, inserting data, selecting data, and most other tasks are executed on the hypertable.
Create a string variable that contains the CREATE TABLE SQL statement for
your hypertable. Notice how the hypertable has the compulsory time column:
# create sensor data hypertable
query_create_sensordata_table = """CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id)
);
"""
Formulate a SELECT statement that converts the sensor_data table to a
hypertable. You must specify the table name to convert to a hypertable, and
the name of the time column as the two arguments. For more information, see
the create_hypertable docs:
query_create_sensordata_hypertable = "SELECT create_hypertable('sensor_data', by_range('time'));"
The by_range dimension builder is an addition to TimescaleDB 2.13.
Open a cursor with the connection, execute the statements from the previous steps, commit your changes, and close the cursor:
cursor = conn.cursor()
cursor.execute(query_create_sensordata_table)
cursor.execute(query_create_sensordata_hypertable)
# commit changes to the database to make changes persistent
conn.commit()
cursor.close()
You can insert data into your hypertables in several different ways. In this
section, you can use psycopg2 with prepared statements, or you can use
pgcopy for a faster insert.
This example inserts a list of tuples, or relational data, called sensors,
into the relational table named sensors. Open a cursor with a connection
to the database, use prepared statements to formulate the INSERT SQL
statement, and then execute that statement:
sensors = [('a', 'floor'), ('a', 'ceiling'), ('b', 'floor'), ('b', 'ceiling')]
cursor = conn.cursor()
for sensor in sensors:
try:
cursor.execute("INSERT INTO sensors (type, location) VALUES (%s, %s);",
(sensor[0], sensor[1]))
except (Exception, psycopg2.Error) as error:
print(error.pgerror)
conn.commit()
[](#)Alternatively, you can pass variables to the cursor.execute
function and separate the formulation of the SQL statement, SQL, from the
data being passed with it into the prepared statement, data:
SQL = "INSERT INTO sensors (type, location) VALUES (%s, %s);"
sensors = [('a', 'floor'), ('a', 'ceiling'), ('b', 'floor'), ('b', 'ceiling')]
cursor = conn.cursor()
for sensor in sensors:
try:
data = (sensor[0], sensor[1])
cursor.execute(SQL, data)
except (Exception, psycopg2.Error) as error:
print(error.pgerror)
conn.commit()
If you choose to use pgcopy instead, install the pgcopy package
using pip, and then add this line to your list of
import statements:
from pgcopy import CopyManager
Generate some random sensor data using the generate_series function
provided by Postgres. This example inserts a total of 480 rows of data (4
readings, every 5 minutes, for 24 hours). In your application, this would be
the query that saves your time-series data into the hypertable:
# for sensors with ids 1-4
for id in range(1, 4, 1):
data = (id,)
# create random data
simulate_query = """SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
%s as sensor_id,
random()*100 AS temperature,
random() AS cpu;
"""
cursor.execute(simulate_query, data)
values = cursor.fetchall()
Define the column names of the table you want to insert data into. This
example uses the sensor_data hypertable created earlier. This hypertable
consists of columns named time, sensor_id, temperature and cpu. The
column names are defined in a list of strings called cols:
cols = ['time', 'sensor_id', 'temperature', 'cpu']
Create an instance of the pgcopy CopyManager, mgr, and pass the
connection variable, hypertable name, and list of column names. Then use the
copy function of the CopyManager to insert the data into the database
quickly using pgcopy.
mgr = CopyManager(conn, 'sensor_data', cols)
mgr.copy(values)
Commit to persist changes:
conn.commit()
[](#)The full sample code to insert data into TimescaleDB using
pgcopy, using the example of sensor data from four sensors:
# insert using pgcopy
def fast_insert(conn):
cursor = conn.cursor()
# for sensors with ids 1-4
for id in range(1, 4, 1):
data = (id,)
# create random data
simulate_query = """SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
%s as sensor_id,
random()*100 AS temperature,
random() AS cpu;
"""
cursor.execute(simulate_query, data)
values = cursor.fetchall()
# column names of the table you're inserting into
cols = ['time', 'sensor_id', 'temperature', 'cpu']
# create copy manager with the target table and insert
mgr = CopyManager(conn, 'sensor_data', cols)
mgr.copy(values)
# commit after all sensor data is inserted
# could also commit after each sensor insert is done
conn.commit()
[](#)You can also check if the insertion worked:
cursor.execute("SELECT * FROM sensor_data LIMIT 5;")
print(cursor.fetchall())
This section covers how to execute queries against your database.
The first procedure shows a simple SELECT * query. For more complex queries,
you can use prepared statements to ensure queries are executed safely against
the database.
For more information about properly using placeholders in psycopg2, see the
basic module usage document.
For more information about how to execute more complex queries in psycopg2,
see the psycopg2 documentation.
Define the SQL query you'd like to run on the database. This example is a
simple SELECT statement querying each row from the previously created
sensor_data table.
query = "SELECT * FROM sensor_data;"
Open a cursor from the existing database connection, conn, and then execute
the query you defined:
cursor = conn.cursor()
query = "SELECT * FROM sensor_data;"
cursor.execute(query)
To access all resulting rows returned by your query, use one of pyscopg2's
results retrieval methods,
such as fetchall() or fetchmany(). This example prints the results of
the query, row by row. Note that the result of fetchall() is a list of
tuples, so you can handle them accordingly:
cursor = conn.cursor()
query = "SELECT * FROM sensor_data;"
cursor.execute(query)
for row in cursor.fetchall():
print(row)
cursor.close()
[](#)If you want a list of dictionaries instead, you can define the
cursor using DictCursor:
cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
Using this cursor, cursor.fetchall() returns a list of dictionary-like objects.
For more complex queries, you can use prepared statements to ensure queries are executed safely against the database.
Write the query using prepared statements:
# query with placeholders
cursor = conn.cursor()
query = """
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.location = %s AND sensors.type = %s
GROUP BY five_min
ORDER BY five_min DESC;
"""
location = "floor"
sensor_type = "a"
data = (location, sensor_type)
cursor.execute(query, data)
results = cursor.fetchall()
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
In this section, you create a connection to TimescaleDB with a common Node.js ORM (object relational mapper) called Sequelize.
At the command prompt, initialize a new Node.js app:
npm init -y
This creates a package.json file in your directory, which contains all
of the dependencies for your project. It looks something like this:
{
"name": "node-sample",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"
}
Install Express.js:
npm install express
Create a simple web page to check the connection. Create a new file called
index.js, with this content:
const express = require('express')
const app = express()
const port = 3000;
app.use(express.json());
app.get('/', (req, res) => res.send('Hello World!'))
app.listen(port, () => console.log(`Example app listening at http://localhost:${port}`))
Test your connection by starting the application:
node index.js
In your web browser, navigate to http://localhost:3000. If the connection
is successful, it shows "Hello World!"
Add Sequelize to your project:
npm install sequelize sequelize-cli pg pg-hstore
Locate your TimescaleDB credentials and use them to compose a connection string for Sequelize.
You'll need:
Compose your connection string variable, using this format:
'postgres://<user>:<password>@<host>:<port>/<dbname>'
Open the index.js file you created. Require Sequelize in the application,
and declare the connection string:
const Sequelize = require('sequelize')
const sequelize = new Sequelize('postgres://<user>:<password>@<host>:<port>/<dbname>',
{
dialect: 'postgres',
protocol: 'postgres',
dialectOptions: {
ssl: {
require: true,
rejectUnauthorized: false
}
}
})
Make sure you add the SSL settings in the dialectOptions sections. You
can't connect to TimescaleDB using SSL without them.
You can test the connection by adding these lines to index.js after the
app.get statement:
sequelize.authenticate().then(() => {
console.log('Connection has been established successfully.');
}).catch(err => {
console.error('Unable to connect to the database:', err);
});
Start the application on the command line:
node index.js
If the connection is successful, you'll get output like this:
Example app listening at http://localhost:3000
Executing (default): SELECT 1+1 AS result
Connection has been established successfully.
In this section, you create a relational table called page_loads.
Use the Sequelize command line tool to create a table and model called page_loads:
npx sequelize model:generate --name page_loads \
--attributes userAgent:string,time:date
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
New model was created at <PATH>.
New migration was created at <PATH>.
Edit the migration file so that it sets up a migration key:
'use strict';
module.exports = {
up: async (queryInterface, Sequelize) => {
await queryInterface.createTable('page_loads', {
userAgent: {
primaryKey: true,
type: Sequelize.STRING
},
time: {
primaryKey: true,
type: Sequelize.DATE
}
});
},
down: async (queryInterface, Sequelize) => {
await queryInterface.dropTable('page_loads');
}
};
Migrate the change and make sure that it is reflected in the database:
npx sequelize db:migrate
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
Loaded configuration file "config/config.json".
Using environment "development".
== 20200528195725-create-page-loads: migrating =======
== 20200528195725-create-page-loads: migrated (0.443s)
Create the PageLoads model in your code. In the index.js file, above the
app.use statement, add these lines:
let PageLoads = sequelize.define('page_loads', {
userAgent: {type: Sequelize.STRING, primaryKey: true },
time: {type: Sequelize.DATE, primaryKey: true }
}, { timestamps: false });
Instantiate a PageLoads object and save it to the database.
When you have created the relational table, you can create a hypertable. Creating tables and indexes, altering tables, inserting data, selecting data, and most other tasks are executed on the hypertable.
Create a migration to modify the page_loads relational table, and change
it to a hypertable by first running the following command:
npx sequelize migration:generate --name add_hypertable
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
migrations folder at <PATH> already exists.
New migration was created at <PATH>/20200601202912-add_hypertable.js .
In the migrations folder, there is now a new file. Open the
file, and add this content:
'use strict';
module.exports = {
up: (queryInterface, Sequelize) => {
return queryInterface.sequelize.query("SELECT create_hypertable('page_loads', by_range('time'));");
},
down: (queryInterface, Sequelize) => {
}
};
The by_range dimension builder is an addition to TimescaleDB 2.13.
At the command prompt, run the migration command:
npx sequelize db:migrate
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
Loaded configuration file "config/config.json".
Using environment "development".
== 20200601202912-add_hypertable: migrating =======
== 20200601202912-add_hypertable: migrated (0.426s)
This section covers how to insert data into your hypertables.
In the index.js file, modify the / route to get the user-agent from
the request object (req) and the current timestamp. Then, call the
create method on PageLoads model, supplying the user agent and timestamp
parameters. The create call executes an INSERT on the database:
app.get('/', async (req, res) => {
// get the user agent and current time
const userAgent = req.get('user-agent');
const time = new Date().getTime();
try {
// insert the record
await PageLoads.create({
userAgent, time
});
// send response
res.send('Inserted!');
} catch (e) {
console.log('Error inserting data', e)
}
})
This section covers how to execute queries against your database. In this example, every time the page is reloaded, all information currently in the table is displayed.
Modify the / route in the index.js file to call the Sequelize findAll
function and retrieve all data from the page_loads table using the
PageLoads model:
app.get('/', async (req, res) => {
// get the user agent and current time
const userAgent = req.get('user-agent');
const time = new Date().getTime();
try {
// insert the record
await PageLoads.create({
userAgent, time
});
// now display everything in the table
const messages = await PageLoads.findAll();
res.send(messages);
} catch (e) {
console.log('Error inserting data', e)
}
})
Now, when you reload the page, you should see all of the rows currently in the
page_loads table.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
In this section, you create a connection to Tiger Cloud using the PGX driver. PGX is a toolkit designed to help Go developers work directly with Postgres. You can use it to help your Go application interact directly with TimescaleDB.
Locate your TimescaleDB credentials and use them to compose a connection string for PGX.
You'll need:
Compose your connection string variable as a libpq connection string, using this format:
connStr := "postgres://username:password@host:port/dbname"
If you're using a hosted version of TimescaleDB, or if you need an SSL connection, use this format instead:
connStr := "postgres://username:password@host:port/dbname?sslmode=require"
[](#)You can check that you're connected to your database with this hello world program:
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5"
)
//connect to database using a single connection
func main() {
/***********************************************/
/* Single Connection to TimescaleDB/ PostgreSQL */
/***********************************************/
ctx := context.Background()
connStr := "yourConnectionStringHere"
conn, err := pgx.Connect(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer conn.Close(ctx)
//run a simple query to check our connection
var greeting string
err = conn.QueryRow(ctx, "select 'Hello, Timescale!'").Scan(&greeting)
if err != nil {
fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)
os.Exit(1)
}
fmt.Println(greeting)
}
If you'd like to specify your connection string as an environment variable,
you can use this syntax to access it in place of the connStr variable:
os.Getenv("DATABASE_CONNECTION_STRING")
Alternatively, you can connect to TimescaleDB using a connection pool. Connection pooling is useful to conserve computing resources, and can also result in faster database queries:
To create a connection pool that can be used for concurrent connections to
your database, use the pgxpool.New() function instead of
pgx.Connect(). Also note that this script imports
github.com/jackc/pgx/v5/pgxpool, instead of pgx/v5 which was used to
create a single connection:
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
//run a simple query to check our connection
var greeting string
err = dbpool.QueryRow(ctx, "select 'Hello, Tiger Data (but concurrently)'").Scan(&greeting)
if err != nil {
fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)
os.Exit(1)
}
fmt.Println(greeting)
}
In this section, you create a table called sensors which holds the ID, type,
and location of your fictional sensors. Additionally, you create a hypertable
called sensor_data which holds the measurements of those sensors. The
measurements contain the time, sensor_id, temperature reading, and CPU
percentage of the sensors.
Compose a string that contains the SQL statement to create a relational
table. This example creates a table called sensors, with columns for ID,
type, and location:
queryCreateTable := `CREATE TABLE sensors (id SERIAL PRIMARY KEY, type VARCHAR(50), location VARCHAR(50));`
Execute the CREATE TABLE statement with the Exec() function on the
dbpool object, using the arguments of the current context and the
statement string you created:
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Create relational table */
/********************************************/
//Create relational table called sensors
queryCreateTable := `CREATE TABLE sensors (id SERIAL PRIMARY KEY, type VARCHAR(50), location VARCHAR(50));`
_, err = dbpool.Exec(ctx, queryCreateTable)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to create SENSORS table: %v\n", err)
os.Exit(1)
}
fmt.Println("Successfully created relational table SENSORS")
}
When you have created the relational table, you can create a hypertable. Creating tables and indexes, altering tables, inserting data, selecting data, and most other tasks are executed on the hypertable.
Create a variable for the CREATE TABLE SQL statement for your hypertable.
Notice how the hypertable has the compulsory time column:
queryCreateTable := `CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id));
`
Formulate the SELECT statement to convert the table into a hypertable. You
must specify the table name to convert to a hypertable, and its time column
name as the second argument. For more information, see the
create_hypertable docs:
queryCreateHypertable := `SELECT create_hypertable('sensor_data', by_range('time'));`
The by_range dimension builder is an addition to TimescaleDB 2.13.
Execute the CREATE TABLE statement and SELECT statement which converts
the table into a hypertable. You can do this by calling the Exec()
function on the dbpool object, using the arguments of the current context,
and the queryCreateTable and queryCreateHypertable statement strings:
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Create Hypertable */
/********************************************/
// Create hypertable of time-series data called sensor_data
queryCreateTable := `CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id));
`
queryCreateHypertable := `SELECT create_hypertable('sensor_data', by_range('time'));`
//execute statement
_, err = dbpool.Exec(ctx, queryCreateTable+queryCreateHypertable)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to create the `sensor_data` hypertable: %v\n", err)
os.Exit(1)
}
fmt.Println("Successfully created hypertable `sensor_data`")
}
You can insert rows into your database in a couple of different
ways. Each of these example inserts the data from the two arrays, sensorTypes and
sensorLocations, into the relational table named sensors.
The first example inserts a single row of data at a time. The second example inserts multiple rows of data. The third example uses batch inserts to speed up the process.
Open a connection pool to the database, then use the prepared statements to
formulate an INSERT SQL statement, and execute it:
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* INSERT into relational table */
/********************************************/
//Insert data into relational table
// Slices of sample data to insert
// observation i has type sensorTypes[i] and location sensorLocations[i]
sensorTypes := []string{"a", "a", "b", "b"}
sensorLocations := []string{"floor", "ceiling", "floor", "ceiling"}
for i := range sensorTypes {
//INSERT statement in SQL
queryInsertMetadata := `INSERT INTO sensors (type, location) VALUES ($1, $2);`
//Execute INSERT command
_, err := dbpool.Exec(ctx, queryInsertMetadata, sensorTypes[i], sensorLocations[i])
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to insert data into database: %v\n", err)
os.Exit(1)
}
fmt.Printf("Inserted sensor (%s, %s) into database \n", sensorTypes[i], sensorLocations[i])
}
fmt.Println("Successfully inserted all sensors into database")
}
Instead of inserting a single row of data at a time, you can use this procedure to insert multiple rows of data, instead:
This example uses Postgres to generate some sample time-series to insert
into the sensor_data hypertable. Define the SQL statement to generate the
data, called queryDataGeneration. Then use the .Query() function to
execute the statement and return the sample data. The data returned by the
query is stored in results, a slice of structs, which is then used as a
source to insert data into the hypertable:
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
// Generate data to insert
//SQL query to generate sample data
queryDataGeneration := `
SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
floor(random() * (3) + 1)::int as sensor_id,
random()*100 AS temperature,
random() AS cpu
`
//Execute query to generate samples for sensor_data hypertable
rows, err := dbpool.Query(ctx, queryDataGeneration)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to generate sensor data: %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully generated sensor data")
//Store data generated in slice results
type result struct {
Time time.Time
SensorId int
Temperature float64
CPU float64
}
var results []result
for rows.Next() {
var r result
err = rows.Scan(&r.Time, &r.SensorId, &r.Temperature, &r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// Check contents of results slice
fmt.Println("Contents of RESULTS slice")
for i := range results {
var r result
r = results[i]
fmt.Printf("Time: %s | ID: %d | Temperature: %f | CPU: %f |\n", &r.Time, r.SensorId, r.Temperature, r.CPU)
}
}
Formulate an SQL insert statement for the sensor_data hypertable:
//SQL query to generate sample data
queryInsertTimeseriesData := `
INSERT INTO sensor_data (time, sensor_id, temperature, cpu) VALUES ($1, $2, $3, $4);
`
Execute the SQL statement for each sample in the results slice:
//Insert contents of results slice into TimescaleDB
for i := range results {
var r result
r = results[i]
_, err := dbpool.Exec(ctx, queryInsertTimeseriesData, r.Time, r.SensorId, r.Temperature, r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to insert sample into TimescaleDB %v\n", err)
os.Exit(1)
}
defer rows.Close()
}
fmt.Println("Successfully inserted samples into sensor_data hypertable")
[](#)This example main.go generates sample data and inserts it into
the sensor_data hypertable:
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
/********************************************/
/* Connect using Connection Pool */
/********************************************/
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Insert data into hypertable */
/********************************************/
// Generate data to insert
//SQL query to generate sample data
queryDataGeneration := `
SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
floor(random() * (3) + 1)::int as sensor_id,
random()*100 AS temperature,
random() AS cpu
`
//Execute query to generate samples for sensor_data hypertable
rows, err := dbpool.Query(ctx, queryDataGeneration)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to generate sensor data: %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully generated sensor data")
//Store data generated in slice results
type result struct {
Time time.Time
SensorId int
Temperature float64
CPU float64
}
var results []result
for rows.Next() {
var r result
err = rows.Scan(&r.Time, &r.SensorId, &r.Temperature, &r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// Check contents of results slice
fmt.Println("Contents of RESULTS slice")
for i := range results {
var r result
r = results[i]
fmt.Printf("Time: %s | ID: %d | Temperature: %f | CPU: %f |\n", &r.Time, r.SensorId, r.Temperature, r.CPU)
}
//Insert contents of results slice into TimescaleDB
//SQL query to generate sample data
queryInsertTimeseriesData := `
INSERT INTO sensor_data (time, sensor_id, temperature, cpu) VALUES ($1, $2, $3, $4);
`
//Insert contents of results slice into TimescaleDB
for i := range results {
var r result
r = results[i]
_, err := dbpool.Exec(ctx, queryInsertTimeseriesData, r.Time, r.SensorId, r.Temperature, r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to insert sample into TimescaleDB %v\n", err)
os.Exit(1)
}
defer rows.Close()
}
fmt.Println("Successfully inserted samples into sensor_data hypertable")
}
Inserting multiple rows of data using this method executes as many insert
statements as there are samples to be inserted. This can make ingestion of data
slow. To speed up ingestion, you can batch insert data instead.
Here's a sample pattern for how to do so, using the sample data you generated in
the previous procedure. It uses the pgx Batch object:
This example batch inserts data into the database:
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
/********************************************/
/* Connect using Connection Pool */
/********************************************/
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
// Generate data to insert
//SQL query to generate sample data
queryDataGeneration := `
SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
floor(random() * (3) + 1)::int as sensor_id,
random()*100 AS temperature,
random() AS cpu
`
//Execute query to generate samples for sensor_data hypertable
rows, err := dbpool.Query(ctx, queryDataGeneration)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to generate sensor data: %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully generated sensor data")
//Store data generated in slice results
type result struct {
Time time.Time
SensorId int
Temperature float64
CPU float64
}
var results []result
for rows.Next() {
var r result
err = rows.Scan(&r.Time, &r.SensorId, &r.Temperature, &r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// Check contents of results slice
/*fmt.Println("Contents of RESULTS slice")
for i := range results {
var r result
r = results[i]
fmt.Printf("Time: %s | ID: %d | Temperature: %f | CPU: %f |\n", &r.Time, r.SensorId, r.Temperature, r.CPU)
}*/
//Insert contents of results slice into TimescaleDB
//SQL query to generate sample data
queryInsertTimeseriesData := `
INSERT INTO sensor_data (time, sensor_id, temperature, cpu) VALUES ($1, $2, $3, $4);
`
/********************************************/
/* Batch Insert into TimescaleDB */
/********************************************/
//create batch
batch := &pgx.Batch{}
//load insert statements into batch queue
for i := range results {
var r result
r = results[i]
batch.Queue(queryInsertTimeseriesData, r.Time, r.SensorId, r.Temperature, r.CPU)
}
batch.Queue("select count(*) from sensor_data")
//send batch to connection pool
br := dbpool.SendBatch(ctx, batch)
//execute statements in batch queue
_, err = br.Exec()
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to execute statement in batch queue %v\n", err)
os.Exit(1)
}
fmt.Println("Successfully batch inserted data")
//Compare length of results slice to size of table
fmt.Printf("size of results: %d\n", len(results))
//check size of table for number of rows inserted
// result of last SELECT statement
var rowsInserted int
err = br.QueryRow().Scan(&rowsInserted)
fmt.Printf("size of table: %d\n", rowsInserted)
err = br.Close()
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to closer batch %v\n", err)
os.Exit(1)
}
}
This section covers how to execute queries against your database.
Define the SQL query you'd like to run on the database. This example uses a
SQL query that combines time-series and relational data. It returns the
average CPU values for every 5 minute interval, for sensors located on
location ceiling and of type a:
// Formulate query in SQL
// Note the use of prepared statement placeholders $1 and $2
queryTimebucketFiveMin := `
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.location = $1 AND sensors.type = $2
GROUP BY five_min
ORDER BY five_min DESC;
`
Use the .Query() function to execute the query string. Make sure you
specify the relevant placeholders:
//Execute query on TimescaleDB
rows, err := dbpool.Query(ctx, queryTimebucketFiveMin, "ceiling", "a")
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to execute query %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully executed query")
Access the rows returned by .Query(). Create a struct with fields
representing the columns that you expect to be returned, then use the
rows.Next() function to iterate through the rows returned and fill
results with the array of structs. This uses the rows.Scan() function,
passing in pointers to the fields that you want to scan for results.
This example prints out the results returned from the query, but you might want to use those results for some other purpose. Once you've scanned through all the rows returned you can then use the results array however you like.
//Do something with the results of query
// Struct for results
type result2 struct {
Bucket time.Time
Avg float64
}
// Print rows returned and fill up results slice for later use
var results []result2
for rows.Next() {
var r result2
err = rows.Scan(&r.Bucket, &r.Avg)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
fmt.Printf("Time bucket: %s | Avg: %f\n", &r.Bucket, r.Avg)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// use results here…
[](#)This example program runs a query, and accesses the results of that query:
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Execute a query */
/********************************************/
// Formulate query in SQL
// Note the use of prepared statement placeholders $1 and $2
queryTimebucketFiveMin := `
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.location = $1 AND sensors.type = $2
GROUP BY five_min
ORDER BY five_min DESC;
`
//Execute query on TimescaleDB
rows, err := dbpool.Query(ctx, queryTimebucketFiveMin, "ceiling", "a")
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to execute query %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully executed query")
//Do something with the results of query
// Struct for results
type result2 struct {
Bucket time.Time
Avg float64
}
// Print rows returned and fill up results slice for later use
var results []result2
for rows.Next() {
var r result2
err = rows.Scan(&r.Bucket, &r.Avg)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
fmt.Printf("Time bucket: %s | Avg: %f\n", &r.Bucket, r.Avg)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
}
Now that you're able to connect, read, and write to a TimescaleDB instance from your Go application, be sure to check out these advanced TimescaleDB tutorials:
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
All code in this quick start is for Java 16 and later. If you are working with older JDK versions, use legacy coding techniques.
In this section, you create a connection to your service using an application in
a single file. You can use any of your favorite build tools, including gradle
or maven.
Create a directory containing a text file called Main.java, with this content:
package com.timescale.java;
public class Main {
public static void main(String... args) {
System.out.println("Hello, World!");
}
}
From the command line in the current directory, run the application:
java Main.java
If the command is successful, Hello, World! line output is printed
to your console.
Import the PostgreSQL JDBC driver. If you are using a dependency manager, include the PostgreSQL JDBC Driver as a dependency.
Download the JAR artifact of the JDBC Driver and
save it with the Main.java file.
Import the JDBC Driver into the Java application and display a list of
available drivers for the check:
package com.timescale.java;
import java.sql.DriverManager;
public class Main {
public static void main(String... args) {
DriverManager.drivers().forEach(System.out::println);
}
}
Run all the examples:
java -cp *.jar Main.java
If the command is successful, a string similar to
org.postgresql.Driver@7f77e91b is printed to your console. This means that you
are ready to connect to TimescaleDB from Java.
Locate your TimescaleDB credentials and use them to compose a connection string for JDBC.
You'll need:
Compose your connection string variable, using this format:
var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
For more information about creating connection strings, see the JDBC documentation.
This method of composing a connection string is for test or development purposes only. For production, use environment variables for sensitive details like your password, hostname, and port number.
package com.timescale.java;
import java.sql.DriverManager;
import java.sql.SQLException;
public class Main {
public static void main(String... args) throws SQLException {
var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
var conn = DriverManager.getConnection(connUrl);
System.out.println(conn.getClientInfo());
}
}
Run the code:
java -cp *.jar Main.java
If the command is successful, a string similar to
{ApplicationName=PostgreSQL JDBC Driver} is printed to your console.
In this section, you create a table called sensors which holds the ID, type,
and location of your fictional sensors. Additionally, you create a hypertable
called sensor_data which holds the measurements of those sensors. The
measurements contain the time, sensor_id, temperature reading, and CPU
percentage of the sensors.
Compose a string which contains the SQL statement to create a relational
table. This example creates a table called sensors, with columns id,
type and location:
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
);
Create a statement, execute the query you created in the previous step, and check that the table was created successfully:
package com.timescale.java;
import java.sql.DriverManager;
import java.sql.SQLException;
public class Main {
public static void main(String... args) throws SQLException {
var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
var conn = DriverManager.getConnection(connUrl);
var createSensorTableQuery = """
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""";
try (var stmt = conn.createStatement()) {
stmt.execute(createSensorTableQuery);
}
var showAllTablesQuery = "SELECT tablename FROM pg_catalog.pg_tables WHERE schemaname = 'public'";
try (var stmt = conn.createStatement();
var rs = stmt.executeQuery(showAllTablesQuery)) {
System.out.println("Tables in the current database: ");
while (rs.next()) {
System.out.println(rs.getString("tablename"));
}
}
}
}
When you have created the relational table, you can create a hypertable. Creating tables and indexes, altering tables, inserting data, selecting data, and most other tasks are executed on the hypertable.
Create a CREATE TABLE SQL statement for
your hypertable. Notice how the hypertable has the compulsory time column:
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
);
Create a statement, execute the query you created in the previous step:
SELECT create_hypertable('sensor_data', by_range('time'));
The by_range and by_hash dimension builder is an addition to TimescaleDB 2.13.
Execute the two statements you created, and commit your changes to the database:
package com.timescale.java;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.List;
public class Main {
public static void main(String... args) {
final var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
try (var conn = DriverManager.getConnection(connUrl)) {
createSchema(conn);
insertData(conn);
} catch (SQLException ex) {
System.err.println(ex.getMessage());
}
}
private static void createSchema(final Connection conn) throws SQLException {
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("SELECT create_hypertable('sensor_data', by_range('time'))");
}
}
}
You can insert data into your hypertables in several different ways. In this section, you can insert single rows, or insert by batches of rows.
Open a connection to the database, use prepared statements to formulate the
INSERT SQL statement, then execute the statement:
final List<Sensor> sensors = List.of(
new Sensor("temperature", "bedroom"),
new Sensor("temperature", "living room"),
new Sensor("temperature", "outside"),
new Sensor("humidity", "kitchen"),
new Sensor("humidity", "outside"));
for (final var sensor : sensors) {
try (var stmt = conn.prepareStatement("INSERT INTO sensors (type, location) VALUES (?, ?)")) {
stmt.setString(1, sensor.type());
stmt.setString(2, sensor.location());
stmt.executeUpdate();
}
}
If you want to insert a batch of rows by using a batching mechanism. In this
example, you generate some sample time-series data to insert into the
sensor_data hypertable:
Insert batches of rows:
final var sensorDataCount = 100;
final var insertBatchSize = 10;
try (var stmt = conn.prepareStatement("""
INSERT INTO sensor_data (time, sensor_id, value)
VALUES (
generate_series(now() - INTERVAL '24 hours', now(), INTERVAL '5 minutes'),
floor(random() * 4 + 1)::INTEGER,
random()
)
""")) {
for (int i = 0; i < sensorDataCount; i++) {
stmt.addBatch();
if ((i > 0 && i % insertBatchSize == 0) || i == sensorDataCount - 1) {
stmt.executeBatch();
}
}
}
This section covers how to execute queries against your database.
Define the SQL query you'd like to run on the database. This example combines time-series and relational data. It returns the average values for every 15 minute interval for sensors with specific type and location.
SELECT time_bucket('15 minutes', time) AS bucket, avg(value)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.type = ? AND sensors.location = ?
GROUP BY bucket
ORDER BY bucket DESC;
Execute the query with the prepared statement and read out the result set for
all a-type sensors located on the floor:
try (var stmt = conn.prepareStatement("""
SELECT time_bucket('15 minutes', time) AS bucket, avg(value)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.type = ? AND sensors.location = ?
GROUP BY bucket
ORDER BY bucket DESC
""")) {
stmt.setString(1, "temperature");
stmt.setString(2, "living room");
try (var rs = stmt.executeQuery()) {
while (rs.next()) {
System.out.printf("%s: %f%n", rs.getTimestamp(1), rs.getDouble(2));
}
}
}
If the command is successful, you'll see output like this:
2021-05-12 23:30:00.0: 0,508649
2021-05-12 23:15:00.0: 0,477852
2021-05-12 23:00:00.0: 0,462298
2021-05-12 22:45:00.0: 0,457006
2021-05-12 22:30:00.0: 0,568744
...
Now that you're able to connect, read, and write to a TimescaleDB instance from your Java application, and generate the scaffolding necessary to build a new application from an existing TimescaleDB instance, be sure to check out these advanced TimescaleDB tutorials:
This section contains complete code samples.
package com.timescale.java;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.List;
public class Main {
public static void main(String... args) {
final var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
try (var conn = DriverManager.getConnection(connUrl)) {
createSchema(conn);
insertData(conn);
} catch (SQLException ex) {
System.err.println(ex.getMessage());
}
}
private static void createSchema(final Connection conn) throws SQLException {
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("SELECT create_hypertable('sensor_data', by_range('time'))");
}
}
private static void insertData(final Connection conn) throws SQLException {
final List<Sensor> sensors = List.of(
new Sensor("temperature", "bedroom"),
new Sensor("temperature", "living room"),
new Sensor("temperature", "outside"),
new Sensor("humidity", "kitchen"),
new Sensor("humidity", "outside"));
for (final var sensor : sensors) {
try (var stmt = conn.prepareStatement("INSERT INTO sensors (type, location) VALUES (?, ?)")) {
stmt.setString(1, sensor.type());
stmt.setString(2, sensor.location());
stmt.executeUpdate();
}
}
final var sensorDataCount = 100;
final var insertBatchSize = 10;
try (var stmt = conn.prepareStatement("""
INSERT INTO sensor_data (time, sensor_id, value)
VALUES (
generate_series(now() - INTERVAL '24 hours', now(), INTERVAL '5 minutes'),
floor(random() * 4 + 1)::INTEGER,
random()
)
""")) {
for (int i = 0; i < sensorDataCount; i++) {
stmt.addBatch();
if ((i > 0 && i % insertBatchSize == 0) || i == sensorDataCount - 1) {
stmt.executeBatch();
}
}
}
}
private record Sensor(String type, String location) {
}
}
package com.timescale.java;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.List;
public class Main {
public static void main(String... args) {
final var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
try (var conn = DriverManager.getConnection(connUrl)) {
createSchema(conn);
insertData(conn);
executeQueries(conn);
} catch (SQLException ex) {
System.err.println(ex.getMessage());
}
}
private static void createSchema(final Connection conn) throws SQLException {
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("SELECT create_hypertable('sensor_data', by_range('time'))");
}
}
private static void insertData(final Connection conn) throws SQLException {
final List<Sensor> sensors = List.of(
new Sensor("temperature", "bedroom"),
new Sensor("temperature", "living room"),
new Sensor("temperature", "outside"),
new Sensor("humidity", "kitchen"),
new Sensor("humidity", "outside"));
for (final var sensor : sensors) {
try (var stmt = conn.prepareStatement("INSERT INTO sensors (type, location) VALUES (?, ?)")) {
stmt.setString(1, sensor.type());
stmt.setString(2, sensor.location());
stmt.executeUpdate();
}
}
final var sensorDataCount = 100;
final var insertBatchSize = 10;
try (var stmt = conn.prepareStatement("""
INSERT INTO sensor_data (time, sensor_id, value)
VALUES (
generate_series(now() - INTERVAL '24 hours', now(), INTERVAL '5 minutes'),
floor(random() * 4 + 1)::INTEGER,
random()
)
""")) {
for (int i = 0; i < sensorDataCount; i++) {
stmt.addBatch();
if ((i > 0 && i % insertBatchSize == 0) || i == sensorDataCount - 1) {
stmt.executeBatch();
}
}
}
}
private static void executeQueries(final Connection conn) throws SQLException {
try (var stmt = conn.prepareStatement("""
SELECT time_bucket('15 minutes', time) AS bucket, avg(value)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.type = ? AND sensors.location = ?
GROUP BY bucket
ORDER BY bucket DESC
""")) {
stmt.setString(1, "temperature");
stmt.setString(2, "living room");
try (var rs = stmt.executeQuery()) {
while (rs.next()) {
System.out.printf("%s: %f%n", rs.getTimestamp(1), rs.getDouble(2));
}
}
}
}
private record Sensor(String type, String location) {
}
}
You are not limited to these languages. Tiger Cloud is based on Postgres, you can interface with TimescaleDB and Tiger Cloud using any Postgres client driver.
===== PAGE: https://docs.tigerdata.com/getting-started/services/ =====
Tiger Cloud is the modern Postgres data platform for all your applications. It enhances Postgres to handle time series, events, real-time analytics, and vector search—all in a single database alongside transactional workloads.
You get one system that handles live data ingestion, late and out-of-order updates, and low latency queries, with the performance, reliability, and scalability your app needs. Ideal for IoT, crypto, finance, SaaS, and a myriad other domains, Tiger Cloud allows you to build data-heavy, mission-critical apps while retaining the familiarity and reliability of Postgres.
A Tiger Cloud service is a single optimised Postgres instance extended with innovations in the database engine and cloud infrastructure to deliver speed without sacrifice. A Tiger Cloud service is 10-1000x faster at scale! It is ideal for applications requiring strong data consistency, complex relationships, and advanced querying capabilities. Get ACID compliance, extensive SQL support, JSON handling, and extensibility through custom functions, data types, and extensions.
Each service is associated with a project in Tiger Cloud. Each project can have multiple services. Each user is a member of one or more projects.
You create free and standard services in Tiger Cloud Console, depending on your pricing plan. A free service comes at zero cost and gives you limited resources to get to know Tiger Cloud. Once you are ready to try out more advanced features, you can switch to a paid plan and convert your free service to a standard one.
The Free pricing plan and services are currently in beta.
To the Postgres you know and love, Tiger Cloud adds the following capabilities:
Standard services:
All standard Tiger Cloud services include the tooling you expect for production and developer environments: live migration, automatic backups and PITR, high availability, read replicas, data forking, connection pooling, tiered storage, usage-based storage, secure in-Tiger Cloud Console SQL editing, service metrics and insights, streamlined maintenance, and much more. Tiger Cloud continuously monitors your services and prevents common Postgres out-of-memory crashes.
Postgres with TimescaleDB and vector extensions
Free services offer limited resources and a basic feature scope, perfect to get to know Tiger Cloud in a development environment.
You manage your Tiger Cloud services and interact with your data in Tiger Cloud Console using the following modes:
To start using Tiger Cloud for your data:
You create a Tiger Data account to manage your services and data in a centralized and efficient manner in Tiger Cloud Console. From there, you can create and delete services, run queries, manage access and billing, integrate other services, contact support, and more.
You create a standalone account to manage Tiger Cloud as a separate unit in your infrastructure, which includes separate billing and invoicing.
To set up Tiger Cloud:
Open Sign up for Tiger Cloud and add your details, then click Start your free trial. You receive a confirmation email in your inbox.
Confirm your email address
In the confirmation email, click the link supplied.
Select the pricing plan
You are now logged into Tiger Cloud Console. You can change the pricing plan to better accommodate your growing needs on the Billing page.
To have Tiger Cloud as a part of your AWS infrastructure, you create a Tiger Data account through AWS Marketplace. In this case, Tiger Cloud is a line item in your AWS invoice.
To set up Tiger Cloud via AWS:
Tiger CloudYou see two pricing options, pay-as-you-go and annual commit.
Select the pricing option that suits you and click View purchase options
Review and configure the purchase details, then click Subscribe
Click Set up your account at the top of the page
You are redirected to Tiger Cloud Console.
Add your details, then click Start your free trial. If you want to link an existing Tiger Data account to AWS, log in with your existing credentials.
You are now logged into Tiger Cloud Console. You can change the pricing plan later to better accommodate your growing needs on the Billing page.
In Confirm AWS Marketplace connection, click Connect
Your Tiger Cloud and AWS accounts are now connected.
Now that you have an active Tiger Data account, you create and manage your services in Tiger Cloud Console. When you create a service, you effectively create a blank Postgres database with additional Tiger Cloud features available under your pricing plan. You then add or migrate your data into this database.
To create a free or standard service:
+ New service.Follow the wizard to configure your service depending on its type.
Create service.Your service is constructed and ready to use in a few seconds.
Download the config and store the configuration information you need to connect to this service in a secure location.This file contains the passwords and configuration information you need to connect to your service using the Tiger Cloud Console data mode, from the command line, or using third-party database administration tools.
If you choose to go directly to the service overview, Connect to your service shows you how to connect.
To run queries and perform other operations, connect to your service:
In Tiger Cloud Console, check that your service is marked as Running.
Connect using data mode or SQL editor in Tiger Cloud Console, or psql in the command line:
This feature is not available under the Free pricing plan.
In Tiger Cloud Console, toggle Data.
Select your service in the connection drop-down in the top right.
Run a test query:
SELECT CURRENT_DATE;
This query gives you the current date, you have successfully connected to your service.
And that is it, you are up and running. Enjoy developing with Tiger Data.
In Tiger Cloud Console, select your service.
Click SQL editor.
Run a test query:
SELECT CURRENT_DATE;
This query gives you the current date, you have successfully connected to your service.
And that is it, you are up and running. Enjoy developing with Tiger Data.
Install psql.
Run the following command in the terminal using the service URL from the config file you have saved during service creation:
psql "<your-service-url>"
Run a test query:
SELECT CURRENT_DATE;
This query returns the current date. You have successfully connected to your service.
And that is it, you are up and running. Enjoy developing with Tiger Data.
Quick recap. You:
What next? Try the key features offered by Tiger Data, see the tutorials, interact with the data in your Tiger Cloud service using your favorite programming language, integrate your Tiger Cloud service with a range of third-party tools, plain old Use Tiger Data products, or dive into the API reference.
===== PAGE: https://docs.tigerdata.com/getting-started/get-started-devops-as-code/ =====
Tiger Data supplies a clean, programmatic control layer for Tiger Cloud. This includes RESTful APIs and CLI commands that enable humans, machines, and AI agents easily provision, configure, and manage Tiger Cloud services programmatically.
Tiger CLI is a command-line interface that you use to manage Tiger Cloud resources including VPCs, services, read replicas, and related infrastructure. Tiger CLI calls Tiger REST API to communicate with Tiger Cloud.
This page shows you how to install and set up secure authentication for Tiger CLI, then create your first service.
To follow the steps on this page:
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
Set up API credentials
Log Tiger CLI into your Tiger Data account:
tiger auth login
Tiger CLI opens Console in your browser. Log in, then click Authorize.
You can have a maximum of 10 active client credentials. If you get an error, open credentials and delete an unused credential.
Select a Tiger Cloud project:
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in ~/.config/tiger/credentials with restricted file permissions (600).
By default, Tiger CLI stores your configuration in ~/.config/tiger/config.yaml.
Test your authenticated connection to Tiger Cloud by listing services
tiger service list
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
Create a new Tiger Cloud service using Tiger CLI:
By default, Tiger CLI creates a service for you that matches your pricing plan:
time-series and ai capabilitiesPaid plan: 0.5 CPU and 2 GB memory with the time-series capability
tiger service create
Tiger Cloud creates a Development environment for you. That is, no delete protection, high-availability, spooling or read replication. You see something like:
🚀 Creating service 'db-11111' (auto-generated name)...
✅ Service creation request accepted!
📋 Service ID: tgrservice
🔐 Password saved to system keyring for automatic authentication
🎯 Set service 'tgrservice' as default service.
⏳ Waiting for service to be ready (wait timeout: 30m0s)...
🎉 Service is ready and running!
🔌 Run 'tiger db connect' to connect to your new service
┌───────────────────┬──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ PROPERTY │ VALUE │
├───────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────┤
│ Service ID │ tgrservice │
│ Name │ db-11111 │
│ Status │ READY │
│ Type │ TIMESCALEDB │
│ Region │ us-east-1 │
│ CPU │ 0.5 cores (500m) │
│ Memory │ 2 GB │
│ Direct Endpoint │ tgrservice.tgrproject.tsdb.cloud.timescale.com:39004 │
│ Created │ 2025-10-20 20:33:46 UTC │
│ Connection String │ postgresql://tsdbadmin@tgrservice.tgrproject.tsdb.cloud.timescale.com:0007/tsdb?sslmode=require │
│ Console URL │ https://console.cloud.timescale.com/dashboard/services/tgrservice │
└───────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────┘
This service is set as default by the CLI.
Check the CLI configuration
tiger config show
You see something like:
api_url: https://console.cloud.timescale.com/public/api/v1
console_url: https://console.cloud.timescale.com
gateway_url: https://console.cloud.timescale.com/api
docs_mcp: true
docs_mcp_url: https://mcp.tigerdata.com/docs
project_id: tgrproject
service_id: tgrservice
output: table
analytics: true
password_storage: keyring
debug: false
config_dir: /Users/<username>/.config/tiger
And that is it, you are ready to use Tiger CLI to manage your services in Tiger Cloud.
You can use the following commands with Tiger CLI. For more information on each command, use the -h flag. For example:
tiger auth login -h
| Command | Subcommand | Description |
|---|---|---|
| auth | Manage authentication and credentials for your Tiger Data account | |
| login | Create an authenticated connection to your Tiger Data account | |
| logout | Remove the credentials used to create authenticated connections to Tiger Cloud | |
| status | Show your current authentication status and project ID | |
| version | Show information about the currently installed version of Tiger CLI | |
| config | Manage your Tiger CLI configuration | |
| show | Show the current configuration | |
set <key> <value> |
Set a specific value in your configuration. For example, tiger config set debug true |
|
unset <key> |
Clear the value of a configuration parameter. For example, tiger config unset debug |
|
| reset | Reset the configuration to the defaults. This also logs you out from the current Tiger Cloud project | |
| service | Manage the Tiger Cloud services in this project | |
| create | Create a new service in this project. Possible flags are:
Possible cpu-memory combinations are:
|
|
delete <service-id> |
Delete a service from this project. This operation is irreversible and requires confirmation by typing the service ID | |
fork <service-id> |
Fork an existing service to create a new independent copy. Key features are:
|
|
get <service-id> (aliases: describe, show) |
Show detailed information about a specific service in this project | |
| list | List all the services in this project | |
update-password <service-id> |
Update the master password for a service | |
| db | Database operations and management | |
connect <service-id> |
Connect to a service | |
connection-string <service-id> |
Retrieve the connection string for a service | |
save-password <service-id> |
Save the password for a service | |
test-connection <service-id> |
Test the connectivity to a service | |
| mcp | Manage the Tiger Model Context Protocol Server for AI Assistant integration | |
install [client] |
Install and configure Tiger Model Context Protocol Server for a specific client (claude-code, cursor, windsurf, or other). If no client is specified, you'll be prompted to select one interactively |
|
| start | Start the Tiger Model Context Protocol Server. This is the same as tiger mcp start stdio |
|
| start stdio | Start the Tiger Model Context Protocol Server with stdio transport (default) | |
| start http | Start the Tiger Model Context Protocol Server with HTTP transport. Includes flags: --port (default: 8080), --host (default: localhost) |
You can use the following global flags with Tiger CLI:
| Flag | Default | Description |
|---|---|---|
--analytics |
true |
Set to false to disable usage analytics |
--color |
true |
Set to false to disable colored output |
--config-dir string |
.config/tiger |
Set the directory that holds config.yaml |
--debug |
No debugging | Enable debug logging |
--help |
- | Print help about the current command. For example, tiger service --help |
--password-storage string |
keyring | Set the password storage method. Options are keyring, pgpass, or none |
--service-id string |
- | Set the Tiger Cloud service to manage |
--skip-update-check |
- | Do not check if a new version of Tiger CLI is available |
By default, Tiger CLI stores your configuration in ~/.config/tiger/config.yaml. The name of these
variables matches the flags you use to update them. However, you can override them using the following
environmental variables:
Configuration parameters
TIGER_CONFIG_DIR: path to configuration directory (default: ~/.config/tiger)TIGER_API_URL: Tiger REST API base endpoint (default: https://console.cloud.timescale.com/public/api/v1)TIGER_CONSOLE_URL: URL to Tiger Cloud Console (default: https://console.cloud.timescale.com)TIGER_GATEWAY_URL: URL to the Tiger Cloud Console gateway (default: https://console.cloud.timescale.com/api)TIGER_DOCS_MCP: enable/disable docs MCP proxy (default: true)TIGER_DOCS_MCP_URL: URL to the Tiger MCP Server for Tiger Data docs (default: https://mcp.tigerdata.com/docs)TIGER_SERVICE_ID: ID for the service updated when you call CLI commandsTIGER_ANALYTICS: enable or disable analytics (default: true)TIGER_PASSWORD_STORAGE: password storage method (keyring, pgpass, or none)TIGER_DEBUG: enable/disable debug logging (default: false)TIGER_COLOR: set to false to disable colored output (default: true)Authentication parameters
To authenticate without using the interactive login, either:
Set the following parameters with your client credentials, then login:
TIGER_PUBLIC_KEY=<public_key> TIGER_SECRET_KEY=<secret_key> TIGER_PROJECT_ID=<project_id>\
tiger auth login
Add your client credentials to the login command:
tiger auth login --public-key=<public_key> --secret-key=<secret-key> --project-id=<project_id>
Tiger REST API is a comprehensive RESTful API you use to manage Tiger Cloud resources including VPCs, services, and read replicas.
This page shows you how to set up secure authentication for the Tiger REST API and create your first service.
To follow the steps on this page:
Create a target Tiger Data account.
Install curl.
Tiger REST API uses HTTP Basic Authentication with access keys and secret keys. All API requests must include proper authentication headers.
Set up API credentials
In Tiger Cloud Console copy your project ID and store it securely using an environment variable:
export TIGERDATA_PROJECT_ID="your-project-id"
In Tiger Cloud Console create your client credentials and store them securely using environment variables:
export TIGERDATA_ACCESS_KEY="Public key"
export TIGERDATA_SECRET_KEY="Secret key"
Configure the API endpoint
Set the base URL in your environment:
```bash
export API_BASE_URL="https://console.cloud.timescale.com/public/api/v1"
```
Test your authenticated connection to Tiger REST API by listing the services in the current Tiger Cloud project
curl -X GET "${API_BASE_URL}/projects/${TIGERDATA_PROJECT_ID}/services" \
-u "${TIGERDATA_ACCESS_KEY}:${TIGERDATA_SECRET_KEY}" \
-H "Content-Type: application/json"
This call returns something like:
- No services:
```terminaloutput
[]%
```
- One or more services:
```terminaloutput
[{"service_id":"tgrservice","project_id":"tgrproject","name":"tiger-eon",
"region_code":"us-east-1","service_type":"TIMESCALEDB",
"created":"2025-10-20T12:21:28.216172Z","paused":false,"status":"READY",
"resources":[{"id":"104977","spec":{"cpu_millis":500,"memory_gbs":2,"volume_type":""}}],
"metadata":{"environment":"DEV"},
"endpoint":{"host":"tgrservice.tgrproject.tsdb.cloud.timescale.com","port":11111}}]
```
Create a new service using the Tiger REST API:
Create a service using the POST endpoint
curl -X POST "${API_BASE_URL}/projects/${TIGERDATA_PROJECT_ID}/services" \
-u "${TIGERDATA_ACCESS_KEY}:${TIGERDATA_SECRET_KEY}" \
-H "Content-Type: application/json" \
-d '{
"name": "my-first-service",
"addons": ["time-series"],
"region_code": "us-east-1",
"replica_count": 1,
"cpu_millis": "1000",
"memory_gbs": "4"
}'
Tiger Cloud creates a Development environment for you. That is, no delete protection, high-availability, spooling or read replication. You see something like:
{"service_id":"tgrservice","project_id":"tgrproject","name":"my-first-service",
"region_code":"us-east-1","service_type":"TIMESCALEDB",
"created":"2025-10-20T22:29:33.052075713Z","paused":false,"status":"QUEUED",
"resources":[{"id":"105120","spec":{"cpu_millis":1000,"memory_gbs":4,"volume_type":""}}],
"metadata":{"environment":"PROD"},
"endpoint":{"host":"tgrservice.tgrproject.tsdb.cloud.timescale.com","port":00001},
"initial_password":"notTellingYou",
"ha_replicas":{"sync_replica_count":0,"replica_count":1}}
Save service_id from the response to a variable:
# Extract service_id from the JSON response
export SERVICE_ID="service_id-from-response"
Check the configuration for the service
curl -X GET "${API_BASE_URL}/projects/${TIGERDATA_PROJECT_ID}/services/${SERVICE_ID}" \
-u "${TIGERDATA_ACCESS_KEY}:${TIGERDATA_SECRET_KEY}" \
-H "Content-Type: application/json"
You see something like:
{"service_id":"tgrservice","project_id":"tgrproject","name":"my-first-service",
"region_code":"us-east-1","service_type":"TIMESCALEDB",
"created":"2025-10-20T22:29:33.052075Z","paused":false,"status":"READY",
"resources":[{"id":"105120","spec":{"cpu_millis":1000,"memory_gbs":4,"volume_type":""}}],
"metadata":{"environment":"DEV"},
"endpoint":{"host":"tgrservice.tgrproject.tsdb.cloud.timescale.com","port":11111},
"ha_replicas":{"sync_replica_count":0,"replica_count":1}}
And that is it, you are ready to use the Tiger REST API to manage your services in Tiger Cloud.
Follow these security guidelines when working with the Tiger REST API:
Credential management
Network security
Data protection
===== PAGE: https://docs.tigerdata.com/getting-started/run-queries-from-console/ =====
As Tiger Cloud is based on Postgres, you can use lots of different tools to connect to your service and interact with your data.
In Tiger Cloud Console you can use the following ways to run SQL queries against your service:
Data mode: a rich experience powered by PopSQL. You can write queries with autocomplete, save them in folders, share them, create charts/dashboards, and much more.
SQL Assistant in the data mode: write, fix, and organize SQL faster and more accurately.
SQL editor in the ops mode: a simple SQL editor in the ops mode that lets you run ad-hoc ephemeral
queries. This is useful for quick one-off tasks like creating an index on a small table or inspecting pg_stat_statements.
If you prefer the command line to the ops mode SQL editor in Tiger Cloud Console, use psql.
You use the data mode in Tiger Cloud Console to write queries, visualize data, and share your results.
This feature is not available under the Free pricing plan.
Available features are:
if statements.To connect to a service:
In Tiger Cloud Console, check that your service is marked as Running:
In the data mode in Tiger Cloud Console, select a service in the connection drop-down:
Type SELECT CURRENT_DATE; in Scratchpad and click Run:
Quick recap. You:
Now you have used the data mode in Tiger Cloud Console, see how to easily do the following:
If your Tiger Cloud service runs inside a VPC, do one of the following to enable access for the PopSQL desktop app:
Advanced Options enable Connect over SSH.23.20.131.72, 54.211.234.135) to your allowlist.The number of data mode seats you are allocated depends on your pricing plan.
There are a few factors to consider:
If you have a small number of users running performant SQL queries against a service with sufficient resources, then there should be no degradation to performance. However, if you have a large number of users running queries, or if the queries are computationally expensive, best practice is to create a read replica and send analytical queries there.
If you'd like to prevent write operations such as insert or update, instead
of using the tsdbadmin user, create a read-only user for your service and
use that in the data mode.
SQL Assistant in Tiger Cloud Console is a chat-like interface that harnesses the power of AI to help you write, fix, and organize SQL faster and more accurately. Ask SQL Assistant to change existing queries, write new ones from scratch, debug error messages, optimize for query performance, add comments, improve readability—and really, get answers to any questions you can think of.
This feature is not available under the Free pricing plan.
SQL Assistant offers a range of features to improve your SQL workflow, including:
Real-time help: SQL Assistant provides in-context help for writing and understanding SQL. Use it to:
LAG() or ROW_NUMBER() work? SQL Assistant explains it with examples.Error resolution: SQL Assistant diagnoses errors as they happen, you can resolve issues without leaving your editor. Features include:
Query organization: to keep your query library organized, and help your team understand the purpose of each query, SQL Assistant automatically adds titles and summaries to your queries.
Agent mode: to get results with minimal involvement from you, SQL Assistant autopilots through complex tasks and troubleshoots its own problems. No need to go step by step, analyze errors, and try out solutions. Simply turn on the agent mode in the LLM picker and watch SQL Assistant do all the work for you. Recommended for use when your database connection is configured with read-only credentials.
SQL Assistant supports a large number of LLMs, including:
Choose the LLM based on the particular task at hand. For simpler tasks, try the smaller and faster models like Gemini Flash, Haiku, or o4-mini. For more complex tasks, try the larger reasoning models like Claude Sonnet, Gemini Pro, or o3. We provide a description of each model to help you decide.
For best results with SQL Assistant:
Security and privacy is prioritized in Tiger Cloud Console. In data mode, project members
manage SQL Assistant settings under User name > Settings > SQL Assistant.
SQL Assistant settings are:
SQL editor is an integrated secure UI that you use to run queries and see the results for a Tiger Cloud service.
To enable or disable SQL editor in your service, click Operations > Service management, then
update the setting for SQL editor.
To use SQL editor:
Open SQL editor from Tiger Cloud Console
In the ops mode in Tiger Cloud Console, select a service, then click SQL editor.
Run a test query
Type SELECT CURRENT_DATE; in the UI and click Run. The results appear in the lower window:
SQL Assistant is currently free for all users. In the future, limits or paid options may be introduced as we work to build the best experience.
What next? Try the key features offered by Tiger Data, see the tutorials, interact with the data in your Tiger Cloud service using your favorite programming language, integrate your Tiger Cloud service with a range of third-party tools, plain old Use Tiger Data products, or dive into the API reference.
===== PAGE: https://docs.tigerdata.com/use-timescale/hypertables/ =====
Tiger Cloud supercharges your real-time analytics by letting you run complex queries continuously, with near-zero latency. Under the hood, this is achieved by using hypertables—Postgres tables that automatically partition your time-series data by time and optionally by other dimensions. When you run a query, Tiger Cloud identifies the correct partition, called chunk, and runs the query on it, instead of going through the entire table.
Hypertables offer the following benefits:
Efficient data management with automated partitioning by time: Tiger Cloud splits your data into chunks that hold data from a specific time range. For example, one day or one week. You can configure this range to better suit your needs.
Better performance with strategic indexing: an index on time in the descending order is automatically created when you create a hypertable. More indexes are created on the chunk level, to optimize performance. You can create additional indexes, including unique indexes, on the columns you need.
Faster queries with chunk skipping: Tiger Cloud skips the chunks that are irrelevant in the context of your query, dramatically reducing the time and resources needed to fetch results. Even more—you can enable chunk skipping on non-partitioning columns.
Advanced data analysis with hyperfunctions: Tiger Cloud enables you to efficiently process, aggregate, and analyze significant volumes of data while maintaining high performance.
To top it all, there is no added complexity—you interact with hypertables in the same way as you would with regular Postgres tables. All the optimization magic happens behind the scenes.
Inheritance is not supported for hypertables and may lead to unexpected behavior.
Each hypertable is partitioned into child hypertables called chunks. Each chunk is assigned a range of time, and only contains data from that range.
Typically, you partition hypertables on columns that hold time values.
Best practice is to use timestamptz column type. However, you can also partition on
date, integer, timestamp and UUIDv7 types.
By default, each hypertable chunk holds data for 7 days. You can change this to better suit your
needs. For example, if you set chunk_interval to 1 day, each chunk stores data for a single day.
TimescaleDB divides time into potential chunk ranges, based on the chunk_interval. Each hypertable chunk holds
data for a specific time range only. When you insert data from a time range that doesn't yet have a chunk, TimescaleDB
automatically creates a chunk to store it.
In practice, this means that the start time of your earliest chunk does not necessarily equal the earliest timestamp in your hypertable. Instead, there might be a time gap between the start time and the earliest timestamp. This doesn't affect your usual interactions with your hypertable, but might affect the number of chunks you see when inspecting it.
Best practices for maintaining a high performance when scaling include:
Chunk size affects insert and query performance. You want a chunk small enough to fit into memory so you can insert and query recent data without reading from disk. However, having too many small and sparsely filled chunks can affect query planning time and compression. The more chunks in the system, the slower that process becomes, even more so when all those chunks are part of a single hypertable.
Postgres builds the index on the fly during ingestion. That means that to build a new entry on the index, a significant portion of the index needs to be traversed during every row insertion. When the index does not fit into memory, it is constantly flushed to disk and read back. This wastes IO resources which would otherwise be used for writing the heap/WAL data to disk.
The default chunk interval is 7 days. However, best practice is to set chunk_interval so that prior to processing,
the indexes for chunks currently being ingested into fit within 25% of main memory. For example, on a system with 64
GB of memory, if index growth is approximately 2 GB per day, a 1-week chunk interval is appropriate. If index growth is
around 10 GB per day, use a 1-day interval.
You set chunk_interval when you create a hypertable, or by calling
set_chunk_time_interval on an existing hypertable.
For a detailed analysis of how to optimize your chunk sizes, see the blog post on chunk time intervals. To learn how to view and set your chunk time intervals, see Optimize hypertable chunk intervals.
By default, indexes are automatically created when you create a hypertable. The default index is on time, descending.
You can prevent index creation by setting the create_default_indexes option to false.
Hypertables have some restrictions on unique constraints and indexes. If you want a unique index on a hypertable, it must include all the partitioning columns for the table. To learn more, see Enforce constraints with unique indexes on hypertables.
You can prevent index creation by setting the create_default_indexes option to false.
Partitioning on time is the most common use case for hypertable, but it may not be enough for your needs. For example, you may need to scan for the latest readings that match a certain condition without locking a critical hypertable.
The use case for a partitioning dimension is a multi-tenant setup. You isolate the tenants using the tenant_id space
partition. However, you must perform extensive testing to ensure this works as expected, and there is a strong risk of
partition explosion.
You add a partitioning dimension at the same time as you create the hypertable, when the table is empty. The good news
is that although you select the number of partitions at creation time, as your data grows you can change the number of
partitions later and improve query performance. Changing the number of partitions only affects chunks created after the
change, not existing chunks. To set the number of partitions for a partitioning dimension, call set_number_partitions.
For example:
Create the hypertable with the 1-day interval chunk interval
CREATE TABLE conditions(
"time" timestamptz not null,
device_id integer,
temperature float
)
WITH(
timescaledb.hypertable,
timescaledb.partition_column='time',
timescaledb.chunk_interval='1 day'
);
Add a hash partition on a non-time column
select * from add_dimension('conditions', by_hash('device_id', 3));
Now use your hypertable as usual, but you can also ingest and query efficiently by the device_id column.
Change the number of partitions as you data grows
select set_number_partitions('conditions', 5, 'device_id');
===== PAGE: https://docs.tigerdata.com/use-timescale/hypercore/ =====
Hypercore is a hybrid row-columnar storage engine in TimescaleDB. It is designed specifically for real-time analytics and powered by time-series data. The advantage of hypercore is its ability to seamlessly switch between row-oriented and column-oriented storage, delivering the best of both worlds:
Hypercore solves the key challenges in real-time analytics:
Hypercore’s hybrid approach combines the benefits of row-oriented and column-oriented formats:
Fast ingest with rowstore: new data is initially written to the rowstore, which is optimized for high-speed inserts and updates. This process ensures that real-time applications easily handle rapid streams of incoming data. Mutability—upserts, updates, and deletes happen seamlessly.
Efficient analytics with columnstore: as the data cools and becomes more suited for analytics, it is automatically converted to the columnstore. This columnar format enables fast scanning and aggregation, optimizing performance for analytical workloads while also saving significant storage space.
Faster queries on compressed data in columnstore: in the columnstore conversion, hypertable chunks are compressed by up to 98%, and organized for efficient, large-scale queries. Combined with chunk skipping, this helps you save on storage costs and keeps your queries operating at lightning speed.
Fast modification of compressed data in columnstore: just use SQL to add or modify data in the columnstore. TimescaleDB is optimized for superfast INSERT and UPSERT performance.
Full mutability with transactional semantics: regardless of where data is stored, hypercore provides full ACID support. Like in a vanilla Postgres database, inserts and updates to the rowstore and columnstore are always consistent, and available to queries as soon as they are completed.
For an in-depth explanation of how hypertables and hypercore work, see the Data model.
This section shows the following:
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/ =====
From real-time dashboards to performance monitoring and historical trend analysis, data aggregation is a must-have for any sort of analytical application. To address this need, TimescaleDB uses continuous aggregates to precompute and store aggregate data for you. Using Postgres materialized views, TimescaleDB incrementally refreshes the aggregation query in the background. When you do run the query, only the data that has changed needs to be computed, not the entire dataset. This means you always have the latest aggregate data at your fingertips—and spend as little resources on it, as possible.
In this section you:
===== PAGE: https://docs.tigerdata.com/use-timescale/services/ =====
Tiger Cloud is the modern Postgres data platform for all your applications. It enhances Postgres to handle time series, events, real-time analytics, and vector search—all in a single database alongside transactional workloads.
You get one system that handles live data ingestion, late and out-of-order updates, and low latency queries, with the performance, reliability, and scalability your app needs. Ideal for IoT, crypto, finance, SaaS, and a myriad other domains, Tiger Cloud allows you to build data-heavy, mission-critical apps while retaining the familiarity and reliability of Postgres.
A Tiger Cloud service is a single optimised Postgres instance extended with innovations in the database engine and cloud infrastructure to deliver speed without sacrifice. A Tiger Cloud service is 10-1000x faster at scale! It is ideal for applications requiring strong data consistency, complex relationships, and advanced querying capabilities. Get ACID compliance, extensive SQL support, JSON handling, and extensibility through custom functions, data types, and extensions.
Each service is associated with a project in Tiger Cloud. Each project can have multiple services. Each user is a member of one or more projects.
You create free and standard services in Tiger Cloud Console, depending on your pricing plan. A free service comes at zero cost and gives you limited resources to get to know Tiger Cloud. Once you are ready to try out more advanced features, you can switch to a paid plan and convert your free service to a standard one.
The Free pricing plan and services are currently in beta.
To the Postgres you know and love, Tiger Cloud adds the following capabilities:
Standard services:
All standard Tiger Cloud services include the tooling you expect for production and developer environments: live migration, automatic backups and PITR, high availability, read replicas, data forking, connection pooling, tiered storage, usage-based storage, secure in-Tiger Cloud Console SQL editing, service metrics and insights, streamlined maintenance, and much more. Tiger Cloud continuously monitors your services and prevents common Postgres out-of-memory crashes.
Postgres with TimescaleDB and vector extensions
Free services offer limited resources and a basic feature scope, perfect to get to know Tiger Cloud in a development environment.
Read about Tiger Cloud features in the documentation:
You're now on your way to a great start with Tiger Cloud.
You have an unthrottled, 30-day free trial with Tiger Cloud to continue to test your use case. Before the end of your trial, make sure you add your credit card information. This ensures a smooth transition after your trial period concludes.
If you have any questions, you can join our community Slack group or contact us directly.
Tiger Cloud is a versatile hosting service that provides a growing list of advanced features for your Postgres and time-series data workloads.
For more information about customizing your database configuration, see the Configuration section.
The TimescaleDB Terraform provider provides configuration management resources for Tiger Cloud. You can use it to create, rename, resize, delete, and import services. For more information about the supported service configurations and operations, see the Terraform provider documentation.
===== PAGE: https://docs.tigerdata.com/use-timescale/write-data/ =====
Writing data in TimescaleDB works the same way as writing data to regular
Postgres. You can add and modify data in both regular tables and hypertables
using INSERT, UPDATE, and DELETE statements.
For more information about using third-party tools to write data into TimescaleDB, see the Ingest data from other sources section.
===== PAGE: https://docs.tigerdata.com/use-timescale/query-data/ =====
Hypertables in TimescaleDB are Postgres tables. That means you can query them with standard SQL commands.
SELECTDISTINCT queries with SkipScan===== PAGE: https://docs.tigerdata.com/use-timescale/time-buckets/ =====
Time buckets enable you to aggregate data in hypertables by time interval. For example, you can group data into 5-minute, 1-hour, and 3-day buckets to calculate summary values.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/ =====
A database schema defines how the tables and indexes in your database are organized. Using a schema that is appropriate for your workload can result in significant performance improvements.
===== PAGE: https://docs.tigerdata.com/use-timescale/configuration/ =====
By default, Tiger Cloud uses the standard Postgres server configuration settings. However, in some cases, these settings are not appropriate, especially if you have larger servers that use more hardware resources such as CPU, memory, and storage.
This section contains information about tuning your Tiger Cloud service.
===== PAGE: https://docs.tigerdata.com/use-timescale/alerting/ =====
Early issue detecting and prevention, ensuring high availability, and performance optimization are only a few of the reasons why alerting plays a major role for modern applications, databases, and services.
There are a variety of different alerting solutions you can use in conjunction with Tiger Cloud that are part of the Postgres ecosystem. Regardless of whether you are creating custom alerts embedded in your applications, or using third-party alerting tools to monitor event data across your organization, there are a wide selection of tools available.
Grafana is a great way to visualize your analytical queries, and it has a first-class integration with Tiger Data products. Beyond data visualization, Grafana also provides alerting functionality to keep you notified of anomalies.
Within Grafana, you can define alert rules which are time-based thresholds for your dashboard data (for example, "Average CPU usage greater than 80 percent for 5 minutes"). When those alert rules are triggered, Grafana sends a message via the chosen notification channel. Grafana provides integration with webhooks, email and more than a dozen external services including Slack and PagerDuty.
To get started, first download and install Grafana. Next, add a new Postgres data source that points to your Tiger Cloud service. This data source was built by Tiger Data engineers, and it is designed to take advantage of the database's time-series capabilities. From there, proceed to your dashboard and set up alert rules as described above.
Alerting is only available in Grafana v4.0 and later.
Tiger Cloud works with a variety of alerting tools within the Postgres ecosystem. Users can use these tools to set up notifications about meaningful events that signify notable changes to the system.
Some popular alerting tools that work with Tiger Cloud include:
See the integration guides for details.
===== PAGE: https://docs.tigerdata.com/use-timescale/data-retention/ =====
Data retention helps you save on storage costs by deleting old data. You can combine data retention with continuous aggregates to downsample your data.
In this section:
===== PAGE: https://docs.tigerdata.com/use-timescale/data-tiering/ =====
Tiered storage is a hierarchical storage management architecture for real-time analytics services you create in Tiger Cloud.
Engineered for infinite low-cost scalability, tiered storage consists of the following:
High-performance storage tier: stores the most recent and frequently queried data. This tier comes in two types, standard and enhanced, and provides you with up to 64 TB of storage and 32,000 IOPS.
Object storage tier: stores data that is rarely accessed and has lower performance requirements. For example, old data for auditing or reporting purposes over long periods of time, even forever. The object storage tier is low-cost and bottomless.
No matter the tier your data is stored in, you can query it when you need it. Tiger Cloud seamlessly accesses the correct storage tier and generates the response.
You define tiering policies that automatically migrate data from the high-performance storage tier to the object tier as it ages. You use retention policies to remove very old data from the object storage tier.
With tiered storage you don't need an ETL process, infrastructure changes, or custom-built, bespoke solutions to offload data to secondary storage and fetch it back in when needed. Kick back and relax, we do the work for you.
In this section, you:
===== PAGE: https://docs.tigerdata.com/use-timescale/metrics-logging/ =====
Find metrics and logs for your services in Tiger Cloud Console, or integrate with third-party monitoring services:
===== PAGE: https://docs.tigerdata.com/use-timescale/ha-replicas/ =====
In Tiger Cloud, replicas are copies of the primary data instance in a Tiger Cloud service. If your primary becomes unavailable, Tiger Cloud automatically fails over to your HA replica.
The replication strategies offered by Tiger Cloud are:
High Availability(HA) replicas: significantly reduce the risk of downtime and data loss due to system failure, and enable services to avoid downtime during routine maintenance.
Read replicas: safely scale a service to power your read-intensive
For MST, see Failover in Managed Service for TimescaleDB. For self-hosted TimescaleDB, see Replication and high availability.
By default, all services have rapid recovery enabled.
Because compute and storage are handled separately in Tiger Cloud, services recover quickly from compute failures, but usually need a full recovery from backup for storage failures.
Compute failure: the most common cause of database failure. Compute failures can be caused by hardware failing, or through things like unoptimized queries, causing increased load that maxes out the CPU usage. In these cases, data on disk is unaffected and only the compute and memory needs replacing. Tiger Cloud recovery immediately provisions new compute infrastructure for the service and mounts the existing storage to the new node. Any WAL that was in memory then replays. This process typically only takes thirty seconds. However, depending on the amount of WAL that needs replaying this may take up to twenty minutes. Even in the worst-case scenario, Tiger Cloud recovery is an order of magnitude faster than a standard recovery from backup.
Storage failure: in the rare occurrence of disk failure, Tiger Cloud automatically performs a full recovery from backup.
If CPU usage for a service runs high for long periods of time, issues such as WAL archiving getting queued behind other processes can occur. This can cause a failure and could result in a larger data loss. To avoid data loss, services are monitored for this kind of scenario.
===== PAGE: https://docs.tigerdata.com/use-timescale/upgrades/ =====
Tiger Cloud offers managed database services that provide a stable and reliable environment for your applications. Each service is based on a specific version of the Postgres database and the TimescaleDB extension. To ensure that you benefit from the latest features, performance and security improvements, it is important that your Tiger Cloud service is kept up to date with the latest versions of TimescaleDB and Postgres.
Tiger Cloud has the following upgrade policies:
Upgrades are performed on your Tiger Cloud service during a maintenance window that you define to suit your workload. You can also manually upgrade TimescaleDB.
Downtime is usually between 30 seconds and 5 minutes. Tiger Data aims to notify you by email if downtime is required, so that you can plan accordingly. However, in some cases this is not possible.
After a maintenance upgrade, the DNS name remains the same. However, the IP address often changes.
If you do not manually upgrade TimescaleDB for non-critical upgrades,
Tiger Cloud performs upgrades automatically in the next available maintenance window. The upgrade is first applied to your services tagged #dev, and three weeks later to those tagged #prod. Subscribe to get an email notification before your #prod services are upgraded. You can upgrade your #prod services manually sooner, if needed.
Most upgrades that occur during your maintenance windows do not require any downtime. This means that there is no service outage during the upgrade. However, all connections and transactions in progress during the upgrade are reset. Usually, the service connection is automatically restored after the reset.
Some minor upgrades do require some downtime. This is usually between 30 seconds and 5 minutes. If downtime is required for an upgrade, Tiger Data endeavors to notify you by email ahead of the upgrade. However, in some cases, we might not be able to do so. Best practice is to schedule your maintenance window so that any downtime disrupts your workloads as little as possible and minimize downtime with replicas. If there are no pending upgrades available during a regular maintenance window, no changes are performed.
To track the status of maintenance events, see the Tiger Cloud status page.
Maintenance upgrades require up to two automatic failovers. Each failover takes less than a few seconds. Tiger Cloud services with high-availability replicas and read replicas require minimal write downtime during maintenance, read-only queries keep working throughout.
During a maintenance event, services with replicas perform maintenance on each node independently. When maintenance is complete on the primary node, it is restarted:
Non-critical upgrades are available before the upgrade is performed automatically by Tiger Cloud. To upgrade TimescaleDB manually:
In Tiger Cloud Console, select the service you want to upgrade.
Either:
SQL Editor, then run ALTEREXTENSION timescaledb UPDATE.⋮, then Pause and Resume the service.Upgrading to a newer version of Postgres allows you to take advantage of new features, enhancements, and security fixes. It also ensures that you are using a version of Postgres that's compatible with the newest version of TimescaleDB, allowing you to take advantage of everything it has to offer. For more information about feature changes between versions, see the Tiger Cloud release notes, supported systems, and the Postgres release notes.
To ensure you benefit from the latest features, optimal performance, enhanced security, and full compatibility with TimescaleDB, Tiger Cloud supports a defined set of Postgres major versions. To reduce the maintenance burden and continue providing a high-quality managed experience, as Postgres and TimescaleDB evolve, Tiger Data periodically deprecates older Postgres versions.
Tiger Data provides advance notification to allow you ample time to plan and perform your upgrade. The timeline deprecation is as follows:
Upgrading to a newer version of Postgres enables you to take advantage of new features, enhancements, and security fixes. It also ensures that you are using a version of Postgres that's compatible with the newest version of TimescaleDB.
For a smooth upgrade experience, make sure you:
Tiger Cloud services with replicas cannot be upgraded. To upgrade a service with a replica, you must first delete the replica and then upgrade the service.
The following table shows you the compatible versions of Postgres and TimescaleDB.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10| |-----------------------|-|-|-|-|-|-|-|-| | 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌| | 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌| | 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌| | 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌| | 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌| | 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌| | 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌| | 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌ | 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21. These minor versions introduced a breaking binary interface change that, once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22. When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher. Users of Tiger Cloud and platform packages for Linux, Windows, MacOS, Docker, and Kubernetes are unaffected.
For more information about feature changes between versions, see the Postgres release notes and TimescaleDB release notes.
Your Tiger Cloud service is unavailable until the upgrade is complete. This can take up to 20 minutes. Best practice is to test on a fork first, so you can estimate how long the upgrade will take.
To upgrade your service to a newer version of Postgres:
In Tiger Cloud Console, select the service you want to upgrade.
Disable high-availability replicas
Operations > High Availability, then click Change configuaration.Non-production (No replica), then click Change configuration.Disable read replicas
Operations > Read scaling, then click the trash icon next to all replica sets.Upgrade Postgres
Operations > Service Upgrades.Upgrade service, then confirm that you are ready to start the upgrade.Your Tiger Cloud service is unavailable until the upgrade is complete. This normally takes up to 20 minutes. However, it can take longer if you have a large or complex service.
When the upgrade is finished, your service automatically resumes normal operations. If the upgrade is unsuccessful, the service returns to the state it was in before you started the upgrade.
If you do not manually upgrade your services within the customer self-service upgrade window, Tiger Cloud performs an automatic upgrade. Automatic upgrades can result in downtime, best practice is to manually upgrade your services during a low-traffic period for your application.
During an automatic upgrade:
When you are considering your maintenance window schedule, best practice is to choose a day and time that usually has very low activity, such as during the early hours of the morning, or over the weekend. This helps minimize the impact of a short service interruption. Alternatively, you might prefer to have your maintenance window occur during office hours, so that you can monitor your system during the upgrade.
To change your maintenance window:
In Tiger Cloud Console, select the service you want to manage.
Maintenance windows can run for up to four hours.
===== PAGE: https://docs.tigerdata.com/use-timescale/extensions/ =====
The following Postgres extensions are installed with each Tiger Cloud service:
| Extension | Description | Enabled by default |
|---|---|---|
| pgai | Helper functions for AI workflows | For AI-focused services |
| pg_textsearch | BM25-based full-text search | Currently early access. For development and staging environments only |
| pgvector | Vector similarity search for Postgres | For AI-focused services |
| pgvectorscale | Advanced indexing for vector data | For AI-focused services |
| timescaledb_toolkit | TimescaleDB Toolkit | For Real-time analytics services |
| timescaledb | TimescaleDB | For all services |
| Extension | Description | Enabled by default |
|---|---|---|
| autoinc | Functions for autoincrementing fields | - |
| amcheck | Functions for verifying relation integrity | - |
| bloom | Bloom access method - signature file-based index | - |
| bool_plperl | Transform between bool and plperl | - |
| btree_gin | Support for indexing common datatypes in GIN | - |
| btree_gist | Support for indexing common datatypes in GiST | - |
| citext | Data type for case-insensitive character strings | - |
| cube | Data type for multidimensional cubes | - |
| dict_int | Text search dictionary template for integers | - |
| dict_xsyn | Text search dictionary template for extended synonym processing | - |
| earthdistance | Calculate great-circle distances on the surface of the Earth | - |
| fuzzystrmatch | Determine similarities and distance between strings | - |
| hstore | Data type for storing sets of (key, value) pairs | - |
| hstore_plperl | Transform between hstore and plperl | - |
| insert_username | Functions for tracking who changed a table | - |
| intagg | Integer aggregator and enumerator (obsolete) | - |
| intarray | Functions, operators, and index support for 1-D arrays of integers | - |
| isn | Data types for international product numbering standards | - |
| jsonb_plperl | Transform between jsonb and plperl | - |
| lo | Large object maintenance | - |
| ltree | Data type for hierarchical tree-like structures | - |
| moddatetime | Functions for tracking last modification time | - |
| old_snapshot | Utilities in support of old_snapshot_threshold |
- |
| pgcrypto | Cryptographic functions | - |
| pgrowlocks | Show row-level locking information | - |
| pgstattuple | Obtain tuple-level statistics | - |
| pg_freespacemap | Examine the free space map (FSM) | - |
| pg_prewarm | Prewarm relation data | - |
| pg_stat_statements | Track execution statistics of all SQL statements executed | For all services |
| pg_trgm | Text similarity measurement and index searching based on trigrams | - |
| pg_visibility | Examine the visibility map (VM) and page-level visibility info | - |
| plperl | PL/Perl procedural language | - |
| plpgsql | SQL procedural language | For all services |
| postgres_fdw | Foreign data wrappers | For all services |
| refint | Functions for implementing referential integrity (obsolete) | - |
| seg | Data type for representing line segments or floating-point intervals | - |
| sslinfo | Information about SSL certificates | - |
| tablefunc | Functions that manipulate whole tables, including crosstab | - |
| tcn | Trigger change notifications | - |
| tsm_system_rows | TABLESAMPLE method which accepts the number of rows as a limit |
- |
| tsm_system_time | TABLESAMPLE method which accepts the time in milliseconds as a limit |
- |
| unaccent | Text search dictionary that removes accents | - |
| uuid-ossp | Generate universally unique identifiers (UUIDs) | - |
| Extension | Description | Enabled by default |
|---|---|---|
| h3 | H3 bindings for Postgres | - |
| pgaudit | Detailed session and/or object audit logging | - |
| pgpcre | Perl-compatible RegEx | - |
| pg_cron | SQL commands that you can schedule and run directly inside the database | Contact us to enable |
| pg_repack | Table reorganization in Postgres with minimal locks | - |
| pgrouting | Geospatial routing functionality | - |
| postgis | PostGIS geometry and geography spatial types and functions | - |
| postgis_raster | PostGIS raster types and functions | - |
| postgis_sfcgal | PostGIS SFCGAL functions | - |
| postgis_tiger_geocoder | PostGIS Tiger Cloud geocoder and reverse geocoder | - |
| postgis_topology | PostGIS topology spatial types and functions | - |
| unit | SI units for Postgres | - |
===== PAGE: https://docs.tigerdata.com/use-timescale/backup-restore/ =====
Tiger Cloud provides comprehensive backup and recovery solutions to protect your data, including automatic daily backups, cross-region protection, and point-in-time recovery.
Tiger Cloud automatically handles backup for your Tiger Cloud services using the pgBackRest tool. You don't need to perform
backups manually. What's more, with cross-region backup, you are protected when an entire AWS region goes down.
Tiger Cloud automatically creates one full backup every week, and incremental backups every day in the same region as your service. Additionally, all Write-Ahead Log (WAL) files are retained back to the oldest full backup. This means that you always have a full backup available for the current and previous week:
On Scale and Performance pricing plans, you can check the list of backups for the previous 14 days in Tiger Cloud Console. To do so, select your service, then click Operations > Backup and restore > Backup history.
In the event of a storage failure, a service automatically recovers from a backup to the point of failure. If the whole availability zone goes down, your Tiger Cloud services are recovered in a different zone. In the event of a user error, you can create a point-in-time recovery fork.
For added reliability, you can enable cross-region backup. This protects your data when an entire AWS region goes down. In this case, you have two identical backups of your service at any time, but one of them is in a different AWS region. Cross-region backups are updated daily and weekly in the same way as a regular backup. You can have one cross-region backup for a service.
You enable cross-region backup when you create a service, or configure it for an existing service in Tiger Cloud Console:
In Console, select your service and click Operations > Backup & restore.
In Cross-region backup, select the region in the dropdown and click Enable backup.
You can now see the backup, its region, and creation date in a list.
You can have one cross-region backup per service. To change the region of your backup:
In Console, select your service and click Operations > Backup & restore.
Click the trash icon next to the existing backup to disable it.
To recover your service from a destructive or unwanted action, create a point-in-time recovery fork. You can recover a service to any point within the period defined by your pricing plan. The provision time for the recovery fork is typically less than twenty minutes, but can take longer depending on the amount of WAL to be replayed. The original service stays untouched to avoid losing data created since the time of recovery.
All tiered data remains recoverable during the PITR period. When restoring to any point-in-time recovery fork, your service contains all data that existed at that moment - whether it was stored in high-performance or low-cost storage.
When you restore a recovery fork:
To avoid paying for compute for the recovery fork and the original service, pause the original to only pay storage costs.
You initiate a point-in-time recovery from a same-region or cross-region backup in Tiger Cloud Console:
Services list, ensure the service
you want to recover has a status of Running or Paused.Operations > Service management and click Create recovery fork.Configure the fork.
You can configure the compute resources, add an HA replica, tag your fork, and add a connection pooler. Best practice is to match the same configuration you had at the point you want to recover to.
Confirm by clicking Create recovery fork.
A fork of the service is created. The recovered service shows in Services with a label specifying which service it has been forked from.
Update the connection strings in your app
Since the point-in-time recovery is done in a fork, to migrate your application to the point of recovery, change the connection strings in your application to use the fork.
Contact us, and we will assist in recovering your service.
To manage development forks:
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
Set up API credentials
Log Tiger CLI into your Tiger Data account:
tiger auth login
Tiger CLI opens Console in your browser. Log in, then click Authorize.
You can have a maximum of 10 active client credentials. If you get an error, open credentials and delete an unused credential.
Select a Tiger Cloud project:
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in ~/.config/tiger/credentials with restricted file permissions (600).
By default, Tiger CLI stores your configuration in ~/.config/tiger/config.yaml.
Test your authenticated connection to Tiger Cloud by listing services
tiger service list
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
Fork the service
tiger service fork tgrservice --now --no-wait --name bob
By default a fork matches the resource of the parent Tiger Cloud services. For paid plans specify --cpu and/or --memory for dedicated resources.
You see something like:
```terminaloutput
🍴 Forking service 'tgrservice' to create 'bob' at current state...
✅ Fork request accepted!
📋 New Service ID: <service_id>
🔐 Password saved to system keyring for automatic authentication
🎯 Set service '<service_id>' as default service.
⏳ Service is being forked. Use 'tiger service list' to check status.
┌───────────────────┬──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ PROPERTY │ VALUE │
├───────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────┤
│ Service ID │ <service_id> │
│ Name │ bob │
│ Status │ │
│ Type │ TIMESCALEDB │
│ Region │ eu-central-1 │
│ CPU │ 0.5 cores (500m) │
│ Memory │ 2 GB │
│ Direct Endpoint │ <service-id>.<project-id>.tsdb.cloud.timescale.com:<port> │
│ Created │ 2025-10-08 13:58:07 UTC │
│ Connection String │ postgresql://tsdbadmin@<service-id>.<project-id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require │
└───────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────┘
1. **When you are done, delete your forked service**
1. Use the CLI to request service delete:
```shell
tiger service delete <service_id>
```
1. Validate the service delete:
```terminaloutput
Are you sure you want to delete service '<service_id>'? This operation cannot be undone.
Type the service ID '<service_id>' to confirm:
<service_id>
```
You see something like:
```terminaloutput
🗑️ Delete request accepted for service '<service_id>'.
✅ Service '<service_id>' has been successfully deleted.
```
===== PAGE: https://docs.tigerdata.com/use-timescale/fork-services/ =====
# Fork services
Modern development is highly iterative. Developers and AI agents need safe spaces to test changes before deploying them
to production. Forkable services make this natural and easy. Spin up a branch, run your test, throw it away, or
merge it back.
A fork is an exact copy of a service at a specific point in time, with its own independent data and configuration,
including:
- The database data and schema
- Configuration
- An admin `tsdbadmin` user with a new password
Forks are fully independent. Changes to the fork don't affect the parent service. You can query
them, run migrations, add indexes, or test new features against the fork without affecting the original service.
Forks are a powerful way to share production-scale data safely. Testing, BI and data science teams often need access
to real datasets to build models or generate insights. With forkable services, you easily create fast, zero-copy
branches of a production service that are isolated from production, but contain all the data needed for
analysis. Rapid fork creation dramatically reduces friction getting insights from live data.
## Understand service forks
You can use service forks for disaster recovery, CI/CD automation, and testing and development. For example, you
can automatically test a major Postgres upgrade on a fork before applying it to your production service.
Tiger Cloud offers the following fork strategies:
- `now`: create a fresh fork of your database at the current time.
Use when:
- You need the absolute latest data
- Recent changes must be included in the fork
- `last-snapshot`: fork from the most recent [automatic backup or snapshot][automatic-backups].
Use when:
- You want the fastest possible fork creation
- Slightly behind current data is acceptable
- `timestamp`: fork from a specific point in time within your [retention period][pricing].
Use when:
- Disaster recovery from a known-good state
- Investigating issues that occurred at a specific time
- Testing "what-if" scenarios from historical data
The retention period for point-in-time recovery and forking depends on your [pricing plan][pricing-plan-features].
### Fork creation speed
Fork creation speed depends on your type of service you want to create:
- Free: ~30-90 seconds. Uses a Copy-on-Write storage architecture with zero-copy between a fork and the parent.
- Paid: varies with the size of your service, typically 5-20+ minutes. Uses tradional storage architecture
with backup restore + WAL replay.
### Billing
You can fork a free service to a free or a paid service. However, you cannot fork a paid
service to a free service.
Billing on storage works in the following way:
- High-performance storage:
- Copy-on-Write: you are only billed for storage for the chunks that diverge from the parent service.
- Traditional: you are billed for storage for the whole service.
- Object storage tier:
- [Tiered data][data-tiering] is shared across forks using copy-on-write and traditional storage:
- Chunks in tiered storage are only billed once, regardless of the number of forks
- Only new or modified chunks in a fork incur additional costs
For details, see [Replicas and forks with tiered data][tiered-forks].
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Manage forks using Tiger CLI
To manage development forks:
1. **Install Tiger CLI**
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
1. **Set up API credentials**
1. Log Tiger CLI into your Tiger Data account:
```shell
tiger auth login
```
Tiger CLI opens Console in your browser. Log in, then click `Authorize`.
You can have a maximum of 10 active client credentials. If you get an error, open [credentials][rest-api-credentials]
and delete an unused credential.
1. Select a Tiger Cloud project:
```terminaloutput
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
```
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in `~/.config/tiger/credentials` with restricted file permissions (600).
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`.
1. **Test your authenticated connection to Tiger Cloud by listing services**
```bash
tiger service list
```
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
1. **Fork the service**
shell
tiger service fork tgrservice --now --no-wait --name bob
By default a fork matches the resource of the parent Tiger Cloud services. For paid plans specify `--cpu` and/or `--memory` for dedicated resources.
You see something like:
```terminaloutput
🍴 Forking service 'tgrservice' to create 'bob' at current state...
✅ Fork request accepted!
📋 New Service ID: <service_id>
🔐 Password saved to system keyring for automatic authentication
🎯 Set service '<service_id>' as default service.
⏳ Service is being forked. Use 'tiger service list' to check status.
┌───────────────────┬──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ PROPERTY │ VALUE │
├───────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────┤
│ Service ID │ <service_id> │
│ Name │ bob │
│ Status │ │
│ Type │ TIMESCALEDB │
│ Region │ eu-central-1 │
│ CPU │ 0.5 cores (500m) │
│ Memory │ 2 GB │
│ Direct Endpoint │ <service-id>.<project-id>.tsdb.cloud.timescale.com:<port> │
│ Created │ 2025-10-08 13:58:07 UTC │
│ Connection String │ postgresql://tsdbadmin@<service-id>.<project-id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require │
└───────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────┘
When you are done, delete your forked service
Use the CLI to request service delete:
tiger service delete <service_id>
Validate the service delete:
Are you sure you want to delete service '<service_id>'? This operation cannot be undone.
Type the service ID '<service_id>' to confirm:
<service_id>
You see something like:
```terminaloutput
🗑️ Delete request accepted for service '<service_id>'.
✅ Service '<service_id>' has been successfully deleted.
```
To manage development forks:
Services list, ensure the service
you want to recover has a status of Running or Paused.Operations > Service Management and click Fork service.Configure the fork, then click Fork service.
A fork of the service is created. The forked service shows in Services with a label
specifying which service it has been forked from.
Update the connection strings in your app to use the fork.
To fork your Tiger Cloud service using GitHub actions:
Store your Tiger Cloud API key as a GitHub Actions secret
Create credentials.Public key and Secret key locally, then click Done.Settings, open Secrets and variables, then click Actions.New repository secret, then set Name to TIGERDATA_API_KEYSecret to your Tiger Cloud API key in the following format <Public key>:<Secret key>, then click Add secret.Add the GitHub Actions Marketplace to your workflow YAML files
For example, the following workflow forks a service when a pull request is opened, running tests against the fork, then automatically cleans up.
```yaml
name: Test on a service fork
on: pull_request
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Fork Database
id: fork
uses: timescale/fork-service@v1
with:
project_id: ${{ secrets.TIGERDATA_PROJECT_ID }}
service_id: ${{ secrets.TIGERDATA_SERVICE_ID }}
api_key: ${{ secrets.TIGERDATA_API_KEY }}
fork_strategy: last-snapshot
cleanup: true
name: pr-${{ github.event.pull_request.number }}
- name: Run Integration Tests
env:
DATABASE_URL: postgresql://tsdbadmin:${{ steps.fork.outputs.initial_password }}@${{ steps.fork.outputs.host }}:${{ steps.fork.outputs.port }}/tsdb?sslmode=require
run: |
npm install
npm test
- name: Run Migrations
env:
DATABASE_URL: postgresql://tsdbadmin:${{ steps.fork.outputs.initial_password }}@${{ steps.fork.outputs.host }}:${{ steps.fork.outputs.port }}/tsdb?sslmode=require
run: npm run migrate
```
For the full list of inputs, outputs, and configuration options, see the [Tiger Data - Fork Service][github-action] in GitHub marketplace.
===== PAGE: https://docs.tigerdata.com/use-timescale/jobs/ =====
TimescaleDB natively includes some job-scheduling policies, such as:
If these don't cover your use case, you can create and schedule custom-defined jobs to run within your database. They help you automate periodic tasks that aren't covered by the native policies.
In this section, you see how to:
===== PAGE: https://docs.tigerdata.com/use-timescale/security/ =====
Learn how Tiger Cloud protects your data and privacy.
===== PAGE: https://docs.tigerdata.com/use-timescale/limitations/ =====
While TimescaleDB generally offers capabilities that go beyond what Postgres offers, there are some limitations to using hypertables.
UPDATE statements that move values between partitions (chunks) are not
supported. This includes upserts (INSERT ... ON CONFLICT UPDATE).===== PAGE: https://docs.tigerdata.com/use-timescale/tigerlake/ =====
Tiger Lake enables you to build real-time applications alongside efficient data pipeline management within a single system. Tiger Lake unifies the Tiger Cloud operational architecture with data lake architectures.
Tiger Lake is a native integration enabling synchronization between hypertables and relational tables running in Tiger Cloud services to Iceberg tables running in Amazon S3 Tables in your AWS account.
Tiger Lake is currently in private beta. Please contact us to request access.
To follow the steps on this page:
You need your connection details.
To connect a Tiger Cloud service to your data lake:
This must match the region your Tiger Cloud service is running in: if the regions do not match AWS charges you for cross-region data transfer.
Create your CloudFormation stack
Create stack, then select With new resources (standard).In Amazon S3 URL, paste the following URL, then click Next.
https://tigerlake.s3.us-east-1.amazonaws.com/tigerlake-connect-cloudformation.yaml
In Specify stack details, enter the following details, then click Next:
Stack Name: a name for this CloudFormation stackBucketName: a name for this S3 table bucketProjectID and ServiceID: enter the connection details for your Tiger Lake serviceIn Configure stack options check I acknowledge that AWS CloudFormation might create IAM resources, then
click Next.
In Review and create, click Submit, then wait for the deployment to complete.
AWS deploys your stack and creates the S3 table bucket and IAM role.
Click Outputs, then copy all four outputs.
Connect your service to the data lake
In Tiger Cloud Console, select the service you want to integrate with AWS S3 Tables, then click
Connectors.
Select the Apache Iceberg connector and supply the:
Provisioning takes a couple of minutes.
Replace the following values in the command, then run it from the terminal:
Region: region of the S3 table bucketStackName: the name for this CloudFormation stackBucketName: the name of the S3 table bucket to createProjectID: enter your Tiger Cloud service connection detailsServiceID: enter your Tiger Cloud service connection details
aws cloudformation create-stack \
--capabilities CAPABILITY_IAM \
--template-url https://tigerlake.s3.us-east-1.amazonaws.com/tigerlake-connect-cloudformation.yaml \
--region <Region> \
--stack-name <StackName> \
--parameters \
ParameterKey=BucketName,ParameterValue="<BucketName>" \
ParameterKey=ProjectID,ParameterValue="<ProjectID>" \
ParameterKey=ServiceID,ParameterValue="<ServiceID>"
Setting up the integration through Tiger Cloud Console in Tiger Cloud, provides a convenient copy-paste option with the placeholders populated.
Connect your service to the data lake
In Tiger Cloud Console, select the service you want to integrate with AWS S3 Tables, then click
Connectors.
Select the Apache Iceberg connector and supply the:
Provisioning takes a couple of minutes.
Create a S3 Bucket
This must match the region your Tiger Cloud service is running in: if the regions do not match AWS charges you for cross-region data transfer.
Table buckets, then click Create table bucket.Table bucket name, then click Create table bucket.Amazon Resource Name (ARN) for your table bucket.Create an ARN role
Roles then click Create roleIn Select trusted entity, click Custom trust policy, replace the Custom trust policy code block with the
following:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::142548018081:root"
},
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"sts:ExternalId": "<ProjectID>/<ServiceID>"
}
}
}
]
}
"Principal": { "AWS": "arn:aws:iam::123456789012:root" } does not mean root access. This delegates
permissions to the entire AWS account, not just the root user.
Replace <ProjectID> and <ServiceID> with the the connection details for your Tiger Lake
service, then click Next.
In Permissions policies. click Next.
In Role details, enter Role name, then click Create role.
In Roles, select the role you just created, then click Add Permissions > Create inline policy.
Select JSON then replace the Policy editor code block with the following:
{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "BucketOps",
"Effect": "Allow",
"Action": [
"s3tables:*"
],
"Resource": "<S3TABLE_BUCKET_ARN>"
},
{
"Sid": "BucketTableOps",
"Effect": "Allow",
"Action": [
"s3tables:*"
],
"Resource": "<S3TABLE_BUCKET_ARN>/table/*"
}
]
}
Replace <S3TABLE_BUCKET_ARN> with the Amazon Resource Name (ARN) for the table bucket you just created.
Click Next, then give the inline policy a name and click Create policy.
Connect your service to the data lake
In Tiger Cloud Console, select the service you want to integrate with AWS S3 Tables, then click
Connectors.
Select the Apache Iceberg connector and supply the:
Provisioning takes a couple of minutes.
When you start streaming, all data in the table is synchronized to Iceberg. Records are imported in time order, from oldest to youngest. The write throughput is approximately 40.000 records / second. For larger tables, a full import can take some time.
For Iceberg to perform update or delete statements, your hypertable or relational table must have a primary key. This includes composite primary keys.
To stream data from a Postgres relational table, or a hypertable in your Tiger Cloud service to your data lake, run the following statement:
ALTER TABLE SET (
tigerlake.iceberg_sync = true | false,
tigerlake.iceberg_partitionby = '<partition_specification>',
tigerlake.iceberg_namespace = '<namespace>',
tigerlake.iceberg_table = ''
)
tigerlake.iceberg_sync: boolean, set to true to start streaming, or false to stop the stream. A stream
cannot resume after being stopped.tigerlake.iceberg_partitionby: optional property to define a partition specification in Iceberg. By default the
Iceberg table is partitioned as day(<time-column of hypertable>). This default behavior is only applicable
to hypertables. For more information, see partitioning.tigerlake.iceberg_namespace: optional property to set a namespace, the default is timescaledb.tigerlake.iceberg_table: optional property to specify a different table name. If no name is specified the Postgres table name is used.By default, the partition interval for an Iceberg table is one day(time-column) for a hypertable. Postgres table sync does not enable any partitioning in Iceberg for non-hypertables. You can set it using tigerlake.iceberg_partitionby. The following partition intervals and specifications are supported:
| Interval | Description | Source types |
|---|---|---|
hour |
Extract a date or timestamp day, as days from epoch. Epoch is 1970-01-01. | date, timestamp, timestamptz |
day |
Extract a date or timestamp day, as days from epoch. | date, timestamp, timestamptz |
month |
Extract a date or timestamp day, as days from epoch. | date, timestamp, timestamptz |
year |
Extract a date or timestamp day, as days from epoch. | date, timestamp, timestamptz |
truncate[W] |
Value truncated to width W, see options |
These partitions define the behavior using the Iceberg partition specification:
The following samples show you how to tune data sync from a hypertable or a Postgres relational table to your data lake:
ts_column columnTo start syncing data from a hypertable to your data lake using the default one-day chunk interval as the partitioning scheme to the Iceberg table, run the following statement:
ALTER TABLE my_hypertable SET (tigerlake.iceberg_sync = true);
This is equivalent to day(ts_column).
You use the tigerlake.iceberg_partitionby property to specify a different partitioning scheme for the Iceberg
table at sync start. For example, to enforce an hourly partition scheme from the chunks on ts_column on a
hypertable, run the following statement:
ALTER TABLE my_hypertable SET (
tigerlake.iceberg_sync = true,
tigerlake.iceberg_partitionby = 'hour(ts_column)'
);
Postgres relational tables do not forward a partitioning scheme to Iceberg, you must specify the partitioning scheme using
tigerlake.iceberg_partitionby when you start the sync. For example, for a standard Postgres table to sync to the Iceberg
table with daily partitioning , run the following statement:
ALTER TABLE my_postgres_table SET (
tigerlake.iceberg_sync = true,
tigerlake.iceberg_partitionby = 'day(timestamp_col)'
);
Stop sync to an Iceberg table for a hypertable or a Postgres relational table
ALTER TABLE my_hypertable SET (tigerlake.iceberg_sync = false);
Update or add the partitioning scheme of an Iceberg table
To change the partitioning scheme of an Iceberg table, you specify the desired partitioning scheme using the tigerlake.iceberg_partitionby property.
For example. if the samples table has an hourly (hour(ts)) partition on the ts timestamp column,
to change to daily partitioning, call the following statement:
ALTER TABLE samples SET (tigerlake.iceberg_partitionby = 'day(ts)');
This statement is also correct for Iceberg tables without a partitioning scheme. When you change the partition, you do not have to pause the sync to Iceberg. Apache Iceberg handles the partitioning operation in function of the internal implementation.
Specify a different namespace
By default, tables are created in the the timescaledb namespace. To specify a different namespace when you start the sync, use the tigerlake.iceberg_namespace property. For example:
ALTER TABLE my_hypertable SET (
tigerlake.iceberg_sync = true,
tigerlake.iceberg_namespace = 'my_namespace'
);
Specify a different Iceberg table name
The table name in Iceberg is the same as the source table in Tiger Cloud.
Some services do not allow mixed case, or have other constraints for table names.
To define a different table name for the Iceberg table at sync start, use the tigerlake.iceberg_table property. For example:
ALTER TABLE Mixed_CASE_TableNAME SET (
tigerlake.iceberg_sync = true,
tigerlake.iceberg_table = 'my_table_name'
);
TRUNCATE statement is not supported, and does not truncate data in the corresponding Iceberg table.===== PAGE: https://docs.tigerdata.com/use-timescale/troubleshoot-timescaledb/ =====
If you run into problems when using TimescaleDB, there are a few things that you can do. There are some solutions to common errors in this section as well as ways to output diagnostic information about your setup. If you need more guidance, you can join the community Slack group or post an issue on the TimescaleDB GitHub.
The ALTER EXTENSION timescaledb UPDATE command must be the first
command executed upon connection to a database. Some administration tools
execute commands before this, which can disrupt the process. You might
need to manually update the database with psql. See the
update docs for details.
If your Postgres logs have this error preventing it from starting up, you
should double-check that the TimescaleDB files have been installed to the
correct location. The installation methods use pg_config to get Postgres's
location. However, if you have multiple versions of Postgres installed on the
same machine, the location pg_config points to may not be for the version you
expect. To check which version of TimescaleDB is used:
$ pg_config --version
PostgreSQL 12.3
If that is the correct version, double-check that the installation path is
the one you'd expect. For example, for Postgres 11.0 installed via
Homebrew on macOS it should be /usr/local/Cellar/postgresql/11.0/bin:
$ pg_config --bindir
/usr/local/Cellar/postgresql/11.0/bin
If either of those steps is not the version you are expecting, you need to
either uninstall the incorrect version of Postgres if you can, or update your
PATH environmental variable to have the correct path of pg_config listed
first, that is, by prepending the full path:
export PATH = /usr/local/Cellar/postgresql/11.0/bin:$PATH
Then, reinstall TimescaleDB and it should find the correct installation path.
If the error occurs immediately after updating your version of TimescaleDB and
the file mentioned is from the previous version, it is probably due to an
incomplete update process. Within the greater Postgres server instance, each
database that has TimescaleDB installed needs to be updated with the SQL command
ALTER EXTENSION timescaledb UPDATE; while connected to that database.
Otherwise, the database looks for the previous version of the timescaledb files.
See our update docs for more info.
Your scheduled jobs might stop running for various reasons. On self-hosted TimescaleDB, you can fix this by restarting background workers:
SELECT _timescaledb_internal.restart_background_workers();
On Tiger Cloud and Managed Service for TimescaleDB, restart background workers by doing one of the following:
SELECT timescaledb_pre_restore(), followed by SELECT
timescaledb_post_restore().You might see this error message in the logs if background workers aren't properly configured:
"<TYPE_OF_BACKGROUND_JOB>": failed to start a background worker
To fix this error, make sure that max_worker_processes,
max_parallel_workers, and timescaledb.max_background_workers are properly
set. timescaledb.max_background_workers should equal the number of databases
plus the number of concurrent background workers. max_worker_processes should
equal the sum of timescaledb.max_background_workers and
max_parallel_workers.
For more information, see the worker configuration docs.
You might see this error message when trying to compress a chunk if the permissions for the compressed hypertable are corrupt.
tsdb=> SELECT compress_chunk('_timescaledb_internal._hyper_65_587239_chunk');
ERROR: role 149910 was concurrently dropped
This can be caused if you dropped a user for the hypertable before
TimescaleDB 2.5. For this case, the user would be removed from
pg_authid but not revoked from the compressed table.
As a result, the compressed table contains permission items that refer to numerical values rather than existing users (see below for how to find the compressed hypertable from a normal hypertable):
tsdb=> \dp _timescaledb_internal._compressed_hypertable_2
Access privileges
Schema | Name | Type | Access privileges | Column privileges | Policies
--------+--------------+-------+---------------------+-------------------+----------
public | transactions | table | mats=arwdDxt/mats +| |
| | | wizard=arwdDxt/mats+| |
| | | 149910=r/mats | |
(1 row)
This means that the relacl column of pg_class needs to be updated
and the offending user removed, but it is not possible to drop a user
by numerical value. Instead, you can use the internal function
repair_relation_acls in the _timescaledb_function schema:
tsdb=> CALL _timescaledb_functions.repair_relation_acls();
This requires superuser privileges (since you're modifying the
pg_class table) and that it removes any user not present in
pg_authid from all tables, so use with caution.
The permissions are usually corrupted for the hypertable as well, but
not always, so it is better to look at the compressed hypertable to
see if the problem is present. To find the compressed hypertable for
an associated hypertable (readings in this case):
tsdb=> select ht.table_name,
tsdb-> (select format('%I.%I', schema_name, table_name)::regclass
tsdb-> from _timescaledb_catalog.hypertable
tsdb-> where ht.compressed_hypertable_id = id) as compressed_table
tsdb-> from _timescaledb_catalog.hypertable ht
tsdb-> where table_name = 'readings';
format | format
----------+------------------------------------------------
readings | _timescaledb_internal._compressed_hypertable_2
(1 row)
Postgres's EXPLAIN feature allows users to understand the underlying query plan that Postgres uses to execute a query. There are multiple ways that Postgres can execute a query: for example, a query might be fulfilled using a slow sequence scan or a much more efficient index scan. The choice of plan depends on what indexes are created on the table, the statistics that Postgres has about your data, and various planner settings. The EXPLAIN output let's you know which plan Postgres is choosing for a particular query. Postgres has a in-depth explanation of this feature.
To understand the query performance on a hypertable, we suggest first
making sure that the planner statistics and table maintenance is up-to-date on the hypertable
by running VACUUM ANALYZE <your-hypertable>;. Then, we suggest running the
following version of EXPLAIN:
EXPLAIN (ANALYZE on, BUFFERS on) <original query>;
If you suspect that your performance issues are due to slow IOs from disk, you
can get even more information by enabling the
track_io_timing variable with SET track_io_timing = 'on';
before running the above EXPLAIN.
To help when asking for support and reporting bugs,
TimescaleDB includes a SQL script that outputs metadata
from the internal TimescaleDB tables as well as version information.
The script is available in the source distribution in scripts/
but can also be downloaded separately.
To use it, run:
psql [your connect flags] -d your_timescale_db < dump_meta_data.sql > dumpfile.txt
and then inspect dump_file.txt before sending it together with a bug report or support question.
By default, background workers do not print a lot of information about execution. The reason for this is to avoid writing a lot of debug information to the Postgres log unless necessary.
To aid in debugging the background jobs, it is possible to increase
the log level of the background workers without having to restart the
server by setting the timescaledb.bgw_log_level GUC and reloading
the configuration.
ALTER SYSTEM SET timescaledb.bgw_log_level TO 'DEBUG1';
SELECT pg_reload_conf();
This variable is set to the value of
log_min_messages by default, which typically is
WARNING. If the value of log_min_messages is
changed in the configuration file, it is used for
timescaledb.bgw_log_level when starting the workers.
Both ALTER SYSTEM and pg_reload_conf() require superuser
privileges by default. Grant EXECUTE permissions
to pg_reload_conf() and ALTER SYSTEM privileges to
timescaledb.bgw_log_level if you want this to work for a
non-superuser.
Since ALTER SYSTEM privileges only exist on Postgres 15 and later,
the necessary grants for executing these statements only exist on Tiger Cloud for Postgres 15 or later.
The amount of information printed at each level varies between jobs,
but the information printed at DEBUG1 is currently shown below.
| Source | Event |
|---|---|
| All jobs | Job exit with runtime information |
| All jobs | Job scheduled for fast restart |
| Custom job | Execution started |
| Recompression job | Recompression job completed |
| Reorder job | Chunk reorder completed |
| Reorder job | Chunk reorder started |
| Scheduler | New jobs discovered and added to scheduled jobs list |
| Scheduler | Scheduling job for launch |
The amount of information printed at each level varies between jobs,
but the information printed at DEBUG2 is currently shown below.
Note that all messages at level DEBUG1 are also printed when you set
the log level to DEBUG2, which is normal Postgres
behaviour.
| Source | Event |
|---|---|
| All jobs | Job found in jobs table |
| All jobs | Job starting execution |
| Scheduler | Scheduled jobs list update started |
| Scheduler | Scheduler dispatching job |
| Source | Event |
|---|---|
| Scheduler | Scheduled wake up |
| Scheduler | Scheduler delayed in dispatching job |
hypertables require special handling for CDC support. Newly created chunks are not not published, which means they are not discoverable by the CDC service. To fix this problem, use the following trigger to automatically publishe newly created chunks on the replication slot. Please be aware that TimescaleDB does not provide full CDC support.
CREATE OR REPLACE FUNCTION ddl_end_trigger_func() RETURNS EVENT_TRIGGER AS
$$
DECLARE
r RECORD;
pub NAME;
BEGIN
FOR r IN SELECT * FROM pg_event_trigger_ddl_commands()
LOOP
SELECT pubname INTO pub
FROM pg_inherits
JOIN _timescaledb_catalog.hypertable ht
ON inhparent = format('%I.%I', ht.schema_name, ht.table_name)::regclass
JOIN pg_publication_tables
ON schemaname = ht.schema_name AND tablename = ht.table_name
WHERE inhrelid = r.objid;
IF NOT pub IS NULL THEN
EXECUTE format('ALTER PUBLICATION %s ADD TABLE %s', pub, r.objid::regclass);
END IF;
END LOOP;
END;
$$ LANGUAGE plpgsql;
CREATE EVENT TRIGGER ddl_end_trigger
ON ddl_command_end WHEN TAG IN ('CREATE TABLE') EXECUTE FUNCTION ddl_end_trigger_func();
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/ =====
Old API since TimescaleDB v2.18.0 Replaced by hypercore.
Time-series data can be compressed to reduce the amount of storage required, and increase the speed of some queries. This is a cornerstone feature of TimescaleDB. When new data is added to your database, it is in the form of uncompressed rows. TimescaleDB uses a built-in job scheduler to convert this data to the form of compressed columns. This occurs across chunks of TimescaleDB hypertables.
===== PAGE: https://docs.tigerdata.com/tutorials/real-time-analytics-transport/ =====
Real-time analytics refers to the process of collecting, analyzing, and interpreting data instantly as it is generated. This approach enables you track and monitor activity, and make decisions based on real-time insights on data stored in a Tiger Cloud service.
This page shows you how to integrate Grafana with a Tiger Cloud service and make insights based on visualization of data optimized for size and speed in the columnstore.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
Import time-series data into a hypertable
<local folder>.This test dataset contains historical data from New York's yellow taxi network.
To import up to 100GB of data directly from your current Postgres-based database, migrate with downtime using native Postgres tooling. To seamlessly import 100GB-10TB+ of data, use the live migration tooling supplied by Tiger Data. To add data from non-Postgres data sources, see Import and ingest data.
In Terminal, navigate to <local folder> and update the following string with your connection details
to connect to your service.
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>?sslmode=require"
Create an optimized hypertable for your time-series data:
Create a hypertable with hypercore enabled by default for your
time-series data using CREATE TABLE. For efficient queries
on data in the columnstore, remember to segmentby the column you will use most often to filter your data.
In your sql client, run the following command:
CREATE TABLE "rides"(
vendor_id TEXT,
pickup_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
dropoff_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
passenger_count NUMERIC,
trip_distance NUMERIC,
pickup_longitude NUMERIC,
pickup_latitude NUMERIC,
rate_code INTEGER,
dropoff_longitude NUMERIC,
dropoff_latitude NUMERIC,
payment_type INTEGER,
fare_amount NUMERIC,
extra NUMERIC,
mta_tax NUMERIC,
tip_amount NUMERIC,
tolls_amount NUMERIC,
improvement_surcharge NUMERIC,
total_amount NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='pickup_datetime',
tsdb.create_default_indexes=false,
tsdb.segmentby='vendor_id',
tsdb.orderby='pickup_datetime DESC'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Add another dimension to partition your hypertable more efficiently:
SELECT add_dimension('rides', by_hash('payment_type', 2));
Create an index to support efficient queries by vendor, rate code, and passenger count:
CREATE INDEX ON rides (vendor_id, pickup_datetime DESC);
CREATE INDEX ON rides (rate_code, pickup_datetime DESC);
CREATE INDEX ON rides (passenger_count, pickup_datetime DESC);
Create Postgres tables for relational data:
Add a table to store the payment types data:
CREATE TABLE IF NOT EXISTS "payment_types"(
payment_type INTEGER,
description TEXT
);
INSERT INTO payment_types(payment_type, description) VALUES
(1, 'credit card'),
(2, 'cash'),
(3, 'no charge'),
(4, 'dispute'),
(5, 'unknown'),
(6, 'voided trip');
Add a table to store the rates data:
CREATE TABLE IF NOT EXISTS "rates"(
rate_code INTEGER,
description TEXT
);
INSERT INTO rates(rate_code, description) VALUES
(1, 'standard rate'),
(2, 'JFK'),
(3, 'Newark'),
(4, 'Nassau or Westchester'),
(5, 'negotiated fare'),
(6, 'group ride');
Upload the dataset to your service
\COPY rides FROM nyc_data_rides.csv CSV;
Have a quick look at your data
You query hypertables in exactly the same way as you would a relational Postgres table. Use one of the following SQL editors to run a query and see the data you uploaded:
For example:
Display the number of rides for each fare type:
SELECT rate_code, COUNT(vendor_id) AS num_trips
FROM rides
WHERE pickup_datetime < '2016-01-08'
GROUP BY rate_code
ORDER BY rate_code;
This simple query runs in 3 seconds. You see something like:
| rate_code | num_trips | |-----------------|-----------| |1 | 2266401| |2 | 54832| |3 | 4126| |4 | 967| |5 | 7193| |6 | 17| |99 | 42|
To select all rides taken in the first week of January 2016, and return the total number of trips taken for each rate code:
SELECT rates.description, COUNT(vendor_id) AS num_trips
FROM rides
JOIN rates ON rides.rate_code = rates.rate_code
WHERE pickup_datetime < '2016-01-08'
GROUP BY rates.description
ORDER BY LOWER(rates.description);
On this large amount of data, this analytical query on data in the rowstore takes about 59 seconds. You see something like:
| description | num_trips | |-----------------|-----------| | group ride | 17 | | JFK | 54832 | | Nassau or Westchester | 967 | | negotiated fare | 7193 | | Newark | 4126 | | standard rate | 2266401 |
When TimescaleDB converts a chunk to the columnstore, it automatically creates a different schema for your
data. TimescaleDB creates and uses custom indexes to incorporate the segmentby and orderby parameters when
you write to and read from the columstore.
To increase the speed of your analytical queries by a factor of 10 and reduce storage costs by up to 90%, convert data to the columnstore:
In Tiger Cloud Console open an SQL editor. The in-Console editors display the query speed. You can also connect to your serviceusing psql.
For example, convert data older than 8 days old to the columstore:
CALL add_columnstore_policy('rides', INTERVAL '8 days');
The data you imported for this tutorial is from 2016, it was already added to the columnstore by default. However, you get the idea. To see the space savings in action, follow Try the key Tiger Data features.
Just to hit this one home, by converting cooling data to the columnstore, you have increased the speed of your analytical queries by a factor of 10, and reduced storage by up to 90%.
To visualize the results of your queries, enable Grafana to read the data in your service:
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
Add your service as a data source
Connections > Data sources, then click Add new data source.PostgreSQL from the list.Configure the connection:
Host URL, Database name, Username, and PasswordConfigure using your connection details. Host URL is in the format <host>:<port>.
TLS/SSL Mode: select require.PostgreSQL options: enable TimescaleDB.Click Save & test.
Grafana checks that your details are set correctly.
A Grafana dashboard represents a view into the performance of a system, and each dashboard consists of one or more panels, which represent information about a specific metric related to that system.
To visually monitor the volume of taxi rides over time:
Create the dashboard
On the Dashboards page, click New and select New dashboard.
Click Add visualization.
Select the data source that connects to your Tiger Cloud service.
The Time series visualization is chosen by default.

In the Queries section, select Code, then select Time series in Format.
Select the data range for your visualization: the data set is from 2016. Click the date range above the panel and set:
2016-01-01 01:00:002016-01-30 01:00:00Combine TimescaleDB and Grafana functionality to analyze your data
Combine a TimescaleDB time_bucket, with the Grafana _timefilter() function to set the
pickup_datetime column as the filtering range for your visualizations.
SELECT
time_bucket('1 day', pickup_datetime) AS "time",
COUNT(*)
FROM rides
WHERE _timeFilter(pickup_datetime)
GROUP BY time
ORDER BY time;
This query groups the results by day and orders them by time.
Save dashboardHaving all this data is great but how do you use it? Monitoring data is useful to check what has happened, but how can you analyse this information to your advantage? This section explains how to create a visualization that shows how you can maximize potential revenue.
To add geospatial analysis to your ride count visualization, you need geospatial data to work out which trips originated where. As TimescaleDB is compatible with all Postgres extensions, use PostGIS to slice data by time and location.
Connect to your Tiger Cloud service and add the PostGIS extension:
CREATE EXTENSION postgis;
Add geometry columns for pick up and drop off locations:
ALTER TABLE rides ADD COLUMN pickup_geom geometry(POINT,2163);
ALTER TABLE rides ADD COLUMN dropoff_geom geometry(POINT,2163);
Convert the latitude and longitude points into geometry coordinates that work with PostGIS:
UPDATE rides SET pickup_geom = ST_Transform(ST_SetSRID(ST_MakePoint(pickup_longitude,pickup_latitude),4326),2163),
dropoff_geom = ST_Transform(ST_SetSRID(ST_MakePoint(dropoff_longitude,dropoff_latitude),4326),2163);
This updates 10,906,860 rows of data on both columns, it takes a while. Coffee is your friend.
In this section you visualize a query that returns rides longer than 5 miles for
trips taken within 2 km of Times Square. The data includes the distance travelled and
is GROUP BY trip_distance and location so that Grafana can plot the data properly.
This enables you to see where a taxi driver is most likely to pick up a passenger who wants a longer ride, and make more money.
Create a geolocalization dashboard
In Grafana, create a new dashboard that is connected to your Tiger Cloud service data source with a Geomap visualization.
In the Queries section, select Code, then select the Time series Format.
To find rides longer than 5 miles in Manhattan, paste the following query:
SELECT time_bucket('5m', rides.pickup_datetime) AS time,
rides.trip_distance AS value,
rides.pickup_latitude AS latitude,
rides.pickup_longitude AS longitude
FROM rides
WHERE rides.pickup_datetime BETWEEN '2016-01-01T01:41:55.986Z' AND '2016-01-01T07:41:55.986Z' AND
ST_Distance(pickup_geom,
ST_Transform(ST_SetSRID(ST_MakePoint(-73.9851,40.7589),4326),2163)
) < 2000
GROUP BY time,
rides.trip_distance,
rides.pickup_latitude,
rides.pickup_longitude
ORDER BY time
LIMIT 500;
You see a world map with a dot on New York.
Customize the visualization
Map Layers, click + Add layer and select Heatmap.
You now see the areas where a taxi driver is most likely to pick up a passenger who wants a
longer ride, and make more money.You have integrated Grafana with a Tiger Cloud service and made insights based on visualization of your data.
===== PAGE: https://docs.tigerdata.com/tutorials/real-time-analytics-energy-consumption/ =====
Energy providers understand that customers tend to lose patience when there is not enough power for them to complete day-to-day activities. Task one is keeping the lights on. If you are transitioning to renewable energy, it helps to know when you need to produce energy so you can choose a suitable energy source.
Real-time analytics refers to the process of collecting, analyzing, and interpreting data instantly as it is generated. This approach enables you to track and monitor activity, make the decisions based on real-time insights on data stored in a Tiger Cloud service and keep those lights on.
Grafana is a popular data visualization tool that enables you to create customizable dashboards and effectively monitor your systems and applications.
This page shows you how to integrate Grafana with a Tiger Cloud service and make insights based on visualization of data optimized for size and speed in the columnstore.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
Import time-series data into a hypertable
<local folder>.This test dataset contains energy consumption data.
To import up to 100GB of data directly from your current Postgres based database, migrate with downtime using native Postgres tooling. To seamlessly import 100GB-10TB+ of data, use the live migration tooling supplied by Tiger Data. To add data from non-Postgres data sources, see Import and ingest data.
In Terminal, navigate to <local folder> and update the following string with your connection details
to connect to your service.
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>?sslmode=require"
Create an optimized hypertable for your time-series data:
segmentby the column you will use most often to filter your data.In your sql client, run the following command:
```sql
CREATE TABLE "metrics"(
created timestamp with time zone default now() not null,
type_id integer not null,
value double precision not null
) WITH (
tsdb.hypertable,
tsdb.partition_column='created',
tsdb.segmentby = 'type_id',
tsdb.orderby = 'created DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Upload the dataset to your service
\COPY metrics FROM metrics.csv CSV;
Have a quick look at your data
You query hypertables in exactly the same way as you would a relational Postgres table. Use one of the following SQL editors to run a query and see the data you uploaded:
psql: easily run queries on your Tiger Cloud services or self-hosted TimescaleDB deployment from Terminal.
SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
On this amount of data, this query on data in the rowstore takes about 3.6 seconds. You see something like:
| Time | value |
|---|---|
| 2023-05-29 22:00:00+00 | 23.1 |
| 2023-05-28 22:00:00+00 | 19.5 |
| 2023-05-30 22:00:00+00 | 25 |
| 2023-05-31 22:00:00+00 | 8.1 |
When TimescaleDB converts a chunk to the columnstore, it automatically creates a different schema for your
data. TimescaleDB creates and uses custom indexes to incorporate the segmentby and orderby parameters when
you write to and read from the columstore.
To increase the speed of your analytical queries by a factor of 10 and reduce storage costs by up to 90%, convert data to the columnstore:
In Tiger Cloud Console open an SQL editor. The in-Console editors display the query speed. You can also connect to your service using psql.
For example, 60 days after the data was added to the table:
CALL add_columnstore_policy('metrics', INTERVAL '8 days');
Now run the analytical query again:
SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
On this amount of data, this analytical query on data in the columnstore takes about 250ms.
Just to hit this one home, by converting cooling data to the columnstore, you have increased the speed of your analytical queries by a factor of 10, and reduced storage by up to 90%.
Aggregation is a way of combining data to get insights from it. Average, sum, and count are all examples of simple aggregates. However, with large amounts of data aggregation slows things down, quickly. Continuous aggregates are a kind of hypertable that is refreshed automatically in the background as new data is added, or old data is modified. Changes to your dataset are tracked, and the hypertable behind the continuous aggregate is automatically updated in the background.
By default, querying continuous aggregates provides you with real-time data. Pre-aggregated data from the materialized view is combined with recent data that hasn't been aggregated yet. This gives you up-to-date results on every query.
You create continuous aggregates on uncompressed data in high-performance storage. They continue to work on data in the columnstore and rarely accessed data in tiered storage. You can even create continuous aggregates on top of your continuous aggregates.
Monitor energy consumption on a day-to-day basis
Create a continuous aggregate kwh_day_by_day for energy consumption:
CREATE MATERIALIZED VIEW kwh_day_by_day(time, value)
with (timescaledb.continuous) as
SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
Add a refresh policy to keep kwh_day_by_day up-to-date:
SELECT add_continuous_aggregate_policy('kwh_day_by_day',
start_offset => NULL,
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
Monitor energy consumption on an hourly basis
Create a continuous aggregate kwh_hour_by_hour for energy consumption:
CREATE MATERIALIZED VIEW kwh_hour_by_hour(time, value)
with (timescaledb.continuous) as
SELECT time_bucket('01:00:00', metrics.created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
Add a refresh policy to keep the continuous aggregate up-to-date:
SELECT add_continuous_aggregate_policy('kwh_hour_by_hour',
start_offset => NULL,
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
Analyze your data
Now you have made continuous aggregates, it could be a good idea to use them to perform analytics on your data. For example, to see how average energy consumption changes during weekdays over the last year, run the following query:
WITH per_day AS (
SELECT
time,
value
FROM kwh_day_by_day
WHERE "time" at time zone 'Europe/Berlin' > date_trunc('month', time) - interval '1 year'
ORDER BY 1
), daily AS (
SELECT
to_char(time, 'Dy') as day,
value
FROM per_day
), percentile AS (
SELECT
day,
approx_percentile(0.50, percentile_agg(value)) as value
FROM daily
GROUP BY 1
ORDER BY 1
)
SELECT
d.day,
d.ordinal,
pd.value
FROM unnest(array['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) WITH ORDINALITY AS d(day, ordinal)
LEFT JOIN percentile pd ON lower(pd.day) = lower(d.day);
You see something like:
| day | ordinal | value | | --- | ------- | ----- | | Mon | 2 | 23.08078714975423 | | Sun | 1 | 19.511430831944395 | | Tue | 3 | 25.003118897837307 | | Wed | 4 | 8.09300571759772 |
To visualize the results of your queries, enable Grafana to read the data in your service:
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
Add your service as a data source
Connections > Data sources, then click Add new data source.PostgreSQL from the list.Configure the connection:
Host URL, Database name, Username, and PasswordConfigure using your connection details. Host URL is in the format <host>:<port>.
TLS/SSL Mode: select require.PostgreSQL options: enable TimescaleDB.Click Save & test.
Grafana checks that your details are set correctly.
A Grafana dashboard represents a view into the performance of a system, and each dashboard consists of one or more panels, which represent information about a specific metric related to that system.
To visually monitor the volume of energy consumption over time:
Create the dashboard
On the Dashboards page, click New and select New dashboard.
Click Add visualization, then select the data source that connects to your Tiger Cloud service and the Bar chart
visualization.
In the Queries section, select Code, then run the following query based on your continuous aggregate:
WITH per_hour AS (
SELECT
time,
value
FROM kwh_hour_by_hour
WHERE "time" at time zone 'Europe/Berlin' > date_trunc('month', time) - interval '1 year'
ORDER BY 1
), hourly AS (
SELECT
extract(HOUR FROM time) * interval '1 hour' as hour,
value
FROM per_hour
)
SELECT
hour,
approx_percentile(0.50, percentile_agg(value)) as median,
max(value) as maximum
FROM hourly
GROUP BY 1
ORDER BY 1;
This query averages the results for households in a specific time zone by hour and orders them by time. Because you use a continuous aggregate, this data is always correct in real time.
You see that energy consumption is highest in the evening and at breakfast time. You also know that the wind drops off in the evening. This data proves that you need to supply a supplementary power source for peak times, or plan to store energy during the day for peak times.
Click Save dashboard
You have integrated Grafana with a Tiger Cloud service and made insights based on visualization of your data.
===== PAGE: https://docs.tigerdata.com/tutorials/simulate-iot-sensor-data/ =====
The Internet of Things (IoT) describes a trend where computing capabilities are embedded into IoT devices. That is, physical objects, ranging from light bulbs to oil wells. Many IoT devices collect sensor data about their environment and generate time-series datasets with relational metadata.
It is often necessary to simulate IoT datasets. For example, when you are testing a new system. This tutorial shows how to simulate a basic dataset in your Tiger Cloud service, and then run simple queries on it.
To simulate a more advanced dataset, see Time-series Benchmarking Suite (TSBS).
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
To simulate a dataset, run the following queries:
Create the sensors table:
CREATE TABLE sensors(
id SERIAL PRIMARY KEY,
type VARCHAR(50),
location VARCHAR(50)
);
Create the sensor_data hypertable
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id)
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Populate the sensors table:
INSERT INTO sensors (type, location) VALUES
('a','floor'),
('a', 'ceiling'),
('b','floor'),
('b', 'ceiling');
Verify that the sensors have been added correctly:
SELECT * FROM sensors;
Sample output:
id | type | location
----+------+----------
1 | a | floor
2 | a | ceiling
3 | b | floor
4 | b | ceiling
(4 rows)
Generate and insert a dataset for all sensors:
INSERT INTO sensor_data (time, sensor_id, cpu, temperature)
SELECT
time,
sensor_id,
random() AS cpu,
random()*100 AS temperature
FROM generate_series(now() - interval '24 hour', now(), interval '5 minute') AS g1(time), generate_series(1,4,1) AS g2(sensor_id);
Verify the simulated dataset:
SELECT * FROM sensor_data ORDER BY time;
Sample output:
time | sensor_id | temperature | cpu
-------------------------------+-----------+--------------------+---------------------
2020-03-31 15:56:25.843575+00 | 1 | 6.86688972637057 | 0.682070567272604
2020-03-31 15:56:40.244287+00 | 2 | 26.589260622859 | 0.229583469685167
2030-03-31 15:56:45.653115+00 | 3 | 79.9925176426768 | 0.457779890391976
2020-03-31 15:56:53.560205+00 | 4 | 24.3201029952615 | 0.641885648947209
2020-03-31 16:01:25.843575+00 | 1 | 33.3203678019345 | 0.0159163917414844
2020-03-31 16:01:40.244287+00 | 2 | 31.2673618085682 | 0.701185956597328
2020-03-31 16:01:45.653115+00 | 3 | 85.2960689924657 | 0.693413889966905
2020-03-31 16:01:53.560205+00 | 4 | 79.4769988860935 | 0.360561791341752
...
After you simulate a dataset, you can run some basic queries on it. For example:
Average temperature and CPU by 30-minute windows:
SELECT
time_bucket('30 minutes', time) AS period,
AVG(temperature) AS avg_temp,
AVG(cpu) AS avg_cpu
FROM sensor_data
GROUP BY period;
Sample output:
period | avg_temp | avg_cpu
------------------------+------------------+-------------------
2020-03-31 19:00:00+00 | 49.6615830013373 | 0.477344429974134
2020-03-31 22:00:00+00 | 58.8521540844037 | 0.503637770501276
2020-03-31 16:00:00+00 | 50.4250325243144 | 0.511075591299838
2020-03-31 17:30:00+00 | 49.0742547437549 | 0.527267253802468
2020-04-01 14:30:00+00 | 49.3416377226822 | 0.438027751864865
...
Average and last temperature, average CPU by 30-minute windows:
SELECT
time_bucket('30 minutes', time) AS period,
AVG(temperature) AS avg_temp,
last(temperature, time) AS last_temp,
AVG(cpu) AS avg_cpu
FROM sensor_data
GROUP BY period;
Sample output:
period | avg_temp | last_temp | avg_cpu
------------------------+------------------+------------------+-------------------
2020-03-31 19:00:00+00 | 49.6615830013373 | 84.3963081017137 | 0.477344429974134
2020-03-31 22:00:00+00 | 58.8521540844037 | 76.5528806950897 | 0.503637770501276
2020-03-31 16:00:00+00 | 50.4250325243144 | 43.5192013625056 | 0.511075591299838
2020-03-31 17:30:00+00 | 49.0742547437549 | 22.740753274411 | 0.527267253802468
2020-04-01 14:30:00+00 | 49.3416377226822 | 59.1331578791142 | 0.438027751864865
...
Query the metadata:
SELECT
sensors.location,
time_bucket('30 minutes', time) AS period,
AVG(temperature) AS avg_temp,
last(temperature, time) AS last_temp,
AVG(cpu) AS avg_cpu
FROM sensor_data JOIN sensors on sensor_data.sensor_id = sensors.id
GROUP BY period, sensors.location;
Sample output:
location | period | avg_temp | last_temp | avg_cpu
----------+------------------------+------------------+-------------------+-------------------
ceiling | 20120-03-31 15:30:00+00 | 25.4546818090603 | 24.3201029952615 | 0.435734559316188
floor | 2020-03-31 15:30:00+00 | 43.4297036845237 | 79.9925176426768 | 0.56992522883229
ceiling | 2020-03-31 16:00:00+00 | 53.8454438598516 | 43.5192013625056 | 0.490728285357666
floor | 2020-03-31 16:00:00+00 | 47.0046211887772 | 23.0230117216706 | 0.53142289724201
ceiling | 2020-03-31 16:30:00+00 | 58.7817596504465 | 63.6621567420661 | 0.488188337767497
floor | 2020-03-31 16:30:00+00 | 44.611586847653 | 2.21919436007738 | 0.434762630766879
ceiling | 2020-03-31 17:00:00+00 | 35.7026890735142 | 42.9420990403742 | 0.550129583687522
floor | 2020-03-31 17:00:00+00 | 62.2794370166957 | 52.6636955793947 | 0.454323202022351
...
You have now successfully simulated and run queries on an IoT dataset.
===== PAGE: https://docs.tigerdata.com/tutorials/cookbook/ =====
This page contains suggestions from the Tiger Data Community about how to resolve common issues. Use these code examples as guidance to work with your own data.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
This section contains recipes about hypertables.
Looking to remove duplicates from an existing hypertable? One method is to run a PARTITION BY query to get
ROW_NUMBER() and then the ctid of rows where row_number>1. You then delete these rows. However,
you need to check tableoid and ctid. This is because ctid is not unique and might be duplicated in
different chunks. The following code example took 17 hours to process a table with 40 million rows:
CREATE OR REPLACE FUNCTION deduplicate_chunks(ht_name TEXT, partition_columns TEXT, bot_id INT DEFAULT NULL)
RETURNS TABLE
(
chunk_schema name,
chunk_name name,
deleted_count INT
)
AS
$$
DECLARE
chunk RECORD;
where_clause TEXT := '';
deleted_count INT;
BEGIN
IF bot_id IS NOT NULL THEN
where_clause := FORMAT('WHERE bot_id = %s', bot_id);
END IF;
FOR chunk IN
SELECT c.chunk_schema, c.chunk_name
FROM timescaledb_information.chunks c
WHERE c.hypertable_name = ht_name
LOOP
EXECUTE FORMAT('
WITH cte AS (
SELECT ctid,
ROW_NUMBER() OVER (PARTITION BY %s ORDER BY %s ASC) AS row_num,
*
FROM %I.%I
%s
)
DELETE FROM %I.%I
WHERE ctid IN (
SELECT ctid
FROM cte
WHERE row_num > 1
)
RETURNING 1;
', partition_columns, partition_columns, chunk.chunk_schema, chunk.chunk_name, where_clause, chunk.chunk_schema,
chunk.chunk_name)
INTO deleted_count;
RETURN QUERY SELECT chunk.chunk_schema, chunk.chunk_name, COALESCE(deleted_count, 0);
END LOOP;
END
$$ LANGUAGE plpgsql;
SELECT *
FROM deduplicate_chunks('nudge_events', 'bot_id, session_id, nudge_id, time', 2540);
Shoutout to Mathias Ose and Christopher Piggott for this recipe.
Imagine there is a query that joins a hypertable to another table on a shared key:
SELECT timestamp,
FROM hypertable as h
JOIN related_table as rt
ON rt.id = h.related_table_id
WHERE h.timestamp BETWEEN '2024-10-10 00:00:00' AND '2024-10-17 00:00:00'
If you run EXPLAIN on this query, you see that the query planner performs a NestedJoin between these two tables, which means querying the hypertable multiple times. Even if the hypertable is well indexed, if it is also large, the query will be slow. How do you force a once-only lookup? Use materialized Common Table Expressions (CTEs).
If you split the query into two parts using CTEs, you can materialize the hypertable lookup and force Postgres to perform it only once.
WITH cached_query AS materialized (
SELECT *
FROM hypertable
WHERE BETWEEN '2024-10-10 00:00:00' AND '2024-10-17 00:00:00'
)
SELECT *
FROM cached_query as c
JOIN related_table as rt
ON rt.id = h.related_table_id
Now if you run EXPLAIN once again, you see that this query performs only one lookup. Depending on the size of your hypertable, this could result in a multi-hour query taking mere seconds.
Shoutout to Rowan Molony for this recipe.
This section contains recipes for IoT issues:
Narrow and medium width tables are a great way to store IoT data. A lot of reasons are outlined in Designing Your Database Schema: Wide vs. Narrow Postgres Tables.
One of the key advantages of narrow tables is that the schema does not have to change when you add new sensors. Another big advantage is that each sensor can sample at different rates and times. This helps support things like hysteresis, where new values are written infrequently unless the value changes by a certain amount.
Working with narrow table data structures presents a few challenges. In the IoT world one concern is that many data analysis approaches - including machine learning as well as more traditional data analysis - require that your data is resampled and synchronized to a common time basis. Fortunately, TimescaleDB provides you with hyperfunctions and other tools to help you work with this data.
An example of a narrow table format is:
| ts | sensor_id | value |
|---|---|---|
| 2024-10-31 11:17:30.000 | 1007 | 23.45 |
Typically you would couple this with a sensor table:
| sensor_id | sensor_name | units |
|---|---|---|
| 1007 | temperature | degreesC |
| 1012 | heat_mode | on/off |
| 1013 | cooling_mode | on/off |
| 1041 | occupancy | number of people in room |
A medium table retains the generic structure but adds columns of various types so that you can use the same table to store float, int, bool, or even JSON (jsonb) data:
| ts | sensor_id | d | i | b | t | j |
|---|---|---|---|---|---|---|
| 2024-10-31 11:17:30.000 | 1007 | 23.45 | null | null | null | null |
| 2024-10-31 11:17:47.000 | 1012 | null | null | TRUE | null | null |
| 2024-10-31 11:18:01.000 | 1041 | null | 4 | null | null | null |
To remove all-null entries, use an optional constraint such as:
CONSTRAINT at_least_one_not_null
CHECK ((d IS NOT NULL) OR (i IS NOT NULL) OR (b IS NOT NULL) OR (j IS NOT NULL) OR (t IS NOT NULL))
There are several ways to get the latest value of every sensor. The following examples use the structure defined in Narrow table format example as a reference:
If you have a list of sensors, the easy way to get the latest value of every sensor is to use
SELECT DISTINCT ON:
WITH latest_data AS (
SELECT DISTINCT ON (sensor_id) ts, sensor_id, d
FROM iot_data
WHERE d is not null
AND ts > CURRENT_TIMESTAMP - INTERVAL '1 week' -- important
ORDER BY sensor_id, ts DESC
)
SELECT
sensor_id, sensors.name, ts, d
FROM latest_data
LEFT OUTER JOIN sensors ON latest_data.sensor_id = sensors.id
WHERE latest_data.d is not null
ORDER BY sensor_id, ts; -- Optional, for displaying results ordered by sensor_id
The common table expression (CTE) used above is not strictly necessary. However, it is an elegant way to join to the sensor list to get a sensor name in the output. If this is not something you care about, you can leave it out:
SELECT DISTINCT ON (sensor_id) ts, sensor_id, d
FROM iot_data
WHERE d is not null
AND ts > CURRENT_TIMESTAMP - INTERVAL '1 week' -- important
ORDER BY sensor_id, ts DESC
It is important to take care when down-selecting this data. In the previous examples, the time that the query would scan back was limited. However, if there any sensors that have either not reported in a long time or in the worst case, never reported, this query devolves to a full table scan. In a database with 1000+ sensors and 41 million rows, an unconstrained query takes over an hour.
An alternative to SELECT DISTINCT ON is to use a JOIN LATERAL. By selecting your entire
sensor list from the sensors table rather than pulling the IDs out using SELECT DISTINCT, JOIN LATERAL can offer
some improvements in performance:
SELECT sensor_list.id, latest_data.ts, latest_data.d
FROM sensors sensor_list
-- Add a WHERE clause here to downselect the sensor list, if you wish
LEFT JOIN LATERAL (
SELECT ts, d
FROM iot_data raw_data
WHERE sensor_id = sensor_list.id
ORDER BY ts DESC
LIMIT 1
) latest_data ON true
WHERE latest_data.d is not null -- only pulling out float values ("d" column) in this example
AND latest_data.ts > CURRENT_TIMESTAMP - interval '1 week' -- important
ORDER BY sensor_list.id, latest_data.ts;
Limiting the time range is important, especially if you have a lot of data. Best practice is to use these kinds of queries for dashboards and quick status checks. To query over a much larger time range, encapsulate the previous example into a materialized query that refreshes infrequently, perhaps once a day.
Shoutout to Christopher Piggott for this recipe.
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-query/ =====
The financial industry is extremely data-heavy and relies on real-time and historical data for decision-making, risk assessment, fraud detection, and market analysis. Tiger Data simplifies management of these large volumes of data, while also providing you with meaningful analytical insights and optimizing storage costs.
In this tutorial, you use Tiger Cloud to ingest, store, and analyze transactions on the Bitcoin blockchain.
Blockchains are, at their essence, a distributed database. The transactions in a blockchain are an example of time-series data. You can use TimescaleDB to query transactions on a blockchain, in exactly the same way as you might query time-series transactions in any other database.
This tutorial covers:
When you've completed this tutorial, you can use the same dataset to Analyze the Bitcoin data, using TimescaleDB hyperfunctions.
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-analyze/ =====
The financial industry is extremely data-heavy and relies on real-time and historical data for decision-making, risk assessment, fraud detection, and market analysis. Tiger Data simplifies management of these large volumes of data, while also providing you with meaningful analytical insights and optimizing storage costs.
In this tutorial, you use Tiger Cloud to ingest, store, and analyze transactions on the Bitcoin blockchain.
Blockchains are, at their essence, a distributed database. The transactions in a blockchain are an example of time-series data. You can use TimescaleDB to query transactions on a blockchain, in exactly the same way as you might query time-series transactions in any other database.
Before you begin, make sure you have:
This tutorial covers:
This tutorial uses a sample Bitcoin dataset to show you how to aggregate blockchain transaction data, and construct queries to analyze information from the aggregations. The queries in this tutorial help you determine if a cryptocurrency has a high transaction fee, shows any correlation between transaction volumes and fees, or if it's expensive to mine.
It starts by setting up and connecting to a Tiger Cloud service, create tables,
and load data into the tables using psql. If you have already completed the
beginner blockchain tutorial, then you already have the
dataset loaded, and you can skip straight to the queries.
You then learn how to conduct analysis on your dataset using Timescale hyperfunctions. It walks you through creating a series of continuous aggregates, and querying the aggregates to analyze the data. You can also use those queries to graph the output in Grafana.
===== PAGE: https://docs.tigerdata.com/tutorials/financial-tick-data/ =====
The financial industry is extremely data-heavy and relies on real-time and historical data for decision-making, risk assessment, fraud detection, and market analysis. Tiger Data simplifies management of these large volumes of data, while also providing you with meaningful analytical insights and optimizing storage costs.
To analyze financial data, you can chart the open, high, low, close, and volume (OHLCV) information for a financial asset. Using this data, you can create candlestick charts that make it easier to analyze the price changes of financial assets over time. You can use candlestick charts to examine trends in stock, cryptocurrency, or NFT prices.
In this tutorial, you use real raw financial data provided by Twelve Data, create an aggregated candlestick view, query the aggregated data, and visualize the data in Grafana.
The financial sector regularly uses candlestick charts to visualize the price change of an asset. Each candlestick represents a time period, such as one minute or one hour, and shows how the asset's price changed during that time.
Candlestick charts are generated from the open, high, low, close, and volume data for each financial asset during the time period. This is often abbreviated as OHLCV:
TimescaleDB is well suited to storing and analyzing financial candlestick data, and many Tiger Data community members use it for exactly this purpose. Check out these stories from some Tiger Datacommunity members:
This tutorial shows you how to ingest real-time time-series data into a Tiger Cloud service:
To create candlestick views, query the aggregated data, and visualize the data in Grafana, see the ingest real-time websocket data section.
===== PAGE: https://docs.tigerdata.com/tutorials/financial-ingest-real-time/ =====
The financial industry is extremely data-heavy and relies on real-time and historical data for decision-making, risk assessment, fraud detection, and market analysis. Tiger Data simplifies management of these large volumes of data, while also providing you with meaningful analytical insights and optimizing storage costs.
This tutorial shows you how to ingest real-time time-series data into TimescaleDB using a websocket connection. The tutorial sets up a data pipeline to ingest real-time data from our data partner, Twelve Data. Twelve Data provides a number of different financial APIs, including stock, cryptocurrencies, foreign exchanges, and ETFs. It also supports websocket connections in case you want to update your database frequently. With websockets, you need to connect to the server, subscribe to symbols, and you can start receiving data in real-time during market hours.
When you complete this tutorial, you'll have a data pipeline set up that ingests real-time financial data into your Tiger Cloud.
This tutorial uses Python and the API wrapper library provided by Twelve Data.
Before you begin, make sure you have:
This tutorial covers:
Querying your dataset: Create candlestick views, query the aggregated data, and visualize the data in Grafana.
This tutorial shows you how to ingest real-time time-series data into a Tiger Cloud service using a websocket connection. To create candlestick views, query the aggregated data, and visualize the data in Grafana.
The financial sector regularly uses candlestick charts to visualize the price change of an asset. Each candlestick represents a time period, such as one minute or one hour, and shows how the asset's price changed during that time.
Candlestick charts are generated from the open, high, low, close, and volume data for each financial asset during the time period. This is often abbreviated as OHLCV:
TimescaleDB is well suited to storing and analyzing financial candlestick data, and many Tiger Datacommunity members use it for exactly this purpose.
===== PAGE: https://docs.tigerdata.com/api/hypertable/ =====
Tiger Cloud supercharges your real-time analytics by letting you run complex queries continuously, with near-zero latency. Under the hood, this is achieved by using hypertables—Postgres tables that automatically partition your time-series data by time and optionally by other dimensions. When you run a query, Tiger Cloud identifies the correct partition, called chunk, and runs the query on it, instead of going through the entire table.
Hypertables offer the following benefits:
Efficient data management with automated partitioning by time: Tiger Cloud splits your data into chunks that hold data from a specific time range. For example, one day or one week. You can configure this range to better suit your needs.
Better performance with strategic indexing: an index on time in the descending order is automatically created when you create a hypertable. More indexes are created on the chunk level, to optimize performance. You can create additional indexes, including unique indexes, on the columns you need.
Faster queries with chunk skipping: Tiger Cloud skips the chunks that are irrelevant in the context of your query, dramatically reducing the time and resources needed to fetch results. Even more—you can enable chunk skipping on non-partitioning columns.
Advanced data analysis with hyperfunctions: Tiger Cloud enables you to efficiently process, aggregate, and analyze significant volumes of data while maintaining high performance.
To top it all, there is no added complexity—you interact with hypertables in the same way as you would with regular Postgres tables. All the optimization magic happens behind the scenes.
Inheritance is not supported for hypertables and may lead to unexpected behavior.
For more information about using hypertables, including chunk size partitioning, see the hypertable section.
Best practice for using a hypertable is to:
Create a hypertable for your time-series data using CREATE TABLE.
For efficient queries on data in the columnstore, remember to segmentby the column you will
use most often to filter your data. For example:
CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
device TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby = 'device',
tsdb.orderby = 'time DESC'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Set the columnstore policy
CALL add_columnstore_policy('conditions', after => INTERVAL '1d');
===== PAGE: https://docs.tigerdata.com/api/hypercore/ =====
Hypercore is a hybrid row-columnar storage engine in TimescaleDB. It is designed specifically for real-time analytics and powered by time-series data. The advantage of hypercore is its ability to seamlessly switch between row-oriented and column-oriented storage, delivering the best of both worlds:
Hypercore solves the key challenges in real-time analytics:
Hypercore’s hybrid approach combines the benefits of row-oriented and column-oriented formats:
Fast ingest with rowstore: new data is initially written to the rowstore, which is optimized for high-speed inserts and updates. This process ensures that real-time applications easily handle rapid streams of incoming data. Mutability—upserts, updates, and deletes happen seamlessly.
Efficient analytics with columnstore: as the data cools and becomes more suited for analytics, it is automatically converted to the columnstore. This columnar format enables fast scanning and aggregation, optimizing performance for analytical workloads while also saving significant storage space.
Faster queries on compressed data in columnstore: in the columnstore conversion, hypertable chunks are compressed by up to 98%, and organized for efficient, large-scale queries. Combined with chunk skipping, this helps you save on storage costs and keeps your queries operating at lightning speed.
Fast modification of compressed data in columnstore: just use SQL to add or modify data in the columnstore. TimescaleDB is optimized for superfast INSERT and UPSERT performance.
Full mutability with transactional semantics: regardless of where data is stored, hypercore provides full ACID support. Like in a vanilla Postgres database, inserts and updates to the rowstore and columnstore are always consistent, and available to queries as soon as they are completed.
For an in-depth explanation of how hypertables and hypercore work, see the Data model.
Since TimescaleDB v2.18.0
Best practice for using hypercore is to:
Create a hypertable for your time-series data using CREATE TABLE.
For efficient queries on data in the columnstore, remember to segmentby the column you will
use most often to filter your data. For example:
Use CREATE TABLE for a hypertable
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Use ALTER MATERIALIZED VIEW for a continuous aggregate
ALTER MATERIALIZED VIEW assets_candlestick_daily set (
timescaledb.enable_columnstore = true,
timescaledb.segmentby = 'symbol' );
For example, 7 days after the data was added to the table:
CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '7d');
View the policies that you set or the policies that already exist
SELECT * FROM timescaledb_information.jobs
WHERE proc_name='policy_compression';
See timescaledb_information.jobs.
You can also convert_to_columnstore and convert_to_rowstore manually for more fine-grained control over your data.
Chunks in the columnstore have the following limitations:
ROW LEVEL SECURITY is not supported on chunks in the columnstore.===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/ =====
In modern applications, data usually grows very quickly. This means that aggregating it into useful summaries can become very slow. If you are collecting data very frequently, you might want to aggregate your data into minutes or hours instead. For example, if an IoT device takes temperature readings every second, you might want to find the average temperature for each hour. Every time you run this query, the database needs to scan the entire table and recalculate the average. TimescaleDB makes aggregating data lightning fast, accurate, and easy with continuous aggregates.
Continuous aggregates in TimescaleDB are a kind of hypertable that is refreshed automatically in the background as new data is added, or old data is modified. Changes to your dataset are tracked, and the hypertable behind the continuous aggregate is automatically updated in the background.
Continuous aggregates have a much lower maintenance burden than regular Postgres materialized views, because the whole view is not created from scratch on each refresh. This means that you can get on with working your data instead of maintaining your database.
Because continuous aggregates are based on hypertables, you can query them in exactly the same way as your other tables. This includes continuous aggregates in the rowstore, compressed into the columnstore, or tiered to object storage. You can even create continuous aggregates on top of your continuous aggregates, for an even more fine-tuned aggregation.
Real-time aggregation enables you to combine pre-aggregated data from the materialized view with the most recent raw data. This gives you up-to-date results on every query. In TimescaleDB v2.13 and later, real-time aggregates are DISABLED by default. In earlier versions, real-time aggregates are ENABLED by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
For more information about using continuous aggregates, see the documentation in Use Tiger Data products.
===== PAGE: https://docs.tigerdata.com/api/data-retention/ =====
An intrinsic part of time-series data is that new data is accumulated and old data is rarely, if ever, updated. This means that the relevance of the data diminishes over time. It is therefore often desirable to delete old data to save disk space.
With TimescaleDB, you can manually remove old chunks of data or implement policies using these APIs.
For more information about creating a data retention policy, see the data retention section.
===== PAGE: https://docs.tigerdata.com/api/jobs-automation/ =====
Jobs allow you to run functions and procedures implemented in a language of your choice on a schedule within Timescale. This allows automatic periodic tasks that are not covered by existing policies and even enhancing existing policies with additional functionality.
The following APIs and views allow you to manage the jobs that you create and get details around automatic jobs used by other TimescaleDB functions like continuous aggregation refresh policies and data retention policies. To view the policies that you set or the policies that already exist, see informational views.
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/ =====
UUIDv7 is a time-ordered UUID that includes a Unix timestamp (with millisecond precision) in its first 48 bits. Like other UUIDs, it uses 6 bits for version and variant info, and the remaining 74 bits are random.
UUIDv7 is ideal anywhere you create lots of records over time, not only observability. Advantages are:
WHERE id > :cursor and natural sharding.UUIDv7 also increases query speed by reducing the number of chunks scanned during queries. For example, in a database with 25 million rows, the following query runs in 25 seconds:
WITH ref AS (SELECT now() AS t0)
SELECT count(*) AS cnt_ts_filter
FROM events e, ref
WHERE uuid_timestamp(e.event_id) >= ref.t0 - INTERVAL '2 days';
Using UUIDv7 excludes chunks at startup and reduces the query time to 550ms:
WITH ref AS (SELECT now() AS t0)
SELECT count(*) AS cnt_boundary_filter
FROM events e, ref
WHERE e.event_id >= to_uuidv7_boundary(ref.t0 - INTERVAL '2 days')
You use UUIDvs for events, orders, messages, uploads, runs, jobs, spans, and more.
UUIDv7 gives you globally unique IDs (for traceability) and time windows (“last hour”), without the need for a
separate created_at column. UUIDv7 create less churn because inserts land at the end of the index, and you can
filter by time using UUIDv7 objects.
Last hour:
SELECT count(*) FROM logs WHERE id >= to_uuidv7_boundary(now() - interval '1 hour');
Keyset pagination
SELECT * FROM logs WHERE id > to_uuidv7($last_seen'::timestamptz, true) ORDER BY id LIMIT 1000;
Workflow / durable execution runs:
Each run needs a stable ID for joins and retries, and you often ask “what started since X?”. UUIDs help by serving both as the primary key and a time cursor across services. For example:
```sql
SELECT run_id, status
FROM runs
WHERE run_id >= to_uuidv7_boundary(now() - interval '5 minutes')
```
Orders / activity feeds / messages (SaaS apps):
Human-readable timestamps are not mandatory in a table. However, you still need time-ordered pages and day/week ranges. UUIDv7 enables clean date windows and cursor pagination with just the ID. For example:
SELECT * FROM orders
WHERE id >= to_uuidv7('2025-08-01'::timestamptz, true)
AND id < to_uuidv7('2025-08-02'::timestamptz, true)
ORDER BY id;
===== PAGE: https://docs.tigerdata.com/api/approximate_row_count/ =====
Get approximate row count for hypertable, distributed hypertable, or regular Postgres table based on catalog estimates. This function supports tables with nested inheritance and declarative partitioning.
The accuracy of approximate_row_count depends on the database having up-to-date statistics about the table or hypertable, which are updated by VACUUM, ANALYZE, and a few DDL commands. If you have auto-vacuum configured on your table or hypertable, or changes to the table are relatively infrequent, you might not need to explicitly ANALYZE your table as shown below. Otherwise, if your table statistics are too out-of-date, running this command updates your statistics and yields more accurate approximation results.
Get the approximate row count for a single hypertable.
ANALYZE conditions;
SELECT * FROM approximate_row_count('conditions');
The expected output:
approximate_row_count
----------------------
240000
| Name | Type | Description |
|---|---|---|
relation |
REGCLASS | Hypertable or regular Postgres table to get row count for. |
===== PAGE: https://docs.tigerdata.com/api/first/ =====
The first aggregate allows you to get the value of one column
as ordered by another. For example, first(temperature, time) returns the
earliest temperature value based on time within an aggregate group.
The last and first commands do not use indexes, they perform a sequential
scan through the group. They are primarily used for ordered selection within a
GROUP BY aggregate, and not as an alternative to an
ORDER BY time DESC LIMIT 1 clause to find the latest value, which uses
indexes.
Get the earliest temperature by device_id:
SELECT device_id, first(temp, time)
FROM metrics
GROUP BY device_id;
This example uses first and last with an aggregate filter, and avoids null values in the output:
SELECT
TIME_BUCKET('5 MIN', time_column) AS interv,
AVG(temperature) as avg_temp,
first(temperature,time_column) FILTER(WHERE time_column IS NOT NULL) AS beg_temp,
last(temperature,time_column) FILTER(WHERE time_column IS NOT NULL) AS end_temp
FROM sensors
GROUP BY interv
| Name | Type | Description |
|---|---|---|
value |
TEXT | The value to return |
time |
TIMESTAMP or INTEGER | The timestamp to use for comparison |
===== PAGE: https://docs.tigerdata.com/api/last/ =====
The last aggregate allows you to get the value of one column
as ordered by another. For example, last(temperature, time) returns the
latest temperature value based on time within an aggregate group.
The last and first commands do not use indexes, they perform a sequential
scan through the group. They are primarily used for ordered selection within a
GROUP BY aggregate, and not as an alternative to an
ORDER BY time DESC LIMIT 1 clause to find the latest value, which uses
indexes.
Get the temperature every 5 minutes for each device over the past day:
SELECT device_id, time_bucket('5 minutes', time) AS interval,
last(temp, time)
FROM metrics
WHERE time > now () - INTERVAL '1 day'
GROUP BY device_id, interval
ORDER BY interval DESC;
This example uses first and last with an aggregate filter, and avoids null values in the output:
SELECT
TIME_BUCKET('5 MIN', time_column) AS interv,
AVG(temperature) as avg_temp,
first(temperature,time_column) FILTER(WHERE time_column IS NOT NULL) AS beg_temp,
last(temperature,time_column) FILTER(WHERE time_column IS NOT NULL) AS end_temp
FROM sensors
GROUP BY interv
| Name | Type | Description |
|---|---|---|
value |
ANY ELEMENT | The value to return |
time |
TIMESTAMP or INTEGER | The timestamp to use for comparison |
===== PAGE: https://docs.tigerdata.com/api/histogram/ =====
The histogram() function represents the distribution of a set of
values as an array of equal-width buckets. It partitions the dataset
into a specified number of buckets (nbuckets) ranging from the
inputted min and max values.
The return value is an array containing nbuckets+2 buckets, with the
middle nbuckets bins for values in the stated range, the first
bucket at the head of the array for values under the lower min bound,
and the last bucket for values greater than or equal to the max bound.
Each bucket is inclusive on its lower bound, and exclusive on its upper
bound. Therefore, values equal to the min are included in the bucket
starting with min, but values equal to the max are in the last bucket.
A simple bucketing of device's battery levels from the readings dataset:
SELECT device_id, histogram(battery_level, 20, 60, 5)
FROM readings
GROUP BY device_id
LIMIT 10;
The expected output:
device_id | histogram
------------+------------------------------
demo000000 | {0,0,0,7,215,206,572}
demo000001 | {0,12,173,112,99,145,459}
demo000002 | {0,0,187,167,68,229,349}
demo000003 | {197,209,127,221,106,112,28}
demo000004 | {0,0,0,0,0,39,961}
demo000005 | {12,225,171,122,233,80,157}
demo000006 | {0,78,176,170,8,40,528}
demo000007 | {0,0,0,126,239,245,390}
demo000008 | {0,0,311,345,116,228,0}
demo000009 | {295,92,105,50,8,8,442}
| Name | Type | Description |
|---|---|---|
value |
ANY VALUE | A set of values to partition into a histogram |
min |
NUMERIC | The histogram's lower bound used in bucketing (inclusive) |
max |
NUMERIC | The histogram's upper bound used in bucketing (exclusive) |
nbuckets |
INTEGER | The integer value for the number of histogram buckets (partitions) |
===== PAGE: https://docs.tigerdata.com/api/time_bucket/ =====
The time_bucket function is similar to the standard Postgres date_bin
function. Unlike date_bin, it allows for arbitrary time intervals of months or
longer. The return value is the bucket's start time.
Buckets are aligned to start at midnight in UTC+0. The time bucket size (bucket_width) can be set as INTERVAL or INTEGER. For INTERVAL-type bucket_width, you can change the time zone with the optional timezone parameter. In this case, the buckets are realigned to start at midnight in the time zone you specify.
Note that during shifts to and from daylight savings, the amount of data
aggregated into the corresponding buckets can be irregular. For example, if the
bucket_width is 2 hours, the number of bucketed hours is either three hours or one hour.
Simple five-minute averaging:
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM metrics
GROUP BY five_min
ORDER BY five_min DESC LIMIT 10;
To report the middle of the bucket, instead of the left edge:
SELECT time_bucket('5 minutes', time) + '2.5 minutes'
AS five_min, avg(cpu)
FROM metrics
GROUP BY five_min
ORDER BY five_min DESC LIMIT 10;
For rounding, move the alignment so that the middle of the bucket is at the five-minute mark, and report the middle of the bucket:
SELECT time_bucket('5 minutes', time, '-2.5 minutes'::INTERVAL) + '2.5 minutes'
AS five_min, avg(cpu)
FROM metrics
GROUP BY five_min
ORDER BY five_min DESC LIMIT 10;
In this example, add the explicit cast to ensure that Postgres chooses the correct function.
To shift the alignment of the buckets, you can use the origin parameter passed as a timestamp, timestamptz, or date type. This example shifts the start of the week to a Sunday, instead of the default of Monday:
SELECT time_bucket('1 week', timetz, TIMESTAMPTZ '2017-12-31')
AS one_week, avg(cpu)
FROM metrics
GROUP BY one_week
WHERE time > TIMESTAMPTZ '2017-12-01' AND time < TIMESTAMPTZ '2018-01-03'
ORDER BY one_week DESC LIMIT 10;
The value of the origin parameter in this example is 2017-12-31, a Sunday
within the period being analyzed. However, the origin provided to the function
can be before, during, or after the data being analyzed. All buckets are
calculated relative to this origin. So, in this example, any Sunday could have
been used. Note that because time < TIMESTAMPTZ '2018-01-03' is used in this
example, the last bucket would have only 4 days of data. This cast to TIMESTAMP
converts the time to local time according to the server's time zone setting.
SELECT time_bucket(INTERVAL '2 hours', timetz::TIMESTAMP)
AS five_min, avg(cpu)
FROM metrics
GROUP BY five_min
ORDER BY five_min DESC LIMIT 10;
Bucket temperature values to calculate the average monthly temperature. Set the time zone to 'Europe/Berlin' so bucket start and end times are aligned to midnight in Berlin.
SELECT time_bucket('1 month', ts, 'Europe/Berlin') AS month_bucket,
avg(temperature) AS avg_temp
FROM weather
GROUP BY month_bucket
ORDER BY month_bucket DESC LIMIT 10;
|Name|Type|Description|
|-|-|-|
|bucket_width|INTERVAL|A Postgres time interval for how long each bucket is|
|ts|DATE, TIMESTAMP, or TIMESTAMPTZ|The timestamp to bucket|
If you use months as an interval for bucket_width, you cannot combine it with
a non-month component. For example, 1 month and 3 months are both valid
bucket widths, but 1 month 1 day and 3 months 2 weeks are not.
|Name|Type| Description |
|-|-|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|timezone|TEXT| The time zone for calculating bucket start and end times. Can only be used with TIMESTAMPTZ. Defaults to UTC+0. |
|origin|DATE, TIMESTAMP, or TIMESTAMPTZ| Buckets are aligned relative to this timestamp. Defaults to midnight on January 3, 2000, for buckets that don't include a month or year interval, and to midnight on January 1, 2000, for month, year, and century buckets. |
|offset|INTERVAL| The time interval to offset all time buckets by. A positive value shifts bucket start and end times later. A negative value shifts bucket start and end times earlier. offset must be surrounded with double quotes when used as a named argument, because it is a reserved key word in Postgres. |
|Name|Type|Description|
|-|-|-|
|bucket_width|INTEGER|The bucket width|
|ts|INTEGER|The timestamp to bucket|
|Name|Type|Description|
|-|-|-|
|offset|INTEGER|The amount to offset all buckets by. A positive value shifts bucket start and end times later. A negative value shifts bucket start and end times earlier. offset must be surrounded with double quotes when used as a named argument, because it is a reserved key word in Postgres.|
===== PAGE: https://docs.tigerdata.com/api/time_bucket_ng/ =====
The time_bucket_ng() function is an experimental version of the
time_bucket() function. It introduced some new capabilities,
such as monthly buckets and timezone support. Those features are now part of the
regular time_bucket() function.
This section describes a feature that is deprecated. We strongly recommend that you do not use this feature in a production environment. If you need more information, contact us.
The time_bucket() and time_bucket_ng() functions are similar, but not
completely compatible. There are two main differences.
Firstly, time_bucket_ng() doesn't work with timestamps prior to origin,
while time_bucket() does.
Secondly, the default origin values differ. time_bucket() uses an origin
date of January 3, 2000, for buckets shorter than a month. time_bucket_ng()
uses an origin date of January 1, 2000, for all bucket sizes.
In this example, time_bucket_ng() is used to create bucket data in three month
intervals:
SELECT timescaledb_experimental.time_bucket_ng('3 month', date '2021-08-01');
time_bucket_ng
----------------
2021-07-01
(1 row)
This example uses time_bucket_ng() to bucket data in one year intervals:
SELECT timescaledb_experimental.time_bucket_ng('1 year', date '2021-08-01');
time_bucket_ng
----------------
2021-01-01
(1 row)
To split time into buckets, time_bucket_ng() uses a starting point in time
called origin. The default origin is 2000-01-01. time_bucket_ng cannot use
timestamps earlier than origin:
SELECT timescaledb_experimental.time_bucket_ng('100 years', timestamp '1988-05-08');
ERROR: origin must be before the given date
Going back in time from origin isn't usually possible, especially when you
consider timezones and daylight savings time (DST). Note also that there is no
reasonable way to split time in variable-sized buckets (such as months) from an
arbitrary origin, so origin defaults to the first day of the month.
To bypass named limitations, you can override the default origin:
-- working with timestamps before 2000-01-01
SELECT timescaledb_experimental.time_bucket_ng('100 years', timestamp '1988-05-08', origin => '1900-01-01');
time_bucket_ng
---------------------
1900-01-01 00:00:00
-- unlike the default origin, which is Saturday, 2000-01-03 is Monday
SELECT timescaledb_experimental.time_bucket_ng('1 week', timestamp '2021-08-26', origin => '2000-01-03');
time_bucket_ng
---------------------
2021-08-23 00:00:00
This example shows how time_bucket_ng() is used to bucket data
by months in a specified timezone:
-- note that timestamptz is displayed differently depending on the session parameters
SET TIME ZONE 'Europe/Moscow';
SET
SELECT timescaledb_experimental.time_bucket_ng('1 month', timestamptz '2001-02-03 12:34:56 MSK', timezone => 'Europe/Moscow');
time_bucket_ng
------------------------
2001-02-01 00:00:00+03
You can use time_bucket_ng() with continuous aggregates. This example tracks
the temperature in Moscow over seven day intervals:
CREATE TABLE conditions(
day DATE NOT NULL,
city text NOT NULL,
temperature INT NOT NULL);
SELECT create_hypertable(
'conditions', by_range('day', INTERVAL '1 day')
);
INSERT INTO conditions (day, city, temperature) VALUES
('2021-06-14', 'Moscow', 26),
('2021-06-15', 'Moscow', 22),
('2021-06-16', 'Moscow', 24),
('2021-06-17', 'Moscow', 24),
('2021-06-18', 'Moscow', 27),
('2021-06-19', 'Moscow', 28),
('2021-06-20', 'Moscow', 30),
('2021-06-21', 'Moscow', 31),
('2021-06-22', 'Moscow', 34),
('2021-06-23', 'Moscow', 34),
('2021-06-24', 'Moscow', 34),
('2021-06-25', 'Moscow', 32),
('2021-06-26', 'Moscow', 32),
('2021-06-27', 'Moscow', 31);
CREATE MATERIALIZED VIEW conditions_summary_weekly
WITH (timescaledb.continuous) AS
SELECT city,
timescaledb_experimental.time_bucket_ng('7 days', day) AS bucket,
MIN(temperature),
MAX(temperature)
FROM conditions
GROUP BY city, bucket;
SELECT to_char(bucket, 'YYYY-MM-DD'), city, min, max
FROM conditions_summary_weekly
ORDER BY bucket;
to_char | city | min | max
------------+--------+-----+-----
2021-06-12 | Moscow | 22 | 27
2021-06-19 | Moscow | 28 | 34
2021-06-26 | Moscow | 31 | 32
(3 rows)
The by_range dimension builder is an addition to TimescaleDB
2.13. For simpler cases, like this one, you can also create the
hypertable using the old syntax:
SELECT create_hypertable('', '<time column name>');
For more information, see the continuous aggregates documentation.
While time_bucket_ng() supports months and timezones,
continuous aggregates cannot always be used with monthly
buckets or buckets with timezones.
This table shows which time_bucket_ng() functions can be used in a continuous aggregate:
|Function|Available in continuous aggregate|TimescaleDB version| |-|-|-| |Buckets by seconds, minutes, hours, days, and weeks|✅|2.4.0 - 2.14.2| |Buckets by months and years|✅|2.6.0 - 2.14.2| |Timezones support|✅|2.6.0 - 2.14.2| |Specify custom origin|✅|2.7.0 - 2.14.2|
| Name | Type | Description |
|---|---|---|
bucket_width |
INTERVAL | A Postgres time interval for how long each bucket is |
ts |
DATE, TIMESTAMP or TIMESTAMPTZ | The timestamp to bucket |
| Name | Type | Description |
|---|---|---|
origin |
Should be the same as ts |
Buckets are aligned relative to this timestamp |
timezone |
TEXT | The name of the timezone. The argument can be specified only if the type of ts is TIMESTAMPTZ |
For backward compatibility with time_bucket() the timezone argument is
optional. However, it is required for time buckets that are less than 24 hours.
If you call the TIMESTAMPTZ-version of the function without the timezone
argument, the timezone defaults to the session's timezone and so the function
can't be used with continuous aggregates. Best practice is to use
time_bucket_ng(interval, timestamptz, text) and specify the timezone.
The function returns the bucket's start time. The return value type is the
same as ts.
===== PAGE: https://docs.tigerdata.com/api/days_in_month/ =====
Given a timestamptz, returns how many days are in that month.
Calculate how many days in the month of January 1, 2022:
SELECT days_in_month('2021-01-01 00:00:00+03'::timestamptz)
The output looks like this:
days_in_month
----------------------
31
|Name|Type|Description|
|-|-|-|
|date|TIMESTAMPTZ|Timestamp to use to calculate how many days in the month|
===== PAGE: https://docs.tigerdata.com/api/month_normalize/ =====
Translate a metric to a standard month. A standard month is calculated as the exact number of days in a year divided by the number of months in a year, so 365.25/12 = 30.4375. month_normalize() divides a metric by the number of days in the corresponding calendar month and multiplies it by 30.4375.
This enables you to compare metrics for different months and decide which one performed better, objectively. For example, in the following table that summarizes the number of sales for three months, January has the highest number of total sales:
| Month | Sales |
|---|---|
| Jan | 3000 |
| Feb | 2900 |
| Mar | 2900 |
When you normalize the sales metrics, you get the following result, showing that February in fact performed better:
| Month | Normalized sales |
|---|---|
| Jan | 2945.56 |
| Feb | 3152.46 |
| Mar | 2847.38 |
Get the normalized value for a metric of 1000, and a reference date of January 1, 2021:
SELECT month_normalize(1000,'2021-01-01 00:00:00+03'::timestamptz)
The output looks like this:
month_normalize
----------------------
981.8548387096774
|Name|Type|Description|
|-|-|-|
|metric|float8||
|reference_date|TIMESTAMPTZ|Timestamp to normalize the metric with|
|days|float8|Optional, defaults to 365.25/12 if none provided|
===== PAGE: https://docs.tigerdata.com/api/gauge_agg/ =====
Produces a GaugeSummary that can be used to accumulate gauge data for further
calculations.
gauge_agg (
ts TIMESTAMPTZ,
value DOUBLE PRECISION
) RETURNS GaugeSummary
Experimental features could have bugs. They might not be backwards compatible, and could be removed in future releases. Use these features at your own risk, and do not use any experimental features in production.
For more information about counter and gauge aggregation functions, see the hyperfunctions documentation.
|Name|Type|Description
|-|-|-|
|ts|TIMESTAMPTZ|The time at each point|
|value|DOUBLE PRECISION|The value at that timestamp|
Only DOUBLE PRECISION values are accepted for the value parameter. For gauge
data stored as other numeric types, cast it to DOUBLE PRECISION when using the
function.
If there are NULL values in your data, the aggregate ignores them and
aggregates only non-NULL values. If you only have NULL values, the aggregate
returns NULL.
|Name|Type|Description|
|-|-|-|
|bounds|TSTZRANGE|The largest and smallest possible times that can be input to the aggregate. Calling with NULL, or leaving out the argument, results in an unbounded GaugeSummary|
Bounds are required for extrapolation, but not for other accessor functions.
|Column|Type|Description|
|-|-|-|
|gauge_agg|GaugeSummary|A GaugeSummary object that can be passed to accessor functions or other objects in the gauge aggregate API|
The returned GaugeSummary can be used as an input the accessor functions
delta, idelta_left, and idelta_right. When this feature is mature, it will support
all the same accessor functions as CounterSummary, with the exception of
num_resets.
Create a gauge summary from time-series data that has a timestamp, ts, and a
gauge value, val. Get the instantaneous rate of change from the last 2 time
intervals using the irate_right accessor:
WITH t as (
SELECT
time_bucket('1 day'::interval, ts) as dt,
gauge_agg(ts, val) AS gs
FROM foo
WHERE id = 'bar'
GROUP BY time_bucket('1 day'::interval, ts)
)
SELECT
dt,
irate_right(gs)
FROM t;
===== PAGE: https://docs.tigerdata.com/api/frequency-analysis/ =====
This section includes frequency aggregate APIs, which find the most common elements out of a set of vastly more varied values.
For these hyperfunctions, you need to install the TimescaleDB Toolkit Postgres extension.
<HyperfunctionTable
hyperfunctionFamily='frequency analysis'
includeExperimental
sortByType
/>
===== PAGE: https://docs.tigerdata.com/api/informational-views/ =====
TimescaleDB makes complex database features like partitioning and data retention easy to use with our comprehensive APIs. TimescaleDB works hard to provide detailed information about the state of your data, hypertables, chunks, and any jobs or policies you have in place.
These views provide the data and statistics you need to keep track of your database.
===== PAGE: https://docs.tigerdata.com/api/configuration/ =====
Tiger Cloud service use the default Postgres server configuration settings. You can optimize your service configuration using the following TimescaleDB and Grand Unified Configuration (GUC) parameters.
===== PAGE: https://docs.tigerdata.com/api/administration/ =====
These administrative APIs help you prepare a database before and after a restore event. They also help you keep track of your TimescaleDB setup data.
To help when asking for support and reporting bugs, TimescaleDB includes an SQL dump script. It outputs metadata from the internal TimescaleDB tables, along with version information.
This script is available in the source distribution in scripts/. To use it, run:
psql [your connect flags] -d your_timescale_db < dump_meta_data.sql > dumpfile.txt
Inspect dumpfile.txt before sending it together with a bug report or support question.
Returns the background telemetry string sent to Tiger Data.
If telemetry is turned off, it sends the string that would be sent if telemetry were enabled.
View the telemetry report:
SELECT get_telemetry_report();
Perform the required operations after you have finished restoring the database using pg_restore. Specifically, this resets the timescaledb.restoring GUC and restarts any background workers.
For more information, see Migrate using pg_dump and pg_restore.
Prepare the database for normal use after a restore:
SELECT timescaledb_post_restore();
Perform the required operations so that you can restore the database using pg_restore. Specifically, this sets the timescaledb.restoring GUC to on and stops any background workers which could have been performing tasks.
The background workers are stopped until the timescaledb_post_restore() function is run, after the restore operation is complete.
For more information, see Migrate using pg_dump and pg_restore.
After using timescaledb_pre_restore(), you need to run timescaledb_post_restore() before you can use the database normally.
Prepare to restore the database:
SELECT timescaledb_pre_restore();
===== PAGE: https://docs.tigerdata.com/api/api-tag-overview/ =====
The TimescaleDB API Reference uses tags to categorize functions. The tags are
Community, Experimental, Toolkit, and Experimental (Toolkit). This
section explains each tag.
This tag indicates that the function is available under TimescaleDB Community Edition, and are not available under the Apache 2 Edition. For more information, visit our TimescaleDB License comparison sheet.
This tag indicates that the function is included in the TimescaleDB experimental schema. Do not use experimental functions in production. Experimental features could include bugs, and are likely to change in future versions. The experimental schema is used by TimescaleDB to develop new features more quickly. If experimental functions are successful, they can move out of the experimental schema and go into production use.
When you upgrade the timescaledb extension, the experimental schema is removed
by default. To use experimental features after an upgrade, you need to add the
experimental schema again.
For more information about the experimental schema, [read the Tiger Data blog post][experimental-blog].
This tag indicates that the function is included in the TimescaleDB Toolkit extension. Toolkit functions are available under TimescaleDB Community Edition. For installation instructions, see the installation guide.
This tag is used with the Toolkit tag. It indicates a Toolkit function that is under active development. Do not use experimental toolkit functions in production. Experimental toolkit functions could include bugs, and are likely to change in future versions.
These functions might not correctly handle unusual use cases or errors, and they could have poor performance. Updates to the TimescaleDB extension drop database objects that depend on experimental features like this function. If you use experimental toolkit functions on Timescale, this function is automatically dropped when the Toolkit extension is updated. For more information, see the TimescaleDB Toolkit docs.
===== PAGE: https://docs.tigerdata.com/api/api-reference/ =====
A comprehensive RESTful API for managing Tiger Cloud resources including VPCs, services, and read replicas.
API Version: 1.0.0
Base URL: https://console.cloud.timescale.com/public/api/v1
The Tiger REST API uses HTTP Basic Authentication. Include your access key and secret key in the Authorization header.
Authorization: Basic <base64(access_key:secret_key)>
curl -X GET "https://console.cloud.timescale.com/public/api/v1/projects/{project_id}/services" \
-H "Authorization: Basic $(echo -n 'your_access_key:your_secret_key' | base64)"
You use this endpoint to create a Tiger Cloud service with one of more of the following addons:
time-series: a Tiger Cloud service optimized for real-time analytics. For time-stamped data like events,
prices, metrics, sensor readings, or any information that changes over time.ai: a Tiger Cloud service instance with vector extensions.To have multiple addons when you create a new service, set "addons": ["time-series", "ai"]. To create a
vanilla Postgres instance, set addons to an empty list [].
GET /projects/{project_id}/services
Retrieve all services within a project.
Response: 200 OK
[
{
"service_id": "p7zm9wqqii",
"project_id": "jz22xtzemv",
"name": "my-production-db",
"region_code": "eu-central-1",
"service_type": "TIMESCALEDB",
"status": "READY",
"created": "2024-01-15T10:30:00Z",
"paused": false,
"resources": [
{
"id": "resource-1",
"spec": {
"cpu_millis": 1000,
"memory_gbs": 4,
"volume_type": "gp2"
}
}
],
"endpoint": {
"host": "my-service.com",
"port": 5432
}
}
]
POST /projects/{project_id}/services
Create a new Tiger Cloud service. This is an asynchronous operation.
Request Body:
{
"name": "test-2",
"addons": ["time-series"],
"region_code": "eu-central-1",
"cpu_millis": 1000,
"memory_gbs": 4
}
Response: 202 Accepted
{
"service_id": "p7zm9wqqii",
"project_id": "jz22xtzemv",
"name": "test-2",
"region_code": "eu-central-1",
"service_type": "TIMESCALEDB",
"created": "2025-09-04T20:46:46.265680278Z",
"paused": false,
"status": "READY",
"resources": [
{
"id": "100927",
"spec": {
"cpu_millis": 1000,
"memory_gbs": 4,
"volume_type": ""
}
}
],
"metadata": {
"environment": "PROD"
},
"endpoint": {
"host": "p7zm8wqqii.jz4qxtzemv.tsdb.cloud.timescale.com",
"port": 35482
},
"initial_password": "oamv8ch9t4ar2j8g"
}
Service Types:
TIMESCALEDB: a Tiger Cloud service instance optimized for real-time analytics service For time-stamped data like events,
prices, metrics, sensor readings, or any information that changes over timePOSTGRES: a vanilla Postgres instanceVECTOR: a Tiger Cloud service instance with vector extensionsGET /projects/{project_id}/services/{service_id}
Retrieve details of a specific service.
Response: 200 OK
{
"service_id": "p7zm9wqqii",
"project_id": "jz22xtzemv",
"name": "test-2",
"region_code": "eu-central-1",
"service_type": "TIMESCALEDB",
"created": "2025-09-04T20:46:46.26568Z",
"paused": false,
"status": "READY",
"resources": [
{
"id": "100927",
"spec": {
"cpu_millis": 1000,
"memory_gbs": 4,
"volume_type": ""
}
}
],
"metadata": {
"environment": "DEV"
},
"endpoint": {
"host": "p7zm8wqqii.jz4qxtzemv.tsdb.cloud.timescale.com",
"port": 35482
}
}
Service Status:
QUEUED: Service creation is queuedDELETING: Service is being deletedCONFIGURING: Service is being configuredREADY: Service is ready for useDELETED: Service has been deletedUNSTABLE: Service is in an unstable statePAUSING: Service is being pausedPAUSED: Service is pausedRESUMING: Service is being resumedUPGRADING: Service is being upgradedOPTIMIZING: Service is being optimizedDELETE /projects/{project_id}/services/{service_id}
Delete a specific service. This is an asynchronous operation.
Response: 202 Accepted
POST /projects/{project_id}/services/{service_id}/resize
Change CPU and memory allocation for a service.
Request Body:
{
"cpu_millis": 2000,
"memory_gbs": 8
}
Response: 202 Accepted
POST /projects/{project_id}/services/{service_id}/updatePassword
Set a new master password for the service.
Request Body:
{
"password": "a-very-secure-new-password"
}
Response: 204 No Content
POST /projects/{project_id}/services/{service_id}/setEnvironment
Set the environment type for the service.
Request Body:
{
"environment": "PROD"
}
Environment Values:
PROD: Production environmentDEV: Development environmentResponse: 200 OK
{
"message": "Environment set successfully"
}
POST /projects/{project_id}/services/{service_id}/setHA
Change the HA configuration for a service. This is an asynchronous operation.
Request Body:
{
"replica_count": 1
}
Response: 202 Accepted
POST /projects/{project_id}/services/{service_id}/enablePooler
Activate the connection pooler for a service.
Response: 200 OK
{
"message": "Connection pooler enabled successfully"
}
POST /projects/{project_id}/services/{service_id}/disablePooler
Deactivate the connection pooler for a service.
Response: 200 OK
{
"message": "Connection pooler disabled successfully"
}
POST /projects/{project_id}/services/{service_id}/forkService
Create a new, independent service by taking a snapshot of an existing one.
Request Body:
{
"name": "fork-test2",
"region_code": "eu-central-1",
"cpu_millis": 1000,
"memory_gbs": 4
}
Response: 202 Accepted
{
"service_id": "otewd3pem2",
"project_id": "jz22xtzemv",
"name": "fork-test2",
"region_code": "eu-central-1",
"service_type": "TIMESCALEDB",
"created": "2025-09-04T20:54:09.53380732Z",
"paused": false,
"status": "READY",
"resources": [
{
"id": "100929",
"spec": {
"cpu_millis": 1000,
"memory_gbs": 4,
"volume_type": ""
}
}
],
"forked_from": {
"project_id": "jz22xtzemv",
"service_id": "p7zm9wqqii",
"is_standby": false
},
"initial_password": "ph33bl5juuri5gem"
}
Manage read replicas for improved read performance.
GET /projects/{project_id}/services/{service_id}/replicaSets
Retrieve all read replica sets associated with a primary service.
Response: 200 OK
[
{
"id": "l5alxb3s2g",
"name": "replica-set-test2",
"status": "active",
"nodes": 1,
"cpu_millis": 1000,
"memory_gbs": 4,
"endpoint": {
"host": "l5alxb3s2g.jz4qxtzemv.tsdb.cloud.timescale.com",
"port": 38448
},
"connection_pooler": {
"endpoint": {
"host": "l5alxb3s2g.jz4qxtzemv.tsdb.cloud.timescale.com",
"port": 38543
}
},
"metadata": {
"environment": "DEV"
}
}
]
Replica Set Status:
creating: Replica set is being createdactive: Replica set is active and readyresizing: Replica set is being resizeddeleting: Replica set is being deletederror: Replica set encountered an errorPOST /projects/{project_id}/services/{service_id}/replicaSets
Create a new read replica set. This is an asynchronous operation.
Request Body:
{
"name": "replica-set-test2",
"cpu_millis": 1000,
"memory_gbs": 4,
"nodes": 1
}
Response: 202 Accepted
{
"id": "dsldm715t2",
"name": "replica-set-test2",
"status": "active",
"nodes": 1,
"cpu_millis": 1000,
"memory_gbs": 4
}
DELETE /projects/{project_id}/services/{service_id}/replicaSets/{replica_set_id}
Delete a specific read replica set. This is an asynchronous operation.
Response: 202 Accepted
POST /projects/{project_id}/services/{service_id}/replicaSets/{replica_set_id}/resize
Change resource allocation for a read replica set. This operation is async.
Request Body:
{
"cpu_millis": 500,
"memory_gbs": 2,
"nodes": 2
}
Response: 202 Accepted
{
"message": "Replica set resize request accepted"
}
POST /projects/{project_id}/services/{service_id}/replicaSets/{replica_set_id}/enablePooler
Activate the connection pooler for a read replica set.
Response: 200 OK
{
"message": "Connection pooler enabled successfully"
}
POST /projects/{project_id}/services/{service_id}/replicaSets/{replica_set_id}/disablePooler
Deactivate the connection pooler for a read replica set.
Response: 200 OK
{
"message": "Connection pooler disabled successfully"
}
POST /projects/{project_id}/services/{service_id}/replicaSets/{replica_set_id}/setEnvironment
Set the environment type for a read replica set.
Request Body:
{
"environment": "PROD"
}
Response: 200 OK
{
"message": "Environment set successfully"
}
Virtual Private Clouds (VPCs) provide network isolation for your TigerData services.
GET /projects/{project_id}/vpcs
List all Virtual Private Clouds in a project.
Response: 200 OK
[
{
"id": "1234567890",
"name": "my-production-vpc",
"cidr": "10.0.0.0/16",
"region_code": "eu-central-1"
}
]
POST /projects/{project_id}/vpcs
Create a new VPC.
Request Body:
{
"name": "my-production-vpc",
"cidr": "10.0.0.0/16",
"region_code": "eu-central-1"
}
Response: 201 Created
{
"id": "1234567890",
"name": "my-production-vpc",
"cidr": "10.0.0.0/16",
"region_code": "eu-central-1"
}
GET /projects/{project_id}/vpcs/{vpc_id}
Retrieve details of a specific VPC.
Response: 200 OK
{
"id": "1234567890",
"name": "my-production-vpc",
"cidr": "10.0.0.0/16",
"region_code": "eu-central-1"
}
POST /projects/{project_id}/vpcs/{vpc_id}/rename
Update the name of a specific VPC.
Request Body:
{
"name": "my-renamed-vpc"
}
Response: 200 OK
{
"id": "1234567890",
"name": "my-renamed-vpc",
"cidr": "10.0.0.0/16",
"region_code": "eu-central-1"
}
DELETE /projects/{project_id}/vpcs/{vpc_id}
Delete a specific VPC.
Response: 204 No Content
Manage peering connections between VPCs across different accounts and regions.
GET /projects/{project_id}/vpcs/{vpc_id}/peerings
Retrieve all VPC peering connections for a given VPC.
Response: 200 OK
[
{
"id": "1234567890",
"peer_account_id": "acc-12345",
"peer_region_code": "eu-central-1",
"peer_vpc_id": "1234567890",
"provisioned_id": "1234567890",
"status": "active",
"error_message": null
}
]
POST /projects/{project_id}/vpcs/{vpc_id}/peerings
Create a new VPC peering connection.
Request Body:
{
"peer_account_id": "acc-12345",
"peer_region_code": "eu-central-1",
"peer_vpc_id": "1234567890"
}
Response: 201 Created
{
"id": "1234567890",
"peer_account_id": "acc-12345",
"peer_region_code": "eu-central-1",
"peer_vpc_id": "1234567890",
"provisioned_id": "1234567890",
"status": "pending"
}
GET /projects/{project_id}/vpcs/{vpc_id}/peerings/{peering_id}
Retrieve details of a specific VPC peering connection.
DELETE /projects/{project_id}/vpcs/{vpc_id}/peerings/{peering_id}
Delete a specific VPC peering connection.
Response: 204 No Content
POST /projects/{project_id}/services/{service_id}/attachToVPC
Associate a service with a VPC.
Request Body:
{
"vpc_id": "1234567890"
}
Response: 202 Accepted
POST /projects/{project_id}/services/{service_id}/detachFromVPC
Disassociate a service from its VPC.
Request Body:
{
"vpc_id": "1234567890"
}
Response: 202 Accepted
{
"id": "string",
"name": "string",
"cidr": "string",
"region_code": "string"
}
{
"service_id": "string",
"project_id": "string",
"name": "string",
"region_code": "string",
"service_type": "TIMESCALEDB|POSTGRES|VECTOR",
"created": "2024-01-15T10:30:00Z",
"initial_password": "string",
"paused": false,
"status": "READY|CONFIGURING|QUEUED|...",
"resources": [
{
"id": "string",
"spec": {
"cpu_millis": 1000,
"memory_gbs": 4,
"volume_type": "string"
}
}
],
"metadata": {
"environment": "PROD|DEV"
},
"endpoint": {
"host": "string",
"port": 5432
},
"connection_pooler": {
"endpoint": {
"host": "string",
"port": 5432
}
}
}
{
"id": "string",
"peer_account_id": "string",
"peer_region_code": "string",
"peer_vpc_id": "string",
"provisioned_id": "string",
"status": "string",
"error_message": "string"
}
{
"id": "string",
"name": "string",
"status": "creating|active|resizing|deleting|error",
"nodes": 2,
"cpu_millis": 1000,
"memory_gbs": 4,
"metadata": {
"environment": "PROD|DEV"
},
"endpoint": {
"host": "string",
"port": 5432
},
"connection_pooler": {
"endpoint": {
"host": "string",
"port": 5432
}
}
}
Tiger Cloud REST API uses standard HTTP status codes and returns error details in JSON format.
{
"code": "ERROR_CODE",
"message": "Human-readable error description"
}
400 Bad Request: Invalid request parameters or malformed JSON401 Unauthorized: Missing or invalid authentication credentials403 Forbidden: Insufficient permissions for the requested operation404 Not Found: Requested resource does not exist409 Conflict: Request conflicts with current resource state500 Internal Server Error: Unexpected server error{
"code": "INVALID_REQUEST",
"message": "The service_type field is required"
}
===== PAGE: https://docs.tigerdata.com/api/glossary/ =====
This glossary defines technical terms, concepts, and terminology used in Tiger Data documentation, database industry, and real-time analytics.
ACL (Access Control List): a table that tells a computer operating system which access rights each user has to a particular system object, such as a file directory or individual file.
ACID: a set of properties (atomicity, consistency, isolation, durability) that guarantee database transactions are processed reliably.
ACID compliance: a set of database properties—Atomicity, Consistency, Isolation, Durability—ensuring reliable and consistent transactions. Inherited from Postgres.
Adaptive query optimization: dynamic query plan adjustment based on actual execution statistics and data distribution patterns, improving performance over time.
Aggregate (Continuous Aggregate): a materialized, precomputed summary of query results over time-series data, providing faster access to analytics.
Alerting: the process of automatically notifying administrators when predefined conditions or thresholds are met in system monitoring.
Analytics database: a system optimized for large-scale analytical queries, supporting complex aggregations, time-based queries, and data exploration.
Anomaly detection: the identification of abnormal patterns or outliers within time-series datasets, common in observability, IoT, and finance.
Append-only storage: a storage pattern where data is only added, never modified in place. Ideal for time-series workloads and audit trails.
Archival: the process of moving old or infrequently accessed data to long-term, cost-effective storage solutions.
Auto-partitioning: automatic division of a hypertable into chunks based on partitioning dimensions to optimize scalability and performance.
Availability zone: an isolated location within a cloud region that provides redundant power, networking, and connectivity.
B-tree: a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time.
Background job: an automated task that runs in the background without user intervention, typically for maintenance operations like compression or data retention.
Background worker: a Postgres process that runs background tasks independently of client sessions.
Batch processing: handling data in grouped batches rather than as individual real-time events, often used for historical data processing.
Backfill: the process of filling in historical data that was missing or needs to be recalculated, often used during migrations or after schema changes.
Backup: a copy of data stored separately from the original data to protect against data loss, corruption, or system failure.
Bloom filter: a probabilistic data structure that tests set membership with possible false positives but no false negatives. TimescaleDB uses blocked bloom filters to speed up point lookups by eliminating chunks that don't contain queried values.
Buffer pool: memory area where frequently accessed data pages are cached to reduce disk I/O operations.
BRIN (Block Range Index): a Postgres index type that stores summaries about ranges of table blocks, useful for large tables with naturally ordered data.
Bytea: a Postgres data type for storing binary data as a sequence of bytes.
Cache hit ratio: the percentage of data requests served from memory cache rather than disk, indicating query performance efficiency.
Cardinality: the number of unique values in a dataset or database column.
Check constraint: a database constraint that limits the values that can be stored in a column by checking them against a specified condition.
Chunk: a horizontal partition of a hypertable that contains data for a specific time interval and space partition. See chunks.
Chunk interval: the time period covered by each chunk in a hypertable, which affects query performance and storage efficiency.
Chunk skipping: a query optimization technique that skips chunks not relevant to the query's time range, dramatically improving performance.
CIDR (Classless Inter-Domain Routing): a method for allocating IP addresses and routing IP packets.
Client credentials: authentication tokens used by applications to access services programmatically without user interaction.
Close: in financial data, the closing price of a security at the end of a trading period.
Cloud: computing services delivered over the internet, including servers, storage, databases, networking, software, analytics, and intelligence.
Cloud deployment: the use of public, private, or hybrid cloud infrastructure to host TimescaleDB, enabling elastic scalability and managed services.
Cloud-native: an approach to building applications that leverage cloud infrastructure, scalability, and services like Kubernetes.
Cold storage: a tier of data storage for infrequently accessed data that offers lower costs but higher access times.
Columnar: a data storage format that stores data column by column rather than row by row, optimizing for analytical queries.
Columnstore: TimescaleDB's columnar storage engine optimized for analytical workloads and compression.
Compression: the process of reducing data size by encoding information using fewer bits, improving storage efficiency and query performance. See compression.
Connection pooling: a technique for managing multiple database connections efficiently, reducing overhead for high-concurrency environments.
Consensus algorithm: protocols ensuring distributed systems agree on data state, critical for multi-node database deployments.
Compression policy: an automated rule that compresses hypertable chunks after they reach a specified age or size threshold.
Compression ratio: the ratio between the original data size and the compressed data size, indicating compression effectiveness.
Constraint: a rule enforced by the database to maintain data integrity and consistency.
Continuous aggregate: a materialized view that incrementally updates with new data, providing fast access to pre-computed aggregations. See continuous aggregates.
Counter aggregation: aggregating monotonic counter data, handling counter resets and extrapolation.
Cron: a time-based job scheduler in Unix-like computer operating systems.
Cross-region backup: a backup stored in a different geographical region from the primary data for disaster recovery.
Data lake: a centralized repository storing structured and unstructured data at scale, often integrated with time-series databases for analytics.
Data lineage: the tracking of data flow from source to destination, including transformations, essential for compliance and debugging.
Data pipeline: automated workflows for moving, transforming, and loading data between systems, often using tools like Apache Kafka or Apache Airflow.
Data migration: the process of moving data from one system, storage type, or format to another. See the migration guides.
Data retention: the practice of storing data for a specified period before deletion, often governed by compliance requirements or storage optimization. See data retention.
Data rollup: the process of summarizing detailed historical data into higher-level aggregates, balancing storage needs with query efficiency.
Data skew: uneven distribution of data across partitions or nodes, potentially causing performance bottlenecks.
Data tiering: a storage management strategy that places data on different storage tiers based on access patterns and performance requirements.
Data type: a classification that specifies which type of value a variable can hold, such as integer, string, or boolean.
Decompress: the process of restoring compressed data to its original, uncompressed state.
Delta: the difference between two values, commonly used in counter aggregations to calculate the change over time.
DHCP (Dynamic Host Configuration Protocol): a network management protocol used to automatically assign IP addresses and other network configuration parameters.
Dimension: a partitioning key in a hypertable that determines how data is distributed across chunks.
Disaster recovery: the process and procedures for recovering and protecting a business's IT infrastructure in the event of a disaster.
Double precision: a floating-point data type that provides more precision than the standard float type.
Downsample: the process of reducing the temporal resolution of time-series data by aggregating data points over longer time intervals.
Downtime: the period during which a system, service, or application is unavailable or not operational.
Dual-write and backfill: a migration approach where new data is written to both the source and target databases simultaneously, followed by backfilling historical data to ensure completeness.
Dual-write: a migration pattern where applications write data to both the source and target systems simultaneously.
Edge computing: processing data at or near the data source such as IoT devices, rather than solely in centralized servers, reducing latency.
Edge gateway: a device that aggregates data from sensors and performs preprocessing before sending data to cloud or centralized databases.
ELT (Extract, Load, Transform): a data pipeline pattern where raw data is loaded first, then transformed within the target system, leveraging database processing power.
Embedding: a vector representation of data such as text or images, that captures semantic meaning in a high-dimensional space.
Error rate: the percentage of requests or operations that result in errors over a given time period.
Euclidean distance: a measure of the straight-line distance between two points in multidimensional space.
Exactly-once: a message is delivered and processed precisely once. There is no loss and no duplicates.
Explain: a Postgres command that shows the execution plan for a query, useful for performance analysis.
Event sourcing: an architectural pattern storing all changes as a sequence of events, naturally fitting time-series database capabilities.
Event-driven architecture: a design pattern where components react to events such as sensor readings, requiring real-time data pipelines and storage.
Extension: a Postgres add-on that extends the database's functionality beyond the core features.
Fact table: the central table in a star schema containing quantitative measures, often time-series data with foreign keys to dimension tables.
Failover: the automatic switching to a backup system, server, or network upon the failure or abnormal termination of the primary system.
Financial time-series: high-volume, timestamped datasets like stock market feeds or trade logs, requiring low-latency, scalable databases like TimescaleDB.
Foreign key: a database constraint that establishes a link between data in two tables by referencing the primary key of another table.
Fork: a copy of a database service that shares the same data but can diverge independently through separate writes.
Free service: a free instance of Tiger Cloud with limited resources. You can create up to two free services under any pricing plan. When a free service reaches the resource limit, it converts to the read-only state. You can convert a free service to a standard one under paid pricing plans.
FTP (File Transfer Protocol): a standard network protocol used for transferring files between a client and server on a computer network.
Gap filling: a technique for handling missing data points in time-series by interpolation or other methods, often implemented with hyperfunctions.
GIN (Generalized Inverted Index): a Postgres index type designed for indexing composite values and supporting fast searches.
GiST (Generalized Search Tree): a Postgres index type that provides a framework for implementing custom index types.
GP-LTTB: an advanced downsampling algorithm that extends Largest-Triangle-Three-Buckets with Gaussian Process modeling.
GUC (Grand Unified Configuration): Postgres's configuration parameter system that controls various aspects of database behavior.
GUID (Globally Unique Identifier): a unique identifier used in software applications, typically represented as a 128-bit value.
Hash: an index type that provides constant-time lookups for equality comparisons but doesn't support range queries.
High-cardinality: refers to datasets with a large number of unique values, which can strain storage and indexing in time-series applications.
Histogram bucket: a predefined range of metrics organized for statistical analysis, commonly visualized in monitoring tools.
Hot standby: a replication configuration where the standby server can serve read-only queries while staying synchronized with the primary.
High availability: a system design that ensures an agreed level of operational performance, usually uptime, for a higher than normal period.
High: in financial data, the highest price of a security during a specific time period.
Histogram: a graphical representation of the distribution of numerical data, showing the frequency of data points in different ranges.
Historical data: previously recorded data that provides context and trends for analysis and decision-making.
HNSW (Hierarchical Navigable Small World): a graph-based algorithm for approximate nearest neighbor search in high-dimensional spaces.
Hot storage: a tier of data storage for frequently accessed data that provides the fastest access times but at higher cost.
Hypercore: TimescaleDB's hybrid storage engine that seamlessly combines row and column storage for optimal performance. See Hypercore.
Hyperfunction: an SQL function in TimescaleDB designed for time-series analysis, statistics, and specialized computations. See Hyperfunctions.
HyperLogLog: a probabilistic data structure used for estimating the cardinality of large datasets with minimal memory usage.
Hypershift: a migration tool and strategy for moving data to TimescaleDB with minimal downtime.
Hypertable: TimescaleDB's core abstraction that automatically partitions time-series data for scalability. See Hypertables.
Idempotency: the property where repeated operations produce the same result, crucial for reliable data ingestion and processing.
Ingest rate: the speed at which new data is written to the system, measured in rows per second. Critical for IoT and observability.
Inner product: a mathematical operation that combines two vectors to produce a scalar, used in similarity calculations.
Insert: an SQL operation that adds new rows of data to a database table.
Integer: a data type that represents whole numbers without decimal points.
Intercept: a statistical measure representing the y-intercept in linear regression analysis.
Internet gateway: an AWS VPC component that enables communication between instances in a VPC and the internet.
Interpolation: a method of estimating unknown values that fall between known data points.
IP allow list: a security feature that restricts access to specified IP addresses or ranges.
Isolation level: a database transaction property that defines the degree to which operations in one transaction are isolated from those in other concurrent transactions.
Job: an automated task scheduled to run at specific intervals or triggered by certain conditions.
Job execution: the process of running scheduled background tasks or automated procedures.
JIT (Just-In-Time) compilation: Postgres feature that compiles frequently executed query parts for improved performance, available in TimescaleDB.
Job history: a record of past job executions, including their status, duration, and any errors encountered.
JSON (JavaScript Object Notation): a lightweight data interchange format that is easy for humans to read and write.
JWT (JSON Web Token): a compact, URL-safe means of representing claims to be transferred between two parties.
Latency: the time delay between a request being made and the response being received.
Lifecycle policy: a set of rules that automatically manage data throughout its lifecycle, including retention and deletion.
Live migration: a data migration technique that moves data with minimal or zero downtime.
Load balancer: a service distributing traffic across servers or database nodes to optimize resource use and avoid single points of failure.
Log-Structured Merge (LSM) Tree: a data structure optimized for write-heavy workloads, though TimescaleDB primarily uses B-tree indexes for balanced read/write performance.
LlamaIndex: a framework for building applications with large language models, providing tools for data ingestion and querying.
LOCF (Last Observation Carried Forward): a method for handling missing data by using the most recent known value.
Logical backup: a backup method that exports data in a human-readable format, allowing for selective restoration.
Logical replication: a Postgres feature that replicates data changes at the logical level rather than the physical level.
Logging: the process of recording events, errors, and system activities for monitoring and troubleshooting purposes.
Low: in financial data, the lowest price of a security during a specific time period.
LTTB (Largest-Triangle-Three-Buckets): a downsampling algorithm that preserves the visual characteristics of time-series data.
Manhattan distance: a distance metric calculated as the sum of the absolute differences of their coordinates.
Manual compression: the process of compressing chunks manually rather than through automated policies.
Materialization: the process of computing and storing the results of a query or view for faster access.
Materialized view: a database object that stores the result of a query and can be refreshed periodically.
Memory-optimized query: a query pattern designed to minimize disk I/O by leveraging available RAM and efficient data structures.
Metric: a quantitative measurement used to assess system performance, business outcomes, or operational efficiency.
MFA (Multi-Factor Authentication): a security method that requires two or more verification factors to grant access.
Migration: the process of moving data, applications, or systems from one environment to another. See migration guides.
Monitoring: the continuous observation and measurement of system performance and health.
Multi-tenancy: an architecture pattern supporting multiple customers or applications within a single database instance, with proper isolation.
MQTT (Message Queuing Telemetry Transport): a lightweight messaging protocol designed for small sensors and mobile devices.
MST (Managed Service for TimescaleDB): a fully managed TimescaleDB service that handles infrastructure and maintenance tasks.
NAT Gateway: a network address translation service that enables instances in a private subnet to connect to the internet.
Node (database node): an individual server within a distributed system, contributing to storage, compute, or replication tasks.
Normalization: database design technique organizing data to reduce redundancy, though time-series data often benefits from denormalized structures.
Not null: a database constraint that ensures a column cannot contain empty values.
Numeric: a Postgres data type for storing exact numeric values with user-defined precision.
OAuth: an open standard for access delegation commonly used for token-based authentication and authorization.
Observability: the ability to measure the internal states of a system by examining its outputs.
OLAP (Online Analytical Processing): systems or workloads focused on large-scale, multidimensional, and complex analytical queries.
OLTP (Online Transaction Processing): high-speed transactional systems optimized for data inserts, updates, and short queries.
OHLC: an acronym for Open, High, Low, Close prices, commonly used in financial data analysis.
OHLCV: an extension of OHLC that includes Volume data for complete candlestick analysis.
Open: in financial data, the opening price of a security at the beginning of a trading period.
OpenTelemetry: open standard for collecting, processing, and exporting telemetry data, often stored in time-series databases.
Optimization: the process of making systems, queries, or operations more efficient and performant.
Parallel copy: a technique for copying large amounts of data using multiple concurrent processes to improve performance.
Parallel Query Execution: a Postgres feature that uses multiple CPU cores to execute single queries faster, inherited by TimescaleDB.
Partitioning: the practice of dividing large tables into smaller, more manageable pieces based on certain criteria.
Percentile: a statistical measure that indicates the value below which a certain percentage of observations fall.
Performance: a measure of how efficiently a system operates, often quantified by metrics like throughput, latency, and resource utilization.
pg_basebackup: a Postgres utility for taking base backups of a running Postgres cluster.
pg_dump: a Postgres utility for backing up database objects and data in various formats.
pg_restore: a Postgres utility for restoring databases from backup files created by pg_dump.
pgVector: a Postgres extension that adds vector similarity search capabilities for AI and machine learning applications. See pgvector.
pgai on Tiger Cloud: a cloud solution for building search, RAG, and AI agents with Postgres. Enables calling AI embedding and generation models directly from the database using SQL. See pgai.
pgvectorscale: a performance enhancement for pgvector featuring StreamingDiskANN indexing, binary quantization compression, and label-based filtering. See pgvectorscale.
pgvectorizer: a TimescaleDB tool for automatically vectorizing and indexing data for similarity search.
Physical backup: a backup method that copies the actual database files at the storage level.
PITR (Point-in-Time Recovery): the ability to restore a database to a specific moment in time.
Policy: an automated rule or procedure that performs maintenance tasks like compression, retention, or refresh operations.
Predictive maintenance: the use of time-series data to forecast equipment failure, common in IoT and industrial applications.
Postgres: an open-source object-relational database system known for its reliability, robustness, and performance.
PostGIS: a Postgres extension that adds support for geographic objects and spatial queries.
Primary key: a database constraint that uniquely identifies each row in a table.
psql: an interactive terminal-based front-end to Postgres that allows users to type queries interactively.
QPS (Queries Per Second): a measure of database performance indicating how many queries a database can process per second.
Query: a request for data or information from a database, typically written in SQL.
Query performance: a measure of how efficiently database queries execute, including factors like execution time and resource usage.
Query planner/optimizer: a component determining the most efficient strategy for executing SQL queries based on database structure and indexes.
Query planning: the database process of determining the most efficient way to execute a query.
RBAC (Role-Based Access Control): a security model that assigns permissions to users based on their roles within an organization.
Read committed: an isolation level where transactions can read committed changes made by other transactions.
Read scaling: a technique for improving database performance by distributing read queries across multiple database replicas.
Read uncommitted: the lowest isolation level where transactions can read uncommitted changes from other transactions.
Read-only role: a database role with permissions limited to reading data without modification capabilities.
Read replica: a copy of the primary database that serves read-only queries, improving read scalability and geographic distribution.
Real-time analytics: the immediate analysis of incoming data streams, crucial for observability, trading platforms, and IoT monitoring.
Real: a Postgres data type for storing single-precision floating-point numbers.
Real-time aggregate: a continuous aggregate that includes both materialized historical data and real-time calculations on recent data.
Refresh policy: an automated rule that determines when and how continuous aggregates are updated with new data.
Region: a geographical area containing multiple data centers, used in cloud computing for data locality and compliance.
Repeatable read: an isolation level that ensures a transaction sees a consistent snapshot of data throughout its execution.
Replica: a copy of a database that can be used for read scaling, backup, or disaster recovery purposes.
Replication: the process of copying and maintaining data across multiple database instances to ensure availability and durability.
Response time: the time it takes for a system to respond to a request, measured from request initiation to response completion.
REST API: a web service architecture that uses HTTP methods to enable communication between applications.
Restore: the process of recovering data from backups to restore a database to a previous state.
Restore point: a snapshot of database state that can be used as a reference point for recovery operations.
Retention policy: an automated rule that determines how long data is kept before being deleted from the system.
Route table: a set of rules that determine where network traffic is directed within a cloud network.
RTO (Recovery Time Objective): the maximum acceptable time that systems can be down after a failure or disaster.
RPO (Recovery Point Objective): the maximum acceptable amount of data loss measured in time after a failure or disaster.
Rowstore: traditional row-oriented data storage where data is stored row by row, optimized for transactional workloads.
SAML (Security Assertion Markup Language): an XML-based standard for exchanging authentication and authorization data between security domains.
Scheduled job: an automated task that runs at predetermined times or intervals.
Schema evolution: the process of modifying database structure over time while maintaining compatibility with existing applications.
Schema: the structure of a database, including tables, columns, relationships, and constraints.
Security group: a virtual firewall that controls inbound and outbound traffic for cloud resources.
Service discovery: mechanisms allowing applications to dynamically locate services like database endpoints, often used in distributed environments.
Segmentwise recompression: a TimescaleDB compression technique that recompresses data segments to improve compression ratios.
Serializable: the highest isolation level that ensures transactions appear to run serially even when executed concurrently.
Service: see Tiger Cloud service.
Sharding: horizontal partitioning of data across multiple database instances, distributing load and enabling linear scalability.
SFTP (SSH File Transfer Protocol): a secure version of FTP that encrypts both commands and data during transmission.
SkipScan: query optimization for DISTINCT operations that incrementally jumps between ordered values without reading intermediate rows. Uses a Custom Scan node to efficiently traverse ordered indexes, dramatically improving performance over traditional DISTINCT queries.
Similarity search: a technique for finding items that are similar to a given query item, often used with vector embeddings.
SLA (Service Level Agreement): a contract that defines the expected level of service between a provider and customer.
SLI (Service Level Indicator): a quantitative measure of some aspect of service quality.
SLO (Service Level Objective): a target value or range for service quality measured by an SLI.
Slope: a statistical measure representing the rate of change in linear regression analysis.
SMTP (Simple Mail Transfer Protocol): an internet standard for email transmission across networks.
Snapshot: a point-in-time copy of data that can be used for backup and recovery purposes.
SP-GiST (Space-Partitioned Generalized Search Tree): a Postgres index type for data structures that naturally partition search spaces.
Storage optimization: techniques for reducing storage costs and improving performance through compression, tiering, and efficient data organization.
Streaming data: continuous flows of data generated by devices, logs, or sensors, requiring high-ingest, real-time storage solutions.
SQL (Structured Query Language): a programming language designed for managing and querying relational databases.
SSH (Secure Shell): a cryptographic network protocol for secure communication over an unsecured network.
SSL (Secure Sockets Layer): a security protocol that establishes encrypted links between networked computers.
Standard service: a regular Tiger Cloud service that includes the resources and features according to the pricing plan. You can create standard services under any of the paid plans.
Streaming replication: a Postgres replication method that continuously sends write-ahead log records to standby servers.
Synthetic monitoring: simulated transactions or probes used to test system health, generating time-series metrics for performance analysis.
Table: a database object that stores data in rows and columns, similar to a spreadsheet.
Tablespace: a Postgres storage structure that defines where database objects are physically stored on disk.
TCP (Transmission Control Protocol): a connection-oriented protocol that ensures reliable data transmission between applications.
TDigest: a probabilistic data structure for accurate estimation of percentiles in distributed systems.
Telemetry: the collection of real-time data from systems or devices for monitoring and analysis.
Text: a Postgres data type for storing variable-length character strings.
Throughput: a measure of system performance indicating the amount of work performed or data processed per unit of time.
Tiered storage: a storage strategy that automatically moves data between different storage classes based on access patterns and age.
Tiger Cloud: Tiger Data's managed cloud platform that provides TimescaleDB as a fully managed solution with additional features.
Tiger Lake: Tiger Data's service for integrating operational databases with data lake architectures.
Tiger Cloud service: an instance of optimized Postgres extended with database engine innovations such as TimescaleDB, in a cloud infrastructure that delivers speed without sacrifice. You can create free services and standard services.
Time series: data points indexed and ordered by time, typically representing how values change over time.
Time-weighted average: a statistical calculation that gives more weight to values based on the duration they were held.
Time bucketing: grouping timestamps into uniform intervals for analysis, commonly used with hyperfunctions.
Time-series forecasting: the application of statistical models to time-series data to predict future trends or events.
TimescaleDB: an open-source Postgres extension for real-time analytics that provides scalability and performance optimizations.
Timestamp: a data type that stores date and time information without timezone data.
Timestamptz: a Postgres data type that stores timestamp with timezone information.
TLS (Transport Layer Security): a cryptographic protocol that provides security for communication over networks.
Tombstone: marker indicating deleted data in append-only systems, requiring periodic cleanup processes.
Transaction isolation: the database property controlling the visibility of uncommitted changes between concurrent transactions.
TPS (Transactions Per Second): a measure of database performance indicating transaction processing capacity.
Transaction: a unit of work performed against a database that must be completed entirely or not at all.
Trigger: a database procedure that automatically executes in response to certain events on a table or view.
UDP (User Datagram Protocol): a connectionless communication protocol that provides fast but unreliable data transmission.
Unique: a database constraint that ensures all values in a column or combination of columns are distinct.
Uptime: the amount of time that a system has been operational and available for use.
Usage-based storage: a billing model where storage costs are based on actual data stored rather than provisioned capacity.
UUID (Universally Unique Identifier): a 128-bit identifier used to uniquely identify information without central coordination.
Vacuum: a Postgres maintenance operation that reclaims storage and updates database statistics.
Varchar: a variable-length character data type that can store strings up to a specified maximum length.
Vector operations: SIMD (Single Instruction, Multiple Data) optimizations for processing arrays of data, improving analytical query performance.
Vertical scaling (scale up): increasing system capacity by adding more power (CPU, RAM) to existing machines, as opposed to horizontal scaling.
Visualization tool: a platform or dashboard used to display time-series data in charts, graphs, and alerts for easier monitoring and analysis.
Vector: a mathematical object with magnitude and direction, used in machine learning for representing data as numerical arrays.
VPC (Virtual Private Cloud): a virtual network dedicated to your cloud account that provides network isolation.
VWAP (Volume Weighted Average Price): a financial indicator that shows the average price weighted by volume over a specific time period.
WAL (Write-Ahead Log): Postgres's method for ensuring data integrity by writing changes to a log before applying them to data files.
Warm storage: a storage tier that balances access speed and cost, suitable for data accessed occasionally.
Watermark: a timestamp that tracks the progress of continuous aggregate materialization.
WebSocket: a communication protocol that provides full-duplex communication channels over a single TCP connection.
Window function: an SQL function that performs calculations across related rows, particularly useful for time-series analytics and trend analysis.
Workload management: techniques for prioritizing and scheduling different types of database operations to optimize overall system performance.
XML (eXtensible Markup Language): a markup language that defines rules for encoding documents in a format that is both human-readable and machine-readable.
YAML (YAML Ain't Markup Language): a human-readable data serialization standard commonly used for configuration files.
Zero downtime: a system design goal where services remain available during maintenance, upgrades, or migrations without interruption.
Zero-downtime migration: migration strategies that maintain service availability throughout the transition process, often using techniques like dual-write and gradual cutover.
===== PAGE: https://docs.tigerdata.com/api/compression/ =====
Old API since TimescaleDB v2.18.0 Replaced by Hypercore.
Compression functionality is included in Hypercore.
Before you set up compression, you need to configure the hypertable for compression and then set up a compression policy.
Before you set up compression for the first time, read the compression blog post and documentation.
You can also compress chunks manually, instead of using an automated compression policy to compress chunks as they age.
Compressed chunks have the following limitations:
ROW LEVEL SECURITY is not supported on compressed chunks.In general, compressing a hypertable imposes some limitations on the types of data modifications that you can perform on data inside a compressed chunk.
This table shows changes to the compression feature, added in different versions of TimescaleDB:
|TimescaleDB version|Supported data modifications on compressed chunks| |-|-| |1.5 - 2.0|Data and schema modifications are not supported.| |2.1 - 2.2|Schema may be modified on compressed hypertables. Data modification not supported.| |2.3|Schema modifications and basic insert of new data is allowed. Deleting, updating and some advanced insert statements are not supported.| |2.11|Deleting, updating and advanced insert statements are supported.|
In TimescaleDB 2.1 and later, you can modify the schema of hypertables that have compressed chunks. Specifically, you can add columns to and rename existing columns of compressed hypertables.
In TimescaleDB v2.3 and later, you can insert data into compressed chunks and to enable compression policies on distributed hypertables.
In TimescaleDB v2.11 and later, you can update and delete compressed data.
You can also use advanced insert statements like ON CONFLICT and RETURNING.
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/ =====
Multi-node support is sunsetted.
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres versions 13, 14, and 15.
Distributed hypertables are an extension of regular hypertables, available when using a multi-node installation of TimescaleDB. Distributed hypertables provide the ability to store data chunks across multiple data nodes for better scale-out performance.
Most management APIs used with regular hypertable chunks also work with distributed hypertables as documented in this section. There are a number of APIs for specifically dealing with data nodes and a special API for executing SQL commands on data nodes.
===== PAGE: https://docs.tigerdata.com/self-hosted/install/ =====
TimescaleDB is an open-source Postgres extension that powers Tiger Cloud. Designed for running real-time analytics on time-series data, it supercharges ingest, query, storage, and analytics performance.
You can install self-hosted TimescaleDB from source, with a pre-built Docker container, or on one of the supported platforms. This section provides instructions for installing the latest version of self-hosted TimescaleDB.
The following instructions are for development and testing installations. For a production environment, we strongly recommend that you implement the following, many of which you can achieve using Postgres tooling:
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high availability, backups, and management, so you can relax.
Refer to the installation documentation for detailed setup instructions.
For more details about the latest release, see the release notes section.
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/ =====
By default, TimescaleDB uses the default Postgres server configuration settings. However, in some cases, these settings are not appropriate, especially if you have larger servers that use more hardware resources such as CPU, memory, and storage.
postgresql.conf configuration file.===== PAGE: https://docs.tigerdata.com/self-hosted/backup-and-restore/ =====
TimescaleDB takes advantage of the reliable backup and restore functionality provided by Postgres. There are a few different mechanisms you can use to back up your self-hosted TimescaleDB database:
pg_basebackup or another tool.Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
===== PAGE: https://docs.tigerdata.com/self-hosted/migration/ =====
You can migrate your existing Postgres database to self-hosted TimescaleDB.
There are several methods for migrating your data:
Which method you choose depends on your database size, network upload and download speeds, existing continuous aggregates, and tolerance for failure recovery.
If you are migrating from an Amazon RDS service, Amazon charges for the amount of data transferred out of the service. You could be charged by Amazon for all data egressed, even if the migration fails.
If your database is smaller than 100 GB, choose to migrate your entire database at once. You can also migrate larger databases using this method, but the copying process must keep running, potentially over days or weeks. If the copy is interrupted, the process needs to be restarted. If you think an interruption in the copy is possible, choose to migrate your schema and data separately instead.
Migrating your schema and data separately does not retain continuous aggregates calculated using already-deleted data. For example, if you delete raw data after a month but retain downsampled data in a continuous aggregate for a year, the continuous aggregate loses any data older than a month upon migration. If you must keep continuous aggregates calculated using deleted data, migrate your entire database at once regardless of database size.
If you aren't sure which method to use, try copying the entire database at once to estimate the time required. If the time estimate is very long, stop the migration and switch to the other method.
If your database is actively ingesting data, take precautions to ensure that your self-hosted TimescaleDB instance contains the data that is ingested while the migration is happening. Begin by running ingest in parallel on the source and target databases. This ensures that the newest data is written to both databases. Then backfill your data with one of the two migration methods.
===== PAGE: https://docs.tigerdata.com/self-hosted/manage-storage/ =====
If you are running TimescaleDB on your own hardware, you can save storage by moving chunks between tablespaces. By moving older chunks to cheaper, slower storage, you can save on storage costs while still using faster, more expensive storage for frequently accessed data. Moving infrequently accessed chunks can also improve performance, because it isolates historical data from the continual read-and-write workload of more recent data.
Using tablespaces is one way to manage data storage costs with TimescaleDB. You can also use compression and data retention to reduce your storage requirements.
Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
To move chunks to a new tablespace, you first need to create the new tablespace
and set the storage mount point. You can then use the
move_chunk API call to move individual chunks from the
default tablespace to the new tablespace. The move_chunk command also allows
you to move indexes belonging to those chunks to an appropriate tablespace.
Additionally, move_chunk allows you reorder the chunk during the migration.
This can be used to make your queries faster, and works in a similar way to the
reorder_chunk command.
You must be logged in as a super user, such as the postgres user, to use the
move_chunk() API call.
Create a new tablespace. In this example, the tablespace is called
history, it is owned by the postgres super user, and the mount point is
/mnt/history:
CREATE TABLESPACE history
OWNER postgres
LOCATION '/mnt/history';
List chunks that you want to move. In this example, chunks that contain data that is older than two days:
SELECT show_chunks('conditions', older_than => INTERVAL '2 days');
Move a chunk and its index to the new tablespace. You can also reorder the
data in this step. In this example, the chunk called
_timescaledb_internal._hyper_1_4_chunk is moved to the history
tablespace, and is reordered based on its time index:
SELECT move_chunk(
chunk => '_timescaledb_internal._hyper_1_4_chunk',
destination_tablespace => 'history',
index_destination_tablespace => 'history',
reorder_index => '_timescaledb_internal._hyper_1_4_chunk_netdata_time_idx',
verbose => TRUE
);
You can verify that the chunk now resides in the correct tablespace by
querying pg_tables to list all of the chunks on the tablespace:
SELECT tablename from pg_tables
WHERE tablespace = 'history' and tablename like '_hyper_%_%_chunk';
You can also verify that the index is in the correct location:
SELECT indexname FROM pg_indexes WHERE tablespace = 'history';
To move several chunks at once, select the chunks you want to move by using
FROM show_chunks(...). For example, to move chunks containing data between 1
and 3 weeks old, in a hypertable named example:
SELECT move_chunk(
chunk => i,
destination_tablespace => '')
FROM show_chunks('example', now() - INTERVAL '1 week', now() - INTERVAL '3 weeks') i;
After moving a chunk to a slower tablespace, you can move it back to the default, faster tablespace:
SELECT move_chunk(
chunk => '_timescaledb_internal._hyper_1_4_chunk',
destination_tablespace => 'pg_default',
index_destination_tablespace => 'pg_default',
reorder_index => '_timescaledb_internal._hyper_1_4_chunk_netdata_time_idx'
);
You can move a data chunk to the slower tablespace, but keep the chunk's indexes on the default, faster tablespace:
SELECT move_chunk(
chunk => '_timescaledb_internal._hyper_1_4_chunk',
destination_tablespace => 'history',
index_destination_tablespace => 'pg_default',
reorder_index => '_timescaledb_internal._hyper_1_4_chunk_netdata_time_idx'
);
You can also keep the data in pg_default but move the index to history.
Alternatively, you can set up a third tablespace called history_indexes,
and move the data to history and the indexes to history_indexes.
In TimescaleDB v2.0 and later, you can use move_chunk with the job scheduler
framework. For more information, see the jobs section.
===== PAGE: https://docs.tigerdata.com/self-hosted/replication-and-ha/ =====
Postgres relies on replication for high availability, failover, and balancing read loads across multiple nodes. Replication ensures that data written to the primary Postgres database is mirrored on one or more nodes. By virtue of having multiple nodes with an exact copy of the primary database available, the primary database can be replaced with a replica node in the event of a failure or outage on the primary server. Replica nodes can also be used as read only databases, also called read replicas, allowing reads to be horizontally scaled by spreading the read query volume across multiple nodes.
Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
===== PAGE: https://docs.tigerdata.com/self-hosted/tooling/ =====
Get the most from TimescaleDB with open source tools that help you perform common tasks.
timescaledb-tune===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/ =====
A major upgrade is when you update from TimescaleDB X.<minor version> to Y.<minor version>.
A minor upgrade is when you update from TimescaleDB <major version>.x, to TimescaleDB <major version>.y.
You upgrade your self-hosted TimescaleDB installation in-place.
Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
This section shows you how to:
===== PAGE: https://docs.tigerdata.com/self-hosted/uninstall/ =====
If you want to uninstall TimescaleDB because it does not meet your requirements, you can uninstall it without having to uninstall Postgres.
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/ =====
Multi-node support is sunsetted.
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres versions 13, 14, and 15.
If you have a larger workload, you might need more than one TimescaleDB instance. TimescaleDB multi-node allows you to run and manage multiple instances, giving you faster data ingest, and more responsive and efficient queries.
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/ =====
Multi-node support is sunsetted.
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres versions 13, 14, and 15.
Distributed hypertables are hypertables that span multiple nodes. With distributed hypertables, you can scale your data storage across multiple machines and benefit from parallelized processing for some queries.
Many features of distributed hypertables work the same way as standard hypertables. To learn how hypertables work in general, see the hypertables section.
In this section:
===== PAGE: https://docs.tigerdata.com/mst/about-mst/ =====
Managed Service for TimescaleDB (MST) is TimescaleDB hosted on Azure and GCP. MST is offered in partnership with Aiven.
Tiger Cloud is a high-performance developer focused cloud that provides Postgres services enhanced with our blazing fast vector search. You can securely integrate Tiger Cloud with your AWS, GCS or Azure infrastructure. Create a Tiger Cloud service and try for free.
If you need to run TimescaleDB on GCP or Azure, you're in the right place — keep reading.
Your Managed Service for TimescaleDB account has three main components: projects, services, and databases.
When you sign up for Managed Service for TimescaleDB, an empty project is created for you automatically. Projects are the highest organization level, and they contain all your services and databases. You can use projects to organize groups of services. Each project can also have its own billing settings.
To create a new project: In MST Console, click Projects > Create project.

Each project contains one or more services. You can have multiple services under
each project, and each service corresponds to a cloud service provider tier. You
can access all your services from the Services tab within your projects.

For more information about getting your first service up and running, see the Managed Service for TimescaleDB installation section.
When you have created, and named, a new Managed Service for TimescaleDB service, you cannot rename it. If you need to have your service running under a different name, you need to create a new service, and manually migrate the data. For more information about migrating data, see migrating your data.
For information about billing on Managed Service for TimescaleDB, see the billing section.
Each service can contain one or more databases. To view existing databases, or
to create a new database, select a service in the services list,
click Databases, then click Create database.

Managed Service for TimescaleDB is provided through a partnership with Aiven. This provides you with a service commitment to deliver 99.99% availability. For more information, see the Aiven Service Level Agreement policy.
When you create a new service, you need to select a configuration plan. The plan determines the number of VMs the service runs in, the high availability configuration, the number of CPU cores, and size of RAM and storage volumes.
The plans are:
The Basic and Dev plans are serviced by a single virtual machine (VM) node. This means that if the node fails, the service is unavailable until a new VM is built. This can result in data loss, if some of the latest changes to the data weren't backed up before the failure. Sometimes, it can also take a long time to return the service back to normal operation, because a new VM needs to be created and restored from backups before the service can resume. The time to recover depends on the amount of data you have to restore.
The Pro plans are much more resilient to failures. A single node failure causes no data loss, and the possible downtime is minimal. If an acting TimescaleDB master node fails, an up-to-date replica node is automatically promoted to become the new master. This means there is only a small outage while applications reconnect to the database and access the new master.
You can upgrade your plan while the service is running. The service is reconfigured to run on larger VMs in the background and when the reconfiguration is complete, the DNS names are pointed to the new hosts. This can cause a short disruption to your service while DNS changes are propagated.
Within each configuration plan option, there are several plan types available:
IO-Optimized and Compute-Optimized These configurations are optimized
for input/output (I/O) performance, using SSD storage media.Storage-Optimized: These configurations usually have larger amounts of
overall storage, using HDD storage media.Dev-Only: These configurations are typically smaller footprints, and lower
cost, designed for development and testing scenarios.
Most minor failures are handled automatically without making any changes to your service deployment. This includes failures such as service process crashes, or a temporary loss of network access. The service automatically restores normal operation when the crashed process restarts automatically or when the network access is restored.
However, more severe failure modes, such as losing a single node entirely, require more drastic recovery measures. Losing an entire node or a virtual machine could happen for example due to hardware failure or a severe software failure.
A failing node is automatically detected by the MST monitoring infrastructure. Either the node starts reporting that its own self-diagnostics is reporting problems or the node stops communicating entirely. The monitoring infrastructure automatically schedules a new replacement node to be created when this happens.
In case of database failover, the service URL of your service remains the same. Only the IP address changes to point at the new master node.
Managed Service for TimescaleDB availability features differ based on the service plan:
In the Basic and Dev plans, if you lose the only node from the service, it immediately starts the automatic process of creating a new replacement node. The new node starts up, restores its state from the latest available backup, and resumes the service. Because there was just a single node providing the service, the service is unavailable for the duration of the restore operation. Also, any writes made since the backup of the latest write-ahead log (WAL) file is lost. Typically this time window is limited to either five minutes, or one WAL file.
In Pro plans, if a Postgres standby fails, the master node keeps running normally and provides normal service level to the client applications. When the new replacement standby node is ready and synchronized with the master, it starts replicating the master in real time and normal operation resumes.
If the Postgres master fails, the combined information from the MST monitoring
infrastructure and the standby node is used to make a failover decision. On the
nodes, the open source monitoring daemon PGLookout, in combination with the
information from the MST system infrastructure, reports the failover. If the
master node is down completely, the standby node promotes itself as the new
master node and immediately starts serving clients. A new replacement node is
automatically scheduled and becomes the new standby node.
If both master and standby nodes fail at the same time, two new nodes are automatically scheduled for creation and become the new master and standby nodes respectively. The master node restores itself from the latest available backup, which means that there can be some degree of data loss involved. For example, any writes made since the backup of the latest write-ahead log (WAL) file can be lost.
The amount of time it takes to replace a failed node depends mainly on the cloud region and the amount of data that needs to be restored. However, in the case of services with two-node Pro plans, the surviving node keeps serving clients even during the recreation of the other node. This process is entirely automatic and requires no manual intervention.
For backups and restoration, Managed Service for TimescaleDB uses the
open source backup daemon PGHoard that MST maintains. It makes real-time
copies of write-ahead log (WAL) files to an object store in a compressed and
encrypted format.
Managed Service for TimescaleDB limits the maximum number of connections to each
service. The maximum number of allowed connections depends on your service plan.
To see the current connection limit for your service, navigate to the service
Overview tab and locate the Connection Limit section.
If you have a lot of clients or client threads connecting to your database, use connection pooling to limit the number of connections. For more information about connection pooling, see the connection pooling section.
If you have a high number of connections to your database, your service might run more slowly, and could run out of memory. Remain aware of how many open connections your have to your database at any given time.
You can protect your services from accidentally being terminated, by enabling service termination protection. When termination protection is enabled, you cannot power down the service from the web console, the REST API, or with a command-line client. To power down a protected service, you need to turn off termination protection first. Termination protection does not interrupt service migrations or upgrades.
To enable service termination protection, navigate to the service Overview
tab. Locate the Termination protection section, and toggle to enable
protection.
If you run out of free sign-up credit, and have not entered a valid credit card for payment, your service is powered down, even if you have enabled termination protection.
Managed Service for TimescaleDB uses the default keep alive settings for TCP connections. The default settings are:
tcp_keepalives_idle: 7200tcp_keepalive_count: 9tcp_keepalives_interval: 75If you have long idle database connection sessions, you might need to adjust these settings to ensure that your TCP connection remains stable. If you experience a broken TCP connection, when you reconnect make sure that your client resolves the DNS address correctly, as the underlying address changes during automatic failover.
For more information about adjusting keep alive settings, see the Postgres documentation.
Managed Service for TimescaleDB does not cancel database queries. If you have created a query that is taking a very long time, or that has hung, it could lock resources on your service, and could prevent database administration tasks from being performed.
You can find out if you have any long-running queries by navigating to the
service Current Queries tab. You can also cancel long running queries from
this tab.
Alternatively, you can use your connection client to view running queries with this command:
SELECT * FROM pg_stat_activity
WHERE state <> 'idle';
Cancel long-running queries using this command, with the PID of the query you want to cancel:
SELECT pg_terminate_backend(<PID>);
If you want to automatically cancel any query that runs over a specified length of time, you can use this command:
SET statement_timeout = <milliseconds>
===== PAGE: https://docs.tigerdata.com/mst/installation-mst/ =====
Managed Service for TimescaleDB (MST) is TimescaleDB hosted on Azure and GCP. MST is offered in partnership with Aiven.
Tiger Cloud is a high-performance developer focused cloud that provides Postgres services enhanced with our blazing fast vector search. You can securely integrate Tiger Cloud with your AWS, GCS or Azure infrastructure. Create a Tiger Cloud service and try for free.
If you need to run TimescaleDB on GCP or Azure, you're in the right place — keep reading.
A service in Managed Service for TimescaleDB is a cloud instance on your chosen cloud provider, which you can install your database on.
Click Create service and choose TimescaleDB, and update your preferences:

Select Your Cloud Service Provider field, click your
preferred provider.Select Your Cloud Service Region field, click your preferred
server location. This is often the server that's physically closest
to you.Select Your Service Plan field, click your preferred plan,
based on the hardware configuration you require. If you are in your
trial period, and just want to try the service out, or develop a proof
of concept, we recommend the Dev plan, because it is the most
cost-effective during your trial period.In the information bar on the right of the screen, review the settings you
have selected for your service, and click Create Service. The service
takes a few minutes to provision.
When you have a service up and running, you can connect to it from your local
system using the psql command-line utility. This is the same tool you might
have used to connect to Postgres before, but if you haven't installed it yet,
check out the installing psql section.
Services tab, find the service you want to connect to, and check
it is marked as Running.host, port, and password.On your local system, at the command prompt, connect to the service, using your own service details:
psql -x "postgres://tsdbadmin:<PASSWORD>@<HOSTNAME>:<PORT>/defaultdb?sslmode=require"
If your connection is successful, you'll see a message like this, followed
by the psql prompt:
psql (13.3, server 13.4)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
defaultdb=>
TimescaleDB is provided as an extension to your Postgres database, and it is
enabled by default when you create a new service on Managed Service for TimescaleDB You can check that the TimescaleDB extension is installed by using
the \dx command at the psql prompt. It looks like this:
defaultdb=> \dx
List of installed extensions
-[ RECORD 1 ]------------------------------------------------------------------
Name | plpgsql
Version | 1.0
Schema | pg_catalog
Description | PL/pgSQL procedural language
-[ RECORD 2 ]------------------------------------------------------------------
Name | timescaledb
Version | 2.5.1
Schema | public
Description | Enables scalable inserts and complex queries for time-series data
defaultdb=>
Run this command on each database you want to use the Toolkit with:
CREATE EXTENSION timescaledb_toolkit;
Update an installed version of the Toolkit using this command:
ALTER EXTENSION timescaledb_toolkit UPDATE;
Now that you have your first service up and running, you can check out the Managed Service for TimescaleDB section in the documentation, and find out what you can do with it.
If you want to work through some tutorials to help you get up and running with TimescaleDB and time-series data, check out the tutorials section.
You can always contact us if you need help working something out, or if you want to have a chat.
===== PAGE: https://docs.tigerdata.com/mst/ingest-data/ =====
There are several different ways of ingesting your data into Managed Service for TimescaleDB. This section contains instructions to:
.csv fileBefore you begin, make sure you have
created your service,
and can connect to it using psql.
Use psql to connect to your service.
psql -h <HOSTNAME> -p <PORT> -U <USERNAME> -W -d <DATABASE_NAME>
You retrieve the service URL, port, and login credentials from the service overview in the MST dashboard.
Create a new database for your data. In this example, the new database is
called new_db:
CREATE DATABASE new_db;
\c new_db;
Create a new SQL table in your database. The columns you create for the table must match the columns in your source data. In this example, the table is storing weather condition data, and has columns for the timestamp, location, and temperature:
CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location text NOT NULL,
temperature DOUBLE PRECISION NULL
);
Load the timescaledb Postgres extension:
CREATE EXTENSION timescaledb;
\dx
Convert the SQL table into a hypertable:
SELECT create_hypertable('conditions', by_range('time'));
The by_range dimension builder is an addition to TimescaleDB 2.13.
When you have successfully set up your new database, you can ingest data using one of these methods.
If you have a dataset stored in a .csv file, you can import it into an empty
hypertable. You need to begin by creating the new table, before you
import the data.
Before you begin, make sure you have prepared your new database.
Insert data into the new hypertable using the timescaledb-parallel-copy
tool. You should already have the tool installed, but you can install it
manually from our GitHub repository if you need to.
In this example, we are inserting the data using four workers:
timescaledb-parallel-copy \
--connection '<service_url>' \
--table conditions \
--file ~/Downloads/example.csv \
--workers 4 \
--copy-options "CSV" \
--skip-header
We recommend that you set the number of workers lower than the number of available CPU cores on your client machine or server, to prevent the workers having to compete for resources. This helps your ingest go faster.
OPTIONAL: If you don't want to use the timescaledb-parallel-copy tool,
or if you have a very small dataset, you can use the Postgres COPY
command instead:
psql '<service_url>/new_db?sslmode=require' -c "\copy conditions FROM <example.csv> WITH (FORMAT CSV, HEADER)"
You can use a client driver such as JDBC, Python, or Node.js, to insert data directly into your new database.
See the Postgres instructions for using the ODBC driver.
See the Code Quick Starts for using various languages, including Python and node.js.
If you have data stored in a message queue, you can import it into your service. This section provides instructions on using the Kafka Connect Postgres connector.
This connector deploys Postgres change events from Kafka Connect to a runtime service. It monitors one or more schemas in a service, and writes all change events to Kafka topics, which can then be independently consumed by one or more clients. Kafka Connect can be distributed to provide fault tolerance, which ensures the connectors are running and continually keeping up with changes in the database.
You can also use the Postgres connector as a library without Kafka or Kafka Connect. This allows applications and services to directly connect to MST and obtain the ordered change events. In this environment, the application must record the progress of the connector so that when it is restarted, the connect can continue where it left off. This approach can be useful for less critical use cases. However, for production use cases, we recommend that you use the connector with Kafka and Kafka Connect.
See these instructions for using the Kafka connector.
===== PAGE: https://docs.tigerdata.com/mst/user-management/ =====
You can add new users, and manage existing users, in MST Console. New users can be added to an entire project, or a single service.
You can invite new users to join your project as project members. There are several roles available for project members:
|Role|Invite more users|Modify billing information|Manage existing services|Start and stop services|View service information| |-|-|-|-|-|-| |Admin|✅|✅|✅|✅|✅| |Operator|❌|❌|✅|✅|✅| |Developer|✅|❌|✅|❌|✅| |Read-only|❌|❌|❌|❌|✅|
Users who can manage existing services can create databases and connect to them, on a service that already exists. To create a new service, users need the start and stop services permission.
Members.Project members page, type the email address of the member you want
to add, and select a role for the member.Send invitation.Pending invitations list. You can click Withdraw invitation
to remove an invitation before it has been accepted.Members
list. You can edit a member role by selecting a new role in the list. You
can delete a member by clicking the delete icon in the list.By default, when you create a new service, a new tsdbadmin user is created.
This is the user that you use to connect to your new service.
The tsdbadmin user is the owner of the database, but is not a superuser. To
access features requiring a superuser, log in as the postgres user instead.
The tsdbadmin user for Managed Service for TimescaleDBs can:
This allows you to use the tsdbadmin user to create another user with any
other roles. For a complete list of roles available, see the
Postgres role attributes documentation.
Your service must be running before you can manage users.
Services view, showing any services you
currently have in your project.Select Users, then click Add service user:

In the Username field, type a name for your user. If you want to allow
the user to be replicated, toggle Allow replication. Click
Add service user to save the user.
The new user shows in the Username list.
To view the password, click the eye icon. Use the options in the list to change the replication setting and password, or delete the user.
You can use multi-factor authentication (MFA) to log in to MST Console. This requires an authentication code, provided by the Google Authenticator app on your mobile device.
You can see which authentication method is in use by each member of your Managed Service for TimescaleDB project. From the dashboard, navigate to the Members
section. Each member is listed in the table with an authentication method of
either Password or Two-Factor.
Before you begin, install the Google Authenticator app on your mobile device. For more information, and installation instructions, see the Google Authenticator documentation.
User information icon in the top-right of the dashboard to go to
the User profile section.Authentication tab, toggle Two-factor authentication to
Enabled, and enter your password.+ and select
Scan a QR code.Enable Two-Factor Auth.If you lose access to the mobile device you use for multi-factor
authentication, you cannot sign in to your Managed Service for TimescaleDB
account. To regain access to your account, on the login screen, click
Forgot password? and follow the step to reset your password. When you have
regained access to your account, reconfigure multi-factor authentication.
Every time a registered user logs in, Managed Service for TimescaleDB creates a new authentication token. This occurs for login events using the portal, and using the API. By default, authentication tokens expire after 30 days, but the expiry date is adjusted every time the token is used. This means that tokens can be used indefinitely, if the user logs in at least every 30 days.
You can see the list of all current authentication tokens in the Managed Service for TimescaleDB dashboard. Sign in to your account, and click the
User information icon in the top-right of the dashboard to go to the
User profile section. In the Authentication tab, the table lists all current
authentication tokens.
When you make authentication changes, such as enabling two factor authentication
or resetting a password, all existing tokens are revoked. In some cases, a new
token is immediately created so that the web console session remains valid. You
can also manually revoke authentication tokens from the User profile page
individually, or click Revoke all tokens to revoke all current tokens.
Additionally, you can click Generate token to create a new token. When you
generate a token on this page, you can provide a description, maximum age, and
an extension policy. Generating authentication tokens in this way allows you to
use them with monitoring applications that make automatic API calls to Managed Service for TimescaleDB.
There is a limit to how many valid authentication tokens are allowed per user. This limit is different for tokens that are created as a result of a sign in operation, and for tokens created explicitly. For automatically created tokens, the system automatically deletes the oldest tokens as new ones are created. For explicitly created tokens, older tokens are not deleted unless they expire or are manually revoked. This can result in explicitly created tokens that stop working, even though they haven't expired or been revoked. To avoid this, make sure you sign out at the end of every user session, instead of just discarding your authentication token. This is especially important for automation tools that automatically sign in.
===== PAGE: https://docs.tigerdata.com/mst/billing/ =====
By default, all new services require a credit card, which is charged at the end of the month for all charges accrued over that month. Each project is charged separately. Your credit card statement records the transaction as coming from Aiven, as Aiven provides billing services for Managed Service for TimescaleDB.
Managed Service for TimescaleDB uses hourly billing. This charge is automatically calculated, based on the services you are running in your project. The price charged for your project includes:
Managed Service for TimescaleDB does not charge you for network traffic used by your service. However, your application cloud service provider might charge you for the network traffic going to or from your service.
Terminating or powering a service down stops the accumulation of new charges immediately. However, the minimum hourly charge unit is one hour. For example, if you launch a service and shut it down after 40 minutes, you are charged for one full hour.
Migrating to different service plan levels does not incur extra charges for the migration itself. Note, though, that some service plan levels are more costly per hour, and your new service is charged at the new rate.
Migrating a service to another cloud region or different cloud provider does not incur extra charges.
All prices listed for Managed Service for TimescaleDB are inclusive of credit card and processing fees. However, in some cases, your credit card provider might charge additional fees, such as an international transaction fee. These fees are not charged by Tiger Data or Aiven.
Create billing groups to set up common billing profiles for projects within an organization. Billing groups make it easier to manage your costs since you receive a consolidated invoice for all projects assigned to a billing group and can pay with one saved payment method.
Billing groups can only be used in one organization. Credits are assigned per billing group and are automatically used to cover charges of any project assigned to that group.
You can track spending by exporting cost information to business intelligence tools using the invoice API.
To access billing groups in MST Console, you must be a super admin or account owner.
To create a billing group, take the following steps:
You can copy these details from another billing group by selecting it from the list. Click Continue.
You can skip this step and add projects later.
To view and update your billing groups, take the following steps:
Rename billing groups:
Update your billing information:
Delete billing groups
To manage projects in billing groups, take the following steps.
Assign projects to a billing group:
Assigning a project that is already assigned to another billing group will unassign it from that billing group.
Move a project to another billing group
Aiven provides billing services for Managed Service for TimescaleDB. These services are provided by Aiven Ltd, a private limited company incorporated in Finland.
If you are within the European Union, Finnish law requires that you are charged a value-added tax (VAT). The VAT percentage depends on where you are domiciled. For business customers in EU countries other than Finland, you can use the reverse charge mechanism of 2006/112/EC article 196, by entering a valid VAT ID into the billing information of your project.
If you are within the United States, no tax is withheld from your payments. In
most cases, you do not require a W-8 form to confirm this, however, if you
require a W-8BEN-E form describing this status, you can
request one.
If you are elsewhere in the world, no taxes are applied to your account, according to the Value-Added Tax Act of Finland, section 69 h.
If you prefer to pay by invoice, or if you are unable to provide a credit card
for billing, you can switch your project to corporate billing instead. Under
this model, invoices are generated at the end of the month based on actual
usage, and are sent in .pdf format by email to the billing email addresses you
configured in your dashboard.
Payment terms for corporate invoices are 14 days net, by bank transfer, to the bank details provided on the invoice. By default, services are charged in US Dollars (USD), but you can request your invoices be sent in either Euros (EUR) or Pounds Sterling (GBP) at the invoice date's currency exchange rates.
To switch from credit card to corporate billing, make sure your billing profile and email address is correct in your project's billing settings, and send a message to the Tiger Data support team asking to be changed to corporate billing.
===== PAGE: https://docs.tigerdata.com/mst/connection-pools/ =====
When you connect to your database, you consume server resources. If you have a lot of connections to your database, you can consume a lot of server resources. One way to mitigate this is to use connection pooling, which allows you to have high numbers of connections, but keep your server resource use low. The more client connections you have to your database, the more useful connection pooling becomes.
By default, Postgres creates a separate backend process for each connection to the server. Connection pooling uses a tool called PGBouncer to pool multiple connections to a single backend process. PGBouncer automatically interleaves the client queries to use a limited number of backend connections more efficiently, leading to lower resource use on the server and better total performance.
Without connection pooling, the database connections are handled directly by
Postgres backend processes, one process per connection:

When you add connection pooling, fewer backend connections are required. This
frees up server resources for other tasks, such as disk caching:

Connection pooling allows you to handle up to 5000 database client connections simultaneously. You can calculate how many connections you can handle by the number of CPU cores you have available. You should have at least one connection per core, but make sure you are not overloading each core. A good number of connections to aim for is three to five times the available CPU cores, depending on your workload.
There are several different pool modes:
This is the default pooling mode. It allows each client connection to take turns using a backend connection during a single transaction. When the transaction is committed, the backend connection is returned back into the pool and the next waiting client connection reuses the same connection immediately. This provides quick response times for queries as long as the most transactions are performed quickly. This is the most commonly used mode.
This mode holds a client connection until the client disconnects. When the client disconnects, the server connection is returned back into the connection pool free connection list, to wait for the next client connection. Client connections are accepted at TCP level, but their queries only proceed when another client disconnects and frees up the backend connection back into the pool. This mode is useful when you require a wait queue for incoming connections, while keeping the server memory usage low. However, it is not useful in most common scenarios because the backend connections are recycled very slowly.
This mode is similar to the transaction pool mode, except that instead of allowing a full transaction to be run, it cycles the server side connections after each and every database statement (SELECT, INSERT, UPDATE, DELETE, for example). Transactions containing multiple SQL statements are not allowed in this mode. This mode is best suited to specialized workloads that use sharding front-end proxies.
You can set up a connection pool from the MST Console. Make sure you have already created a service that you want to add connection pooling to.
Services list, and click the name of
the service you want to add connection pooling to.Service overview page, navigate to the Pools tab. When you have
created some pools, they are shown here.Add Pool to create a new pool.Create New Connection Pool dialog, use these settings:
Pool name field, type a name for your new pool. This name
becomes the database dbname connection parameter for your pooled
client connectons.Database field, select a database to connect to. Each pool can
only connect to one database.Pool Mode field, select which
pool mode to use.Pool Size field, select the maximum number of server
connections this pool can use at any one time.Username field, select which database username to connect to
the database with.Create to create the pool, and see the details of the new pool in
the list. You can click Info next to the pool details to see more
information, including the URI and port details.Pooled servers use a different port number than regular servers. This allows you to use both pooled and un-pooled connections at the same time.
===== PAGE: https://docs.tigerdata.com/mst/viewing-service-logs/ =====
Occasionally there is a need to inspect logs from Managed Service for TimescaleDB. For example, to debug query performance or inspecting errors caused by a specific workload.
There are different built-in ways to inspect service logs at Managed Service for TimescaleDB:
Logs tab to see recent
events. Logs can be browsed back in time.Download logs using the command-line client by running:
avn service logs -S desc -f --project <PROJECT_NAME> <SERVICE_NAME>
REST API endpoint is available for fetching the same information two above methods output, in case programmatic access is needed.
Service logs included on the normal service price are stored only for a few days. Unless you are using logs integration to another service, older logs are not accessible.
===== PAGE: https://docs.tigerdata.com/mst/vpc-peering/ =====
Virtual Private Cloud (VPC) peering is a method of connecting separate Cloud private networks to each other. It makes it possible for the virtual machines in the different VPCs to talk to each other directly without going through the public internet. VPC peering is limited to VPCs that share the same Cloud provider.
VPC peering setup is a per project and per region setting. This means that all services created and running utilize the same VPC peering connection. If needed, you can have multiple projects that peer with different connections.
services are only accessible using your VPC's internal network. They are not accessible from the public internet. TLS certificates for VPC peered services are signed by the MST project CA and cannot be validated against a public CA (Let's Encrypt). You can choose whether you want to run on a VPC peered network or on the public internet for every service.
You can set up VPC peering on:
===== PAGE: https://docs.tigerdata.com/mst/integrations/ =====
Managed Service for TimescaleDB integrates with the other tools you are already using. You can combine your services with third-party tools and build a complete cloud data platform.
You can integrate Managed Service for TimescaleDB with:
===== PAGE: https://docs.tigerdata.com/mst/extensions/ =====
Managed Service for TimescaleDB supports many Postgres extensions. See available extensions for a full list.
You can add a supported extension to your database from the command line.
Some extensions have dependencies. When adding these, make sure to create them in the proper order.
Some extensions require disconnecting and reconnecting the client connection before they are fully available.
tsdbadmin user.CREATE EXTENSION IF NOT EXISTS <extension_name>.These extensions are available on Managed Service for TimescaleDB:
The postgis_legacy extension is not packaged or supported as an extension by
the PostGIS project. Tiger Data provides the extension package for Managed Service for TimescaleDB.
You can request an extension not on the list by contacting Support. In your request, specify the database service and user database where you want to use the extension.
Untrusted language extensions are not supported. This restriction preserves our
ability to offer the highest possible service level. An example of an untrusted
language extension is plpythonu.
You can contact Support directly from Managed Service for TimescaleDB. Click the life-preserver icon in the upper-right corner of your dashboard.
===== PAGE: https://docs.tigerdata.com/mst/dblink-extension/ =====
dblink extension in Managed Service for TimescaleDBThe dblink Postgres extension allows you to connect to
other Postgres databases and to run arbitrary queries.
You can use foreign data wrappers (FDWs) to define a remote
foreign server to access its data. The database connection details such as
hostnames are kept in a single place, and you only need to create a
user mapping to store remote connections credentials.
Before you begin, sign in to your service,
navigate to the Overview tab, and take a note of these parameters for the
Postgres remote server. Alternatively, you can use the avn service get
command in the Aiven client:
HOSTNAME: The remote database hostnamePORT: The remote database portUSER: The remote database user to connect. The default user is tsdbadmin.PASSWORD: The remote database password for the USERDATABASE_NAME: The remote database name. The default database name is defaultdb.To enable the dblink extension on an MST Postgres service:
Connect to the database as the tsdbadmin user:
psql -x "postgres://tsdbadmin:<PASSWORD>@<HOSTNAME>:<PORT>/defaultdb?sslmode=require"
Create the dblink extension
CREATE EXTENSION dblink;
Create a table named inventory:
CREATE TABLE inventory (id int);
Insert data into the inventory table:
INSERT INTO inventory (id) VALUES (100), (200), (300);
Create a user user1 who can access the dblink
CREATE USER user1 PASSWORD 'secret1'
Create a remote server definition named mst_remote, using dblink_fdw and
the connection details of the service.
CREATE SERVER mst_remote
FOREIGN DATA WRAPPER dblink_fdw
OPTIONS (
host 'HOST',
dbname 'DATABASE_NAME',
port 'PORT'
);
Create a user mapping for the user1 to automatically authenticate as the
tsdbadmin when using the dblink:
CREATE USER MAPPING FOR user1
SERVER mst_remote
OPTIONS (
user 'tsdbadmin',
password 'PASSWORD'
);
Enable user1 to use the remote Postgres connection mst_remote:
GRANT USAGE ON FOREIGN SERVER mst_remote TO user1;
In this example in the user1 user queries the remote table inventory defined
in the target Postgres database from the mst_remote server definition:
To query a foreign data wrapper, you must be a database user with the necessary permissions on the remote server.
Connect to the service as user1 with necessary grants to the remote server.
Establish the dblink connection to the remote target server:
SELECT dblink_connect('my_new_conn', 'mst_remote');
Query using the foreign server definition as parameter:
SELECT * FROM dblink('my_new_conn','SELECT * FROM inventory') AS t(a int);
Output is similar to:
a
-----
100
200
300
(3 rows)
===== PAGE: https://docs.tigerdata.com/mst/security/ =====
This section covers how Managed Service for TimescaleDB handles security of your data while it is stored.
services are hosted by cloud provider accounts controlled by Tiger Data. These accounts are managed only by Tiger Data and Aiven operations personnel. Members of the public cannot directly access the cloud provider account resources.
Your services are located on one or more virtual machines. Each virtual machine is dedicated to a single customer, and is never multi-tenanted. Customer data never leaves the virtual machine, except when uploaded to an offsite backup location.
When you create a new service, you need to select a cloud region. When the virtual machine is launched, it does so in the cloud region you have chosen. Your data never leaves the chosen cloud region.
If a cloud region has multiple Availability Zones, or a similar high-availability mechanism, the virtual machines are distributed evenly across the zones. This provides the best possible service if an Availability Zone becomes unavailable.
Access to the virtual machine providing your service is restricted. Software that is accessing your database needs to run on a different virtual machine. To reduce latency, it is best for it to be using a virtual machine provided by the same cloud provider, and in the same region, if possible.
Virtual machines are not reused. They are terminated and wiped when you upgrade or delete your service.
Every Managed Service for TimescaleDB project has its own certificate authority. This certificate authority is used to sign certificates used internally by your services to communicate between different cluster nodes and to management systems.
You can download your project certificate authority in MST Console. In the Services tab, click the service you want to find
the certificate for. In the service Overview tab, under Connection
information, locate the CA Certificate section, and click Show to see the
certificate. It is recommended that you set up your browser or client to trust
that certificate.
All server certificates are signed by the project certificate authority OF MST Console.
Managed Service for TimescaleDB at-rest data encryption covers both active service instances as well as service backups in cloud object storage.
Service instances and the underlying virtual machines use full volume
encryption. The encryption method uses LUKS, with a randomly generated ephemeral
key per each instance, and per volume. The keys are never re-used, and are
disposed of when the instance is destroyed. This means that a natural key
rotation occurs with roll-forward upgrades. By default, the LUKS mode is
aes-xts-plain64:sha256, with a 512-bit key.
Backups are encrypted with a randomly generated key per file. These keys are in turn encrypted with an RSA key-encryption key-pair, and stored in the header section of each backup segment. The file encryption is performed with AES-256 in CTR mode, with HMAC-SHA256 for integrity protection. The RSA key-pair is randomly generated for each service. The key lengths are 256-bit for block encryption, 512-bit for the integrity protection, and 3072-bits for the RSA key.
Encrypted backup files are stored in the object storage in the same region that the virtual machines are located for the service.
Access to provided services is only provided over TLS encrypted connections. TLS ensures that third-parties can't eavesdrop or modify the data while it's in transit between your service and the clients accessing your service. You cannot use unencrypted plain text connections.
Communication between virtual machines within Managed Service for TimescaleDB is secured with either TLS or IPsec. You cannot use unencrypted plaintext connections.
Virtual machines network interfaces are protected by a dynamically configured firewall based on iptables, which only allows connections from specific addresses. This is used for network traffic from the internal network to other VMs in the same service, and for external public network, to client connections.
By default, new services accept incoming traffic from all sources, which is used to simplify initial set up of your service. It is highly recommended that you restrict the IP addresses that are allowed to establish connections to your services.
In Overview check the Port number.
This is the port that you are managing inbound access for.
In Network, check IP filters. The default value is `Open for all.
Click the ellipsis (...) to the right of Network, then select Set public IP filters.
Set the Allowed inbound IP addresses:

When you set up VPC peering, you cannot access your services using public internet-based access. Service addresses are published in the public DNS record, but they can only be connected to from your peered VPC network using private network addresses.
The virtual machines providing your service are hosted by cloud provider accounts controlled by Tiger Data.
Customer data privacy is of utmost importance at Tiger Data. Tiger Data works with Aiven to provide Managed Service for TimescaleDB.
In most cases, all the resources required for providing your services are automatically created, maintained, and terminated by the Managed Service for TimescaleDB infrastructure, with no manual operator intervention required.
The Tiger Data Operations Team are able to securely log in to your service Virtual Machines, for the purposes of troubleshooting, as required. Tiger Data operators never access customer data unless you explicitly request them to do so, to troubleshoot a technical issue. This access is logged and audited.
There is no ability for any customer or member of the public to access any virtual machines used in Managed Service for TimescaleDB.
Managed Service for TimescaleDB services are periodically assessed and penetration tested for any security issues by an independent professional cyber-security vendor.
Aiven is fully GDPR-compliant, and has executed data processing agreements (DPAs) with relevant cloud infrastructure providers. If you require a DPA, or if you want more information about information security policies, contact Tiger Data.
===== PAGE: https://docs.tigerdata.com/mst/postgresql-read-replica/ =====
Postgres read-only replicas allow you to perform read-only queries against the replica and reduce the load on the primary server. You can optimize query response times across different geographical locations because the replica can be created in different regions or on different cloud providers. For information about creating a read-only replica using the Aiven client, see the documentation on creating a read replica using the CLI.
If you are running a Managed Service for TimescaleDB Pro plan, you have standby nodes available in a high availability setup. The standby nodes support read-only queries to reduce the effect of slow queries on the primary node.
In MST Console, click the service you want to create a remote replica for.
In Overview, click Create a read replica.
In Create a PostgreSQL read replica, type a name for the remote replica,
select the cloud provider, location, plan that you want to use, and click
Create.
When the read-only replica is created it is listed as a service in your
project. The Overview tab of the replica also lists the name of the primary
service for the replica. To promote a read-only replica as a master database,
click the Promote to master button.
In the Overview page of the read-only replica for the service on MST, copy
the Service URI.
At the psql prompt, connect to the read-only service:
psql <SERVICE_URI>
To check whether you are connected to a primary or replica node:
SELECT * FROM pg_is_in_recovery();
If the output is TRUE you are connected to the replica, and if the output is
FALSE you are connected to the primary server.
Managed Service for TimescaleDB uses asynchronous replication, so some lag is
expected. When you run an INSERT operation on the primary node, a small
delay of less than a second is expected for the change to propagate to the
replica.
===== PAGE: https://docs.tigerdata.com/mst/maintenance/ =====
On Managed Service for TimescaleDB, software updates are handled automatically, and you do not need to perform any actions to keep up to date.
Non-critical software updates are applied during a maintenance window that you can define to suit your workload. If a security vulnerability is found that affects you, maintenance might be performed outside of your scheduled maintenance window.
After maintenance updates have been applied, if a new version of the TimescaleDB binary has been installed, you need to update the extension to use the new version. To do this, use this command:
ALTER EXTENSION timescaledb UPDATE;
After a maintenance update, the DNS name remains the same, but the IP address it points to changes.
Non-critical upgrades are made available before the upgrade is performed
automatically. During this time you can click Apply upgrades to start the
upgrade at any time. However, after the time expires, usually around a week,
the upgrade is triggered automatically in the next available maintenance window
for your service. You can configure the maintenance window so that these
upgrades are started only at a particular time, on a set day of the week. If
there are no pending upgrades available during a regular maintenance window, no
changes are performed.
When you are considering your maintenance window schedule, you might prefer to choose a day and time that usually has very low activity, such as during the early hours of the morning, or over the weekend. This can help minimize the impact of a short service interruption. Alternatively, you might prefer to have your maintenance window occur during office hours, so that you can monitor your system during the upgrade.
Maintenance, then click Change maintenence window.Service Maintenance Window dialog, select the day of the week and
the time (in Universal Coordinated Time) you want the maintenance window to
start. Maintenance windows can run for up to four hours.

Save Changes.Critical upgrades and security fixes are installed outside normal maintenance windows when necessary, and sometimes require a short outage.
Upgrades are performed as rolling upgrades where completely new server instances are built alongside the old ones. When the new instances are up and running they are synchronized with the old servers, and a controlled automatic failover is performed to switch the service to the new upgraded servers. The old servers are retired automatically after the new servers have taken over. The controlled failover is a very quick and safe operation and it takes less than a minute to get clients connected again. In most cases, there is five to ten second outage during this process.
===== PAGE: https://docs.tigerdata.com/mst/failover/ =====
One standby read-only replica server is configured, for each service on a Pro plan. You can query a read-only replica server, but cannot write to a read-only replica server. When a master server fails, the standby replica server is automatically promoted as master. If you manually created a read-only replica service, then if a master server fails, the read-only replica services are not promoted as master servers.
The two distinct cases during which failovers occur are:
When a replica server fails unexpectedly, there is no way to know whether the server really failed, or whether there is a temporary network glitch with the cloud provider's network.
There is a 300 second timeout before Managed Service for TimescaleDB
automatically decides the server is gone and spins up a new replica server.
During these 300 seconds, replica.servicename.timescaledb.io points to a
server that may not serve queries anymore. The DNS record pointing to the master
server servicename.timescaledb.io continues to serve the queries. If the replica
server does not come back up within 300 seconds,
replica.servicename.timescaledb.io points to the master server, until a new
replica server is built.
When the master server fails, a replica server waits for 60 seconds before
promoting itself as master. During this 60-second timeout, the master server
servicename.timescaledb.io remains unavailable and does not respond. However,
replica.servicename.timescaledb.io works in read-only mode. After the replica
server promotes itself as master, servicename.timescaledb.io points to the new
master server, and replica.servicename.timescaledb.io continues to point to
the new master server. A new replica server is built automatically, and after it
is in sync, replica.servicename.timescaledb.io points to the new replica
server.
When applying upgrades or plan changes on business or premium plans, the standby server is replaced:
A new server is started, the backup is restored, and the new server starts
following the old master server. After the new server is up and running,
replica.servicename.timescaledb.io is updated, and the old replica server is
deleted.
For premium plans, this step is executed for both replica servers before the master
server is replaced. Two new servers are started, a backup is restored, and one new
server is synced up to the old master server. When it is time to switch the master
to a new server, the old master is terminated and one of the new replica servers
is immediately promoted as a master. At this point, servicename.timescaledb.io
is updated to point at the new master server. Similarly, the new master is
removed from the replica.servicename.timescaledb.io record.
===== PAGE: https://docs.tigerdata.com/mst/manage-backups/ =====
services are automatically backed up, with full backups daily, and write-ahead log (WAL) continuously recorded. All backups are encrypted.
Managed Service for TimescaleDB uses pghoard, a Postgres backup
daemon and restore tool, to store backup data in cloud object stores. The number
of backups stored and the retention time of the backup depend on the service
plan.
The size of logical backups can be different from the size of the Managed Service for TimescaleDB backup that appears on the web console. In some cases,
the difference is significant. Backup sizes that appear in the MST Console are for daily backups, before encryption and
compression. To view the size of each database, including space consumed by
indexes, you can use the \l+ command at the psql prompt.
The two types of backups are binary backups and logical backups. Full backups
are version-specific binary backups which, when combined with WAL, allow
consistent recovery to a point in time (PITR). You can create a logical backup
with the pg_dump command.
This table lists the differences between binary and logical backups when backing up indexes, transactions, and data:
|Type|Binary|Logical| |-|-|-| |index|contains all data from indexes|does not contain index data, it contains only queries used to recreate indexes from other data| |transactions|contains uncommitted transactions|does not contain uncommitted transactions| |data|contains deleted and updated rows which have not been cleaned up by Postgres VACUUM process, and all databases, including templates|does not contain any data already deleted, and depending on the options given, the output might be compressed|
Managed Service for TimescaleDB provides a point-in-time recovery (PITR). To
restore your service from a backup, click the Restore button in the Backups
tab for your service. The backups are taken automatically by Managed Service for TimescaleDB and retained for a few days depending on your plan type.
|Plan type|Backup retention period| |-|-| |Dev|1 day| |Basic|2 days| |Pro|3 days|
You can use pg_dump to create a backup manually. The pg_dump command allows
you to create backups that can be directly restored elsewhere if required.
Typical parameters for the command pg_dump include:
pg_dump '<SERVICE_URL_FROM_PORTAL>' -f '<TARGET_FILE/DIR>' -j '<NUMBER_OF_JOBS>' -F '<BACKUP_FORMAT>'
The pg_dump command can also be run against one of the standby nodes. For
example, use this command to create a backup in directory format using two
concurrent jobs. The results are stored to a directory named backup:
pg_dump 'postgres://tsdbadmin:password@mypg-myproject.a.timescaledb.io:26882/defaultdb?sslmode=require' -f backup -j 2 -F directory
You can put all backup files to single tar file and upload to Amazon S3. For example:
export BACKUP_NAME=backup-date -I.tartar -cf $BACKUP_NAME backup/s3cmd put $BACKUP_NAME s3://pg-backups/$BACKUP_NAME
===== PAGE: https://docs.tigerdata.com/mst/aiven-client/ =====
You can use Aiven Client to manage your services in Managed Service for TimescaleDB.
You can use the Aiven Client tool to:
Instructions:
Aiven Client is a command line tool for fully managed services. To use Aiven Client, you first need to create an authentication token. Then, you configure the client to connect to your Managed Service for TimescaleDB using the command line.
To connect to Managed Service for TimescaleDB using Aiven Client, create an authentication token.
User Information in the top right corner.User Profile page, navigate to the Authenticationtab.Generate Token.Generate access token dialog, type a descriptive name for the token. Leave the rest of the fields blank.The Aiven Client is provided as a Python package. If you've already installed Python, you can install the client on Linux, MacOS, or Windows systems using pip:
pip install aiven-client
For more information about installing the Aiven Client, see the Aiven documentation.
To access Managed Service for TimescaleDB with the Aiven Client, you need an authentication token. Aiven Client uses this to access your services on Managed Service for TimescaleDB.
Change to the install directory that contains the configuration files:
cd ~/.config/aiven/
Open the aiven-credentials.json using any editor and update these lines with your Managed Service for TimescaleDB User email, and the
authentication token that you generated:
{
"auth_token": "ABC1+123...TOKEN==",
"user_email": "your.email@timescale.com"
}
Save the aiven-credentials.json file.
To verify that you can access your services on Managed Service for TimescaleDB, type:
avn project list
This command shows a list of all your projects:
PROJECT_NAME DEFAULT_CLOUD CREDIT_CARD
============= ======================= ===================
project-xxxx timescale-aws-us-east-1 xxxx-xxxx-xxxx-xxxx
project-yyyy timescale-aws-us-east-1 xxxx-xxxx-xxxx-xxxx
project-zzzz timescale-aws-us-east-1 xxxx-xxxx-xxxx-xxxx
When you a fork a service, you create an exact copy of the service, including the underlying database. You can use a fork of your service to:
For more information about projects, plans, and other details about services, see About Managed Service for TimescaleDB.
In the Aiven client, connect to your service.
Switch to the project that contains the service you want to fork:
avn project switch <PROJECT>
List the services in the project, and make a note of the service that you want to fork, listed under SERVICE_NAME column in the output.
avn service list
Get the details of the service that you want to fork:
avn service get <SERVICE_NAME>
Create the fork:
avn service create <NAME_OF_FORK> --project <PROJECT_ID>\
-t <SERVICE_TYPE> --plan <PLAN> --cloud <CLOUD_NAME>\
-c service_to_fork_from=<NAME_OF_SERVICE_TO_FORK>
To create a fork named grafana-fork for a service named grafana with these parameters:
project-forktimescale-aws-us-east-1PLAN_TYPE: dashboard-1
avn service create grafana-fork --project project-fork -t grafana --plan dashboard-1 --cloud timescale-aws-us-east-1 -c service_to_fork_from=grafana
You can switch to project-fork and view the newly created grafana-fork using:
avn service list
Grafana supports multiple authentication plugins, in addition to built-in username and password authentication.
On Managed Service for TimescaleDB, Grafana supports Google, GitHub, and GitLab authentication. You can configure authentication integration using the Aiven command-line client.
To integrate Google authentication with Grafana service on Managed Service for TimescaleDB, you need to create your Google OAuth keys. Copy your client ID and client secret to a secure location.
In the Aiven Client, connect to your service.
Switch to the project that contains the Grafana service you want to integrate:
avn switch <PROJECT>
List the services in the project. Make a note of the Grafana service that you want to integrate, listed under SERVICE_NAME column in the
output.
avn service list
Get the details of the service that you want to integrate:
avn service get <SERVICE_NAME>
Integrate the plugin with your services using the <CLIENT_ID> and <CLIENT_SECRET> from your Google developer console:
avn service update -c auth_google.allowed_domains=<G-SUITE_DOMAIN>\
-c auth_google.client_id=<CLIENT_ID>\
-c auth_google.client_secret=<CLIENT_SECRET><SERVICE_NAME>
Log in to Grafana with your service credentials.
Navigate to Configuration → Plugins and verify that the Google OAuth application is listed as a plugin.
When you allow sign-ups using the -c auth_google.allow_sign_up=true option, by default each new user is created with viewer permissions and added to their own newly created organizations. To specify different permissions, use -c user_auto_assign_org_role=ROLE_NAME. To add all new users to the main organization, use the -c user_auto_assign_org=true option.
To integrate GitHub authentication with Grafana service on Managed Service for TimescaleDB, you need to create your GitHub OAuth application. Store your client ID and client secret in a secure location.
In the Aiven Client, connect to your service.
Switch to the project that contains the Grafana service you want to integrate:
avn switch <PROJECT>
List the services in the project, and make a note of the Grafana service
that you want to integrate, listed under SERVICE_NAME column in the
output.
avn service list
Get the details of the service that you want to integrate:
avn service get <SERVICE_NAME>
Integrate the plugin with your service using the <CLIENT_ID>, and
<CLIENT_SECRET> from your GitHub OAuth application:
avn service update -c auth_github.client_id=<CLIENT_ID>\
-c auth_github.client_secret=<CLIENT_SECRET> <SERVICE_NAME>
Log in to Grafana with your service credentials.
Navigate to Configuration → Plugins. The Plugins page lists
GitHub OAuth application for the Grafana instance.
When you allow sign-ups using the -c auth_github.allow_sign_up=true option, by default each new user is created with viewerpermission and added to their own newly created organizations. To specify different permissions, use -c user_auto_assign_org_role=ROLE_NAME. To add all new users to the main organization, use the -c user_auto_assign_org=true option.
To integrate the GitLab authentication with Grafana service on Managed Service for TimescaleDB, you need to create your GitLab OAuth application. Copy your client ID, client secret, and GitLab groups name to a secure location.
If you use your own instance of GitLab instead of gitlab.com, then you need to set the following:
In the Aiven Client, connect to your MST_SERVICE_LONG.
Switch to the project that contains the Grafana service you want to integrate:
avn project switch <PROJECT>
List the services in the project. Note the Grafana service that you want to integrate, listed under SERVICE_NAME column in the output.
avn service list
Get the details of the service that you want to integrate:
avn service get <SERVICE_NAME>
Integrate the plugin with your service using the <CLIENT_ID>, <CLIENT_SECRET>, and <GITLAB_GROUPS> from your GitLab OAuth application:
avn service update -c auth_gitlab.client_id=<CLIENT_ID>\
-c auth_gitlab.client_secret=<CLIENT_SECRET>\
-c auth_gitlab.allowed_groups=<GITLAB_GROUPS> <SERVICE_NAME>
Log in to Grafana with your service credentials.
Navigate to Configuration → Plugins. The Plugins page lists GitLab OAuth application for the Grafana instance.
When you allow sign-ups using the -c auth_gitlab.allow_sign_up=true option, by default each new user is created with viewerpermission and added to their own newly created organizations. To specify different permissions, use -c user_auto_assign_org_role=ROLE_NAME. To add all new users to the main organization, use the -c user_auto_assign_org=true option.
Use the Aiven client to configure the Simple Mail Transfer Protocol (SMTP) server settings and send emails from Managed Service for TimescaleDB for Grafana. This includes invite emails, reset password emails, and alert messages.
Before you begin, make sure you have:
IP or hostname, SMTP server port, Username, Password,
Sender email address, and Sender name.In the Aiven client, connect to your service.
Switch to the project that contains the Grafana service you want to integrate:
avn project switch <PROJECT>
List the services in the project. Note the Grafana service that you want to configure, listed under SERVICE_NAME column in the
output.
avn service list
Get the details of the service that you want to integrate:
avn service get <SERVICE_NAME>
Configure the Grafana service using the SMTP values:
avn service update --project <PROJECT> <SERVICE_NAME>\
-c smtp_server.host=smtp.example.com \
-c smtp_server.port=465 \
-c smtp_server.username=emailsenderuser \
-c smtp_server.password=emailsenderpass \
-c smtp_server.from_address="grafana@yourcompany.com"
[](#) Review all available custom options, and configure:
avn service types -v
You can now send emails for your Grafana service on MST.
Read-only replicas enable you to perform read-only queries against the replica and reduce the load on the primary server. They are also a good way to optimize query response times across different geographical locations. You can achieve this by placing the replicas in different regions or even different cloud providers.
In the Aiven client, connect to your service.
Switch to the project that contains the service you want to create a read-only replica for:
avn project switch <PROJECT>
List the services in the project. Note the service for which you will create a read-only replica. You can find it listed under the SERVICE_NAME column in the output:
avn service list
Get the details of the service that you want to fork:
avn service get <SERVICE_NAME>
Create a read-only replica:
avn service create <NAME_OF_REPLICA> --project <PROJECT_ID>\
-t pg --plan <PLAN_TYPE> --cloud timescale-aws-us-east-1\
-c pg_read_replica=true\
-c service_to_fork_from=<NAME_OF_SERVICE_TO_FORK>\
-c pg_version=11 -c variant=timescale
To create a fork named replica-fork for a service named timescaledb with
these parameters:
fork-projecttimescale-aws-us-east-1PLAN_TYPE: timescale-basic-100-compute-optimized
avn service create replica-fork --project fork-project\
-t pg --plan timescale-basic-100-compute-optimized\
--cloud timescale-aws-us-east-1 -c pg_read_replica=true\
-c service_to_fork_from=timescaledb -c\
pg_version=11 -c variant=timescale
You can switch to project-fork and view the newly created replica-fork using:
avn service list
===== PAGE: https://docs.tigerdata.com/mst/migrate-to-mst/ =====
You can migrate your data from self-hosted TimescaleDB to Managed Service for TimescaleDB and automate most of the common operational tasks.
Each service has a database named defaultdb, and a default user account named tsdbadmin. You use
MST Console to create additional users and databases using the Users and Databases tabs.
You can switch between different plan sizes in Managed Service for TimescaleDB. However, during the migration process, choose a plan size that has the same storage size or slightly larger than the currently allocated plan. This allows you to limit the downtime during the migration process and have sufficient compute and storage resources.
Depending on your database size and network speed, migration can take a very long time. During this time, any new writes that happen during the migration process are not included. To prevent data loss, turn off all the writes to the source self-hosted TimescaleDB database before you start migration.
Before migrating for production, do a cold run without turning off writes to the source self-hosted TimescaleDB database. This gives you an estimate of the time the migration process takes, and helps you to practice migrating without causing downtime to your customers.
If you prefer the features of Tiger Cloud, you can easily migrate your data from an service to a Tiger Cloud service.
Before you migrate your data, do the following:
You run the migration commands on the migration machine. It must have enough disk space to hold the dump file.
Install the Postgres pg_dump and pg_restore utilities on a migration machine.
Install a client to connect to self-hosted TimescaleDB and Managed Service for TimescaleDB.
These instructions use psql, but any client works.
Create a target service:
For more information, see the Install Managed Service for TimescaleDB. Provision your target service with enough space for all your data.
On the source self-hosted TimescaleDB and the target service, ensure that you are running:
For information, see upgrade Postgres.
For more information, see Upgrade TimescaleDB to a major version.
To move your data from self-hosted TimescaleDB instance to a service, run the following commands from your migration machine:
The duration of migration is proportional to the amount of data stored in your database. By disconnecting your app from your database, you avoid possible data loss.
These variables hold the connection information for the source self-hosted TimescaleDB instance and the target service:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<password>@<host>:<port>/defaultdb?sslmode=require"
Dump the data from your source Tiger Cloud service
pg_dump -d "source" --no-owner -Fc -v -f dump.bak
Put your target service in the right state for restoring
psql -d "target" -c "SELECT timescaledb_pre_restore();"
Upload your data to the target service
pg_restore -d "target" --jobs 4 -Fc dump.bak
The --jobs option specifies the number of CPUs to use to dump and restore the database concurrently.
Return your target service to normal operations
psql -d "target" -c "SELECT timescaledb_post_restore();"
Connect to your new database and update your table statistics by running
ANALYZE on your entire dataset:
psql -d "target" defaultdb=> ANALYZE;
To migrate from multiple databases, you repeat this migration procedure one database after another.
If you see the following errors during migration, you can safely ignore them. The migration still runs successfully.
For pg_dump:
pg_dump: warning: there are circular foreign-key constraints on this table:
pg_dump: hypertable
pg_dump: You might not be able to restore the dump without using --disable-triggers or temporarily dropping the constraints.
pg_dump: Consider using a full dump instead of a --data-only dump to avoid this problem.
pg_dump: NOTICE: hypertable data are in the chunks, no data will be copied
DETAIL: Data for hypertables are stored in the chunks of a hypertable so COPY TO of a hypertable will not copy any data.
HINT: Use "COPY (SELECT * FROM <hypertable>) TO ..." to copy all data in hypertable, or copy each chunk individually.
For pg_restore:
pg_restore: while PROCESSING TOC:
pg_restore: from TOC entry 4142; 0 0 COMMENT EXTENSION timescaledb
pg_restore: error: could not execute query: ERROR: must be owner of extension timescaledb
Command was: COMMENT ON EXTENSION timescaledb IS 'Enables scalable inserts and complex queries for time-series data';
===== PAGE: https://docs.tigerdata.com/mst/restapi/ =====
Managed Service for TimescaleDB has an API for integration and automation tasks. For information about using the endpoints, see the API Documentation. MST offers an HTTP API with token authentication and JSON-formatted data. You can use the API for all the tasks that can be performed using the MST Console. To get started you need to first create an authentication token, and then use the token in the header to use the API endpoints.
User Information in the top right corner.User Profile page, navigate to the Authenticationtab.Generate Token.Generate access token dialog, type a descriptive name for the
token and leave the rest of the fields blank.Set the environment variable MST_API_TOKEN with the access token that you generate:
export MST_API_TOKEN="access token"
To get the details about the current user session using the /me endpoint:
curl -s -H "Authorization: aivenv1 $MST_API_TOKEN" https://api.aiven.io/v1/me|json_pp
The output looks similar to this:
{
"user": {
"auth": [],
"create_time": "string",
"features": { },
"intercom": {},
"invitations": [],
"project_membership": {},
"project_memberships": {},
"projects": [],
"real_name": "string",
"state": "string",
"token_validity_begin": "string",
"user": "string",
"user_id": "string"
}
}
===== PAGE: https://docs.tigerdata.com/mst/identify-index-issues/ =====
Postgres indexes can be corrupted for a variety of reasons, including
software bugs, hardware failures, or unexpected duplicated data. REINDEX allows
you to rebuild the index in such situations.
You can rebuild corrupted indexes that do not have UNIQUE in their definition.
You can run the REINDEX command for all indexes of a table (REINDEX TABLE),
and for all indexes in the entire database (REINDEX DATABASE).
For more information on the REINDEX command, see the Postgres documentation.
This command creates a new index that replaces the old one:
REINDEX INDEX <index-name>;
When you use REINDEX, the tables are locked and you may not be able to use the
database, until the operation is complete.
In some cases, you might need to manually build a second index concurrently with the old index, and then remove the old index:
CREATE INDEX CONCURRENTLY test_index_new ON table_a (...);
DROP INDEX CONCURRENTLY test_index_old;
ALTER INDEX test_index_new RENAME TO test_index;
A UNIQUE index works on one or more columns where the combination is unique
in the table. When the index is corrupted or disabled, duplicated
physical rows appear in the table, breaking the uniqueness constraint of the
index. When you try to rebuild an index that is not unique, the REINDEX command fails.
To resolve this issue, first remove the duplicate rows from the table and then
rebuild the index.
To identify conflicting duplicate rows, you need to run a query that counts the number of rows for each combination of columns included in the index definition.
For example, this route table has a unique_route_index index defining
unique rows based on the combination of the source and destination columns:
CREATE TABLE route(
source TEXT,
destination TEXT,
description TEXT
);
CREATE UNIQUE INDEX unique_route_index
ON route (source, destination);
If the unique_route_index is corrupt, you can find duplicated rows in the
route table using this query:
SELECT
source,
destination,
count
FROM
(SELECT
source,
destination,
COUNT(*) AS count
FROM route
GROUP BY
source,
destination) AS foo
WHERE count > 1;
The query groups the data by the same source and destination fields defined
in the index, and filters any entries with more than one occurrence.
Resolve the problematic entries in the rows by manually deleting or merging the
entries until no duplicates exist. After all duplicate entries are removed, you
can use the REINDEX command to rebuild the index.
===== PAGE: https://docs.tigerdata.com/about/whitepaper/ =====
Tiger Data has created a powerful application database for real-time analytics on time-series data. It integrates seamlessly with the Postgres ecosystem and enhances it with automatic time-based partitioning, hybrid row-columnar storage, and vectorized execution—enabling high-ingest performance, sub-second queries, and full SQL support at scale.
Tiger Cloud offers managed database services that provide a stable and reliable environment for your applications. Each service is based on a Postgres database instance and the TimescaleDB extension.
By making use of incrementally updated materialized views and advanced analytical functions, TimescaleDB reduces compute overhead and improves query efficiency. Developers can continue using familiar SQL workflows and tools, while benefiting from a database purpose-built for fast, scalable analytics.
This document outlines the architectural choices and optimizations that power TimescaleDB and Tiger Cloud’s performance and scalability while preserving Postgres’s reliability and transactional guarantees.
Want to read this whitepaper from the comfort of your own computer?
Tiger Data architecture for real-time analytics (PDF)
Real-time analytics enables applications to process and query data as it is generated and as it accumulates, delivering immediate and ongoing insights for decision-making. Unlike traditional analytics, which relies on batch processing and delayed reporting, real-time analytics supports both instant queries on fresh data and fast exploration of historical trends—powering applications with sub-second query performance across vast, continuously growing datasets.
Many modern applications depend on real-time analytics to drive critical functionality:
Real-time analytics isn't just about reacting to the latest data, although that is critically important. It's also about delivering fast, interactive, and scalable insights across all your data, enabling better decision-making and richer user experiences. Unlike traditional ad-hoc analytics used by analysts, real-time analytics powers applications—driving dynamic dashboards, automated decisions, and user-facing insights at scale.
To achieve this, real-time analytics systems must meet several key requirements:
Tiger Cloud is a high-performance database that brings real-time analytics to applications. It combines fast queries, high ingest performance, and full SQL support—all while ensuring scalability and reliability. Tiger Cloud extends Postgres with the TimescaleDB extension. It enables sub-second queries on vast amounts of incoming data while providing optimizations designed for continuously updating datasets.
Tiger Cloud achieves this through the following optimizations:
With Tiger Cloud, developers can build low-latency, high-concurrency applications that seamlessly handle streaming data, historical queries, and real-time analytics while leveraging the familiarity and power of Postgres.
Today's applications demand a database that can handle real-time analytics and transactional queries without sacrificing speed, flexibility, or SQL compatibility (including joins between tables). TimescaleDB achieves this with hypertables, which provide an automatic partitioning engine, and hypercore, a hybrid row-columnar storage engine designed to deliver high-performance queries and efficient compression (up to 95%) within Postgres.
TimescaleDB provides hypertables, a table abstraction that automatically partitions data into chunks in real time (using time stamps or incrementing IDs) to ensure fast queries and predictable performance as datasets grow. Unlike traditional relational databases that require manual partitioning, hypertables automate all aspects of partition management, keeping locking minimal even under high ingest load.
At ingest time, hypertables ensure that Postgres can deal with a constant stream of data without suffering from table bloat and index degradation by automatically partitioning data across time. Because each chunk is ordered by time and has its own indexes and storage, writes are usually isolated to small, recent chunks—keeping index sizes small, improving cache locality, and reducing the overhead of vacuum and background maintenance operations. This localized write pattern minimizes write amplification and ensures consistently high ingest performance, even as total data volume grows.
At query time, hypertables efficiently exclude irrelevant chunks from the execution plan when the partitioning column is used in a WHERE clause. This architecture ensures fast query execution, avoiding the gradual slowdowns that affect non-partitioned tables as they accumulate millions of rows. Chunk-local indexes keep indexing overhead minimal, ensuring index operations scans remain efficient regardless of dataset size.
Hypertables are the foundation for all of TimescaleDB’s real-time analytics capabilities. They enable seamless data ingestion, high-throughput writes, optimized query execution, and chunk-based lifecycle management—including automated data retention (drop a chunk) and data tiering (move a chunk to object storage).
Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
TimescaleDB’s columnar storage layout optimizes analytical query performance by structuring data efficiently on disk, reducing scan times, and maximizing compression rates. Unlike traditional row-based storage, where data is stored sequentially by row, columnar storage organizes and compresses data by column, allowing queries to retrieve only the necessary fields in batches rather than scanning entire rows. But unlike many column store implementations, TimescaleDB’s columnstore supports full mutability—inserts, upserts, updates, and deletes, even at the individual record level—with transactional guarantees. Data is also immediately visible to queries as soon as it is written.
TimescaleDB uses columnar collocation and columnar compression within row-based storage to optimize analytical query performance while maintaining full Postgres compatibility. This approach ensures efficient storage, high compression ratios, and rapid query execution.
A rowstore chunk is converted to a columnstore chunk by successfully grouping together sets of rows (typically up to 1000) into a single batch, then converting the batch into columnar form.
Each compressed batch does the following:
While the chunk interval of rowstore and columnstore batches usually remains the same, TimescaleDB can also combine columnstore batches so they use a different chunk interval.
This architecture provides the benefits of columnar storage—optimized scans, reduced disk I/O, and improved analytical performance—while seamlessly integrating with Postgres’s row-based execution model.
To optimize query performance, TimescaleDB allows explicit control over how data is physically organized within columnar storage. By structuring data effectively, queries can minimize disk reads and execute more efficiently, using vectorized execution for parallel batch processing where possible.
SEGMENTBY.)ORDERBY.)By combining segmentation and ordering, TimescaleDB ensures that columnar queries are not only fast but also resource-efficient, enabling high-performance real-time analytics.
Traditional databases force a trade-off between fast updates and efficient analytics. Fully immutable storage is impractical in real-world applications, where data needs to change. Asynchronous mutability—where updates only become visible after batch processing—introduces delays that break real-time workflows. In-place mutability, while theoretically ideal, is prohibitively slow in columnar storage, requiring costly decompression, segmentation, ordering, and recompression cycles.
Hypercore navigates these trade-offs with a hybrid approach that enables immediate updates without modifying compressed columnstore data in place. By staging changes in an interim rowstore chunk, hypercore allows updates and deletes to happen efficiently while preserving the analytical performance of columnar storage.
All new data which is destined for a columnstore chunk is first written to an interim rowstore chunk, ensuring high-speed ingestion and immediate queryability. Unlike fully columnar systems that require ingestion to go through compression pipelines, hypercore allows fresh data to remain in a fast row-based structure before being later compressed into columnar format in ordered batches as normal.
Queries transparently access both the rowstore and columnstore chunks, meaning applications always see the latest data instantly, regardless of its storage format.
When modifying or deleting existing data, hypercore avoids the inefficiencies of both asynchronous updates and in-place modifications. Instead of modifying compressed storage directly, affected batches are decompressed and staged in the interim rowstore chunk, where changes are applied immediately.
These modified batches remain in row storage until they are recompressed and reintegrated into the columnstore (which happens automatically via a background process). This approach ensures updates are immediately visible, but without the expensive overhead of decompressing and rewriting entire chunks. This approach avoids:
Real-time analytics isn’t just about raw speed—it’s about executing queries efficiently, reducing unnecessary work, and maximizing performance. TimescaleDB optimizes every step of the query lifecycle to ensure that queries scan only what’s necessary, make use of data locality, and execute in parallel for sub-second response times over large datasets.
TimescaleDB minimizes the amount of data a query touches, reducing I/O and improving execution speed:
Queries automatically skip irrelevant partitions (chunks) based on the primary partitioning key (usually a timestamp), ensuring they only scan relevant data.
Min/max metadata allows queries filtering on correlated dimensions (e.g., order_id or secondary timestamps) to exclude chunks that don’t contain relevant data.
Unlike many databases, TimescaleDB supports sparse indexes on columnstore data, allowing queries to efficiently locate specific values within both row-based and compressed columnar storage. These indexes enable fast lookups, range queries, and filtering operations that further reduce unnecessary data scans.
Within each chunk, compressed columnar batches are organized using SEGMENTBY keys and ordered by ORDERBY columns. Indexes and min/max metadata can be used to quickly exclude batches that don’t match the query criteria.
Organizing data for efficient access ensures queries are read in the most optimal order, reducing unnecessary random reads and reducing scans of unneeded data.
SEGMENTBY to keep related data together, improving scan efficiency.ORDERBY, increasing scan efficiency (and reducing I/O operations), enabling efficient range queries, and minimizing post-query sorting.Once a query is scanning only the required columnar data in the optimal order, TimescaleDB is able to maximize performance through parallel execution. As well as using multiple workers, TimescaleDB accelerates columnstore query execution by using Single Instruction, Multiple Data (SIMD) vectorization, allowing modern CPUs to process multiple data points in parallel.
The TimescaleDB implementation of SIMD vectorization currently allows:
Aggregating large datasets in real time can be expensive, requiring repeated scans and calculations that strain CPU and I/O. While some databases attempt to brute-force these queries at runtime, compute and I/O are always finite resources—leading to high latency, unpredictable performance, and growing infrastructure costs as data volume increases.
Continuous aggregates, the TimescaleDB implementation of incrementally updated materialized views, solve this by shifting computation from every query run to a single, asynchronous step after data is ingested. Only the time buckets that receive new or modified data are updated, and queries read precomputed results instead of scanning raw data—dramatically improving performance and efficiency.
When you know the types of queries you'll need ahead of time, continuous aggregates allow you to pre-aggregate data along meaningful time intervals—such as per-minute, hourly, or daily summaries—delivering instant results without on-the-fly computation.
Continuous aggregates also avoid the time-consuming and error-prone process of maintaining manual rollups, while continuing to offer data mutability to support efficient updates, corrections, and backfills. Whenever new data is inserted or modified in chunks which have been materialized, TimescaleDB stores invalidation records reflecting that these results are stale and need to be recomputed. Then, an asynchronous process re-computes regions that include invalidated data, and updates the materialized results. TimescaleDB tracks the lineage and dependencies between continuous aggregates and their underlying data, to ensure the continuous aggregates are regularly kept up-to-date. This happens in a resource-efficient manner, and where multiple invalidations can be coalesced into a single refresh (as opposed to refreshing any dependencies at write time, such as via a trigger-based approach).
Continuous aggregates themselves are stored in hypertables, and they can be converted to columnar storage for compression, and raw data can be dropped, reducing storage footprint and processing cost. Continuous aggregates also support hierarchical rollups (e.g., hourly to daily to monthly) and real-time mode, which merges precomputed results with the latest ingested data to ensure accurate, up-to-date analytics.
This architecture enables scalable, low-latency analytics while keeping resource usage predictable—ideal for dashboards, monitoring systems, and any workload with known query patterns.
Real-time analytics requires more than basic SQL functions—efficient computation is essential as datasets grow in size and complexity. Hyperfunctions, available through the timescaledb_toolkit extension, provide high-performance, SQL-native functions tailored for time-series analysis. These include advanced tools for gap-filling, percentile estimation, time-weighted averages, counter correction, and state tracking, among others.
A key innovation of hyperfunctions is their support for partial aggregation, which allows TimescaleDB to store intermediate computational states rather than just final results. These partials can later be merged to compute rollups efficiently, avoiding expensive reprocessing of raw data and reducing compute overhead. This is especially effective when combined with continuous aggregates.
Consider a real-world example: monitoring request latencies across thousands of application instances. You might want to compute p95 latency per minute, then roll that up into hourly and daily percentiles for dashboards or alerts. With traditional SQL, calculating percentiles requires a full scan and sort of all underlying data—making multi-level rollups computationally expensive.
With TimescaleDB, you can use the percentile_agg hyperfunction in a continuous aggregate to compute and store a partial aggregation state for each minute. This state efficiently summarizes the distribution of latencies for that time bucket, without storing or sorting all individual values. Later, to produce an hourly or daily percentile, you simply combine the stored partials—no need to reprocess the raw latency values.
This approach provides a scalable, efficient solution for percentile-based analytics. By combining hyperfunctions with continuous aggregates, TimescaleDB enables real-time systems to deliver fast, resource-efficient insights across high-ingest, high-resolution datasets—without sacrificing accuracy or flexibility.
Real-time analytics requires a scalable, high-performance, and cost-efficient database that can handle high-ingest rates and low-latency queries without overprovisioning. Tiger Cloud is designed for elasticity, enabling independent scaling of storage and compute, workload isolation, and intelligent data tiering.
Real-time applications generate continuous data streams while requiring instant querying of both fresh and historical data. Traditional databases force users to pre-provision fixed storage, leading to unnecessary costs or unexpected limits. Tiger Cloud eliminates this constraint by dynamically scaling storage based on actual usage:
With this architecture, databases grow alongside data streams, enabling seamless access to real-time and historical insights while efficiently managing storage costs.
Balancing high-ingest rates and low-latency analytical queries on the same system can create contention, slowing down performance. Tiger Cloud mitigates this by allowing read and write workloads to scale independently:
This separation ensures that frequent queries on fresh data don’t interfere with ingestion, making it easier to support live monitoring, anomaly detection, interactive dashboards, and alerting systems.
Not all real-time data is equally valuable—recent data is queried constantly, while older data is accessed less frequently. Tiger Cloud can be configured to automatically tier data to cheaper bottomless object storage, ensuring that hot data remains instantly accessible, while historical data is still available.
While many systems support this concept of data cooling, TimescaleDB ensures that the data can still be queried from the same hypertable regardless of its current location. For real-time analytics, this means applications can analyze live data streams without worrying about storage constraints, while still maintaining access to long-term trends when needed.
Real-time analytics doesn’t just require fast queries—it requires the ability to understand why queries are fast or slow, where resources are being used, and how performance changes over time. That’s why Tiger Cloud is built with deep observability features, giving developers and operators full visibility into their database workloads.
At the core of this observability is Insights, Tiger Cloud’s built-in query monitoring tool. Insights captures per-query statistics from our whole fleet in real time, showing you exactly how your database is behaving under load. It tracks key metrics like execution time, planning time, number of rows read and returned, I/O usage, and buffer cache hit rates—not just for the database as a whole, but for each individual query.
Insights lets you do the following:
All this is surfaced through an intuitive interface, available directly in Tiger Cloud, with no instrumentation or external monitoring infrastructure required.
Beyond query-level visibility, Tiger Cloud also exposes metrics around service resource consumption, compression, continuous aggregates, and data tiering, allowing you to track how data moves through the system—and how those background processes impact storage and query performance.
Together, these observability features give you the insight and control needed to operate a real-time analytics database at scale, with confidence, clarity, and performance you can trust.
Maintaining high availability, efficient resource utilization, and data durability is essential for real-time applications. Tiger Cloud provides robust operational features to ensure seamless performance under varying workloads.
These operational capabilities ensure Tiger Cloud remains reliable, scalable, and resilient, even under demanding real-time workloads.
Real-time analytics is critical for modern applications, but traditional databases struggle to balance high-ingest performance, low-latency queries, and flexible data mutability. Tiger Cloud extends Postgres to solve this challenge, combining automatic partitioning, hybrid row-columnar storage, and intelligent compression to optimize both transactional and analytical workloads.
With continuous aggregates, hyperfunctions, and advanced query optimizations, Tiger Cloud ensures sub-second queries even on massive datasets that combine current and historic data. Its cloud-native architecture further enhances scalability with independent compute and storage scaling, workload isolation, and cost-efficient data tiering—allowing applications to handle real-time and historical queries seamlessly.
For developers, this means building high-performance, real-time analytics applications without sacrificing SQL compatibility, transactional guarantees, or operational simplicity.
Tiger Cloud delivers the best of Postgres, optimized for real-time analytics.
===== PAGE: https://docs.tigerdata.com/about/pricing-and-account-management/ =====
As we enhance our offerings and align them with your evolving needs, pricing plans provide more value, flexibility, and efficiency for your business. Whether you're a growing startup or a well-established enterprise, our plans are structured to support your journey towards greater success.
This page explains pricing plans for Tiger Cloud, and how to easily manage your Tiger Data account.
Pricing plans give you:
It’s that simple! You don't pay for automated backups or networking costs, such as data ingest or egress. There are no per-query fees, nor additional costs to read or write data. It's all completely transparent, easily understood, and up to you.
Using self-hosted TimescaleDB and our open-source products is still free.
If you create a Tiger Data account from AWS Marketplace, the pricing options are pay-as-you-go and annual commit. See AWS pricing for details.
With Tiger Cloud, you are not limited to pre-set compute and storage. Get as much as you need when provisioning your services or later, as your needs grow.
Compute: pay only for the compute resources you run. Compute is metered on an hourly basis, and you can scale it up to 64,000 IOPS at any time. You can also scale out using replicas as your application grows. We also provide services to help you lower your compute needs while improving query performance. Tiger Cloud is very efficient and generally needs less compute than other databases to deliver the same performance. The best way to size your needs is to sign up for a free trial and test with a realistic workload.
Storage: pay only for the storage you consume. You have high-performance storage for more-accessed data, and low-cost bottomless storage in S3 for other data. The high-performance storage offers you up to 64 TB of compressed (typically 80-100 TB uncompressed) data and is metered on your average GB consumption per hour. We can help you compress your data by up to 98% so you pay even less. For low-cost storage, Tiger Data charges only for the size of your data in S3 in the Apache Parquet format, regardless of whether it was compressed in Tiger Cloud before tiering. There are no additional expenses, such as data transfer or compute. For easy upgrades, each service stores the TimescaleDB binaries. This contributes up to 900 MB to overall storage, which amounts to less than $.80/month in additional storage costs.
Are you just starting out with Tiger Cloud? On our Free pricing plan, you can create up to 2 zero-cost services with limited resources. When a free service reaches the resource limit, it converts to a read-only state.
The Free pricing plan and services are currently in beta.
Ready to try a more feature-rich paid plan? Activate a 30-day free trial of our Performance (no credit card required) or Scale plan. After your trial ends, we may remove your data unless you’ve added a payment method.
After you have completed your 30-day trial period, choose the pricing plan that suits your business and engineering needs. And even when you upgrade from the Free pricing plan, you can still have up to 2 zero-cost services—or convert the ones you already have into standard ones, to have more resources.
If you want to try out features in a higher pricing plan before upgrading, contact us.
You can upgrade or downgrade between the Free, Performance, and Scale plans whenever you want using Tiger Cloud Console. To downgrade to the Free plan, you must only have free services running in your project.
If you switch your pricing plan mid-month, your prices are prorated to when you switch. Your services are not interrupted when you switch, so you can keep working without any hassle. To move to Enterprise, get in touch with Tiger Data.
You keep track of your monthly usage in Tiger Cloud Console. Console shows your resource usage and dashboards with performance insights. This allows you to closely monitor your services’ performance, and any need to scale your services or upgrade your pricing plan.
Console also shows your month-to-date accrued charges, as well as a forecast of your expected month-end bill. Your previous invoices are also available as PDFs for download.
You are charged for all active services in your account, even if you are not actively using them. To reduce costs, pause or delete your unused services.
Tiger Data runs a global support organization with Customer Satisfaction (CSAT) scores above 99%. Support covers all timezones, and is fully staffed at weekend hours.
All paid pricing plans have free Developer Support through email with a target response time of 1 business day; we are often faster. If you need 24x7 responsiveness, talk to us about Production Support.
HA and read replicas are both charged at the same rate as your primary services, based on the compute and primary storage consumed by your replicas. Data tiered to our bottomless storage tier is shared by all database replicas; replicas accessing tiered storage do not add to your bill.
Storage is priced the same across all regions. However, compute prices vary depending on the region. This is because our cloud provider (AWS) prices infrastructure differently based on region.
The available pricing plans are:
The Free pricing plan and services are currently in beta.
The features included in each pricing plan are:
| Feature | Free | Performance | Scale | Enterprise |
|---|---|---|---|---|
| Compute and storage | ||||
| Number of services | Up to 2 free services | Up to 2 free and 4 standard services | Up to 2 free and and unlimited standard services | Up to 2 free and and unlimited standard services |
| CPU limit per service | Shared | Up to 8 CPU | Up to 32 CPU | Up to 64 CPU |
| Memory limit per service | Shared | Up to 32 GB | Up to 128 GB | Up to 256 GB |
| Storage limit per service | 750 MB | Up to 16 TB | Up to 16 TB | Up to 64 TB |
| Bottomless storage on S3 | Unlimited | Unlimited | ||
| Independently scale compute and storage | Standard services only | Standard services only | Standard services only | |
| Data services and workloads | ||||
| Relational | ✓ | ✓ | ✓ | ✓ |
| Time-series | ✓ | ✓ | ✓ | ✓ |
| Vector search | ✓ | ✓ | ✓ | ✓ |
| AI workflows (coming soon) | ✓ | ✓ | ✓ | ✓ |
| Cloud SQL editor | 3 seats | 3 seats | 10 seats | 20 seats |
| Charts | ✓ | ✓ | ✓ | ✓ |
| Dashboards | 2 | Unlimited | Unlimited | |
| Storage and performance | ||||
| IOPS | Shared | 3,000 - 5,000 | 5,000 - 8,000 | 5,000 - 8,000 |
| Bandwidth (autoscales) | Shared | 125 - 250 Mbps | 250 - 500 Mbps | Up to 500 mbps |
| I/O boost | Add-on: Up to 16K IOPS, 1000 Mbps BW |
Add-on: Up to 32K IOPS, 4000 Mbps BW |
||
| Availability and monitoring | ||||
| High-availability replicas (Automated multi-AZ failover) |
✓ | ✓ | ✓ | |
| Read replicas | ✓ | ✓ | ||
| Cross-region backup | ✓ | |||
| Backup reports | 14 days | 14 days | ||
| Point-in-time recovery and forking | 1 day | 3 days | 14 days | 14 days |
| Performance insights | Limited | ✓ | ✓ | ✓ |
| Metrics and log exporters | ✓ | ✓ | ||
| Security and compliance | ||||
| Role-based access | ✓ | ✓ | ✓ | ✓ |
| End-to-end encryption | ✓ | ✓ | ✓ | ✓ |
| Private Networking (VPC) | 1 multi-attach VPC | Unlimited multi-attach VPCs | Unlimited multi-attach VPCs | |
| AWS Transit Gateway | ✓ | ✓ | ||
| HIPAA compliance | ✓ | |||
| IP address allow list | 1 list with up to 10 IP addresses | 1 list with up to 10 IP addresses | Up to 10 lists with up to 10 IP addresses each | Up to 10 lists with up to 100 IP addresses each |
| Multi-factor authentication | ✓ | ✓ | ✓ | ✓ |
| Federated authentication (SAML) | ✓ | |||
| SOC 2 Type 2 report | ✓ | ✓ | ||
| Penetration testing report | ✓ | |||
| Security questionnaire and review | ✓ | |||
| Pay by invoice | Available at minimum spend | Available at minimum spend | ✓ | |
| Uptime SLAs | Standard | Standard | Enterprise | |
| Support and technical services | ||||
| Community support | ✓ | ✓ | ✓ | ✓ |
| Email support | ✓ | ✓ | ✓ | |
| Production support | Add-on | Add-on | ✓ | |
| Named account manager | ✓ | |||
| JOIN services (Jumpstart Onboarding and INtegration) | Available at minimum spend | ✓ |
For a personalized quote, get in touch with Tiger Data.
You are billed at the end of each month in arrears, based on your actual usage that month. Your monthly invoice includes an itemized cost accounting for each Tiger Cloud service and any additional charges.
Tiger Cloud charges are based on consumption:
Your monthly price for compute and storage is computed similarly. For example, over the last month your Tiger Cloud service has been running compute for 500 hours total:
Compute cost = (375 x hourly price for 2 CPU) + (125 x hourly price for 4 CPU)
Some add-ons such as tiered storage, HA replicas, and connection pooling may incur additional charges. These charges are clearly marked in your billing snapshot in Tiger Cloud Console.
You handle all details about your Tiger Cloud project including updates to your pricing plan, payment methods, and add-ons in the billing section in Tiger Cloud Console:

Details: an overview of your pricing plan, usage, and payment details. You can add up
to three credit cards to your Wallet. If you prefer to pay by invoice,
contact Tiger Data and ask to change to corporate billing.
History: the list of your downloadable Tiger Cloud invoices.
Emails: the addresses Tiger Data uses to communicate with you. Payment confirmations and alerts are sent to the email address you signed up with. Add another address to send details to other departments in your organization.
Pricing plan: choose the pricing plan supplying the features that suit your business and engineering needs.
Add-ons: add Production support and improved database performance for mission-critical workloads.
When you get Tiger Cloud at AWS Marketplace, the following pricing options are available:
===== PAGE: https://docs.tigerdata.com/about/changelog/ =====
All the latest features and updates to Tiger Cloud.
October 10, 2025
TimescaleDB 2.22.1 introduces major performance and flexibility improvements across indexing, compression, and query execution. TimescaleDB 2.22.1 was released on September 30th and is now available to all users of Tiger.
Configurable sparse indexes: manually configure sparse indexes (min-max or bloom) on one or more columns of compressed hypertables, optimizing query performance for specific workloads and reducing I/O. In previous versions, these were automatically created based on heuristics and could not be modified.
UUIDv7 support: native support for UUIDv7 for both compression and partitioning. UUIDv7 embeds a time component, improving insert locality and enabling efficient time-based range queries while maintaining global uniqueness.
Vectorized UUID compression: new vectorized compression for UUIDv7 columns doubles query performance and improves storage efficiency by up to 30%.
UUIDv7 partitioning: hypertables can now be partitioned on UUIDv7 columns, combining time-based chunking with globally unique IDs—ideal for large-scale event and log data.
Multi-column SkipScan: expands SkipScan to support multiple distinct keys, delivering millisecond-fast deduplication and DISTINCT ON queries across billions of rows. Learn more in our blog post and documentation.
Compression improvements: default segmentby and orderby settings are now applied at compression time for each chunk, automatically adapting to evolving data patterns for better performance. This was previously set at the hypertable level and fixed across all chunks.
The experimental Hypercore Table Access Method (TAM) has been removed in this release following advancements in the columnstore architecture.
For a comprehensive list of changes, refer to the TimescaleDB 2.22 & 2.22.1 release notes.
September 19, 2025
The new Kafka Source Connector enables you to connect your existing Kafka clusters directly to Tiger Cloud and ingest data from Kafka topics into hypertables. Developers often build proxies or run JDBC Sink Connectors to bridge Kafka and Tiger Cloud, which is error-prone and time-consuming. With the Kafka Source Connector, you can seamlessly start ingesting your Kafka data natively without additional middleware.
pg_cron, larger compute options, and backup reportsSeptember 12, 2025
Starting with TimescaleDB 2.22.0, minor releases will now roll out in phases. Services tagged #dev will get upgraded first, followed by #prod after 21 days. This gives you time to validate upgrades in #dev before they reach #prod services. Subscribe to get an email notification before your #prod service is upgraded. See Maintenance and upgrades for details.
pg_cron is now available on Tiger Cloud! With pg_cron, you can:
To enable pg_cron on your service, contact our support team. We're working on making this self-service in future updates.
For the most demanding workloads, you can now create services with 48 and 64 CPUs. These options are only available on our Enterprise plan, and they're dedicated instances that are not shared with other customers.
Scale and Enterprise customers can now see a list of their backups in Tiger Cloud Console. For customers with SOC 2 or other compliance needs, this serves as auditable proof of backups.
The UI just got snappier and easier to navigate with improved interlinking. For example, click an object in the Jobs page to see what hypertable the job is associated with.
September 5, 2025
To make navigation easier, we’ve introduced a cleaner, more intuitive UI for data import. It highlights the most common and recommended option, PostgreSQL Dump & Restore, while organizing all import options into clear categories, to make navigation easier.
The new categories include:
A new data import component has been added to the overview dashboard, providing a clear view of your imports. This includes quick start, in-progress status, and completed imports:
August 28, 2025
Initial data copy: The number of rows copied at any given point in time.Change data capture: The replication lag represented in time and data size.initial data copy and change data capture, plus a dedicated tab where you can add more tables to the connector.August 21, 2025
The Developer role in Tiger Cloud is now generally available. It’s a project‑scoped permission set that lets technical users build and operate services, create or modify resources, run queries, and use observability—without admin or billing access. This enforces least‑privilege by default, reducing risk and audit noise, while keeping governance with Admins/Owners and billing with Finance. This means faster delivery (fewer access escalations), protected sensitive settings, and clear boundaries, so the right users can ship changes safely, while compliance and cost control remain intact.
In Console, you can now easily create hypertables from your regular Postgres tables directly from the Explorer. Clicking on any Postgres table shows an option to open up the hypertable action. Follow the simple steps to set up your partition key and transform the table to a hypertable.
August 14, 2025
You can now store backups in a different region than your service, which improves resilience and helps meet enterprise compliance requirements. Cross‑region backups are available on our Enterprise plan for free at launch; usage‑based billing may be introduced later. For full details, please see the docs.
We have added basic instructions for INSERT, UPDATE, DELETE commands to the Tiger Cloud console. It's now shown as an option in the Import Data page.
In Tiger Cloud, you now have an option to choose Postgres-only in the service creation flow. Just click Looking for plan PostgreSQL? on the Service Type screen.
July 31, 2025
The viewer role is now generally available for all projects and organizations. It provides read-only access to services, metrics, and logs without modify permissions. Viewers cannot create, update, or delete resources, nor manage users or billing. It's ideal for auditors, analysts, and cross-functional collaborators who need visibility but not control.
You can now find automatically generated EXPLAIN plans on queries that take longer than 10 seconds within Insights. EXPLAIN plans can be very useful to determine how you may be able to increase the performance of your queries.
Find the index size of hypertable chunks in the Explorer. This information can be very valuable to determine if a hypertable's chunk size is properly configured.
July 25, 2025
TimescaleDB v2.21 was released on July 8 and is now available to all developers on Tiger Cloud.
Highlighted features in TimescaleDB v2.21 include:
For a comprehensive list of changes, refer to the TimescaleDB v2.21 release notes.
You can now view catalog objects in the Console Explorer. Check out the internal schemas for PostgreSQL and TimescaleDB to better understand the inner workings of your database. To turn on/off visibility, select your service in Tiger Cloud Console, then click Explorer and toggle Show catalog objects.
July 18, 2025
We have released a beta Iceberg destination connector that enables Scale and Enterprise users to integrate Tiger Cloud services with Amazon S3 tables. This enables you to connect Tiger Cloud to data lakes seamlessly. We are actively developing several improvements that will make the overall data lake integration process even smoother.
To use this feature, select your service in Tiger Cloud Console, then navigate to Connectors and select the Amazon S3 Tables destination connector. Integrate the connector to your S3 table bucket by providing the ARN roles, then simply select the tables that you want to sync into S3 tables. See the documentation for details.
July 11, 2025
You can now edit jobs directly in Console! We've added the handy pencil icon in the top right corner of any job view. Click a job, hit the edit button, then make your changes. This works for all jobs, even user-defined ones. Tiger Cloud jobs come with custom wizards to guide you through the right inputs. This means you can spot and fix issues without leaving the UI - a small change that makes a big difference!
Now you can see your historical connection counts right in the Connections tab! This helps spot those pesky connection management bugs before they impact your app. We're logging max connections every hour (sampled every 5 mins) and might adjust based on your feedback. Just another way we're making the Console more powerful for troubleshooting.
We’ve just launched Read/Viewer-only access for Tiger Cloud projects into public beta!
You can now invite users with view-only permissions — perfect for folks who need to see dashboards, metrics, and query results, without the ability to make changes.
This has been one of our most requested RBAC features, and it's a big step forward in making Tiger Cloud more secure and collaborative.
No write access. No config changes. Just visibility.
In Console, Go to Project Settings > Users & Roles to try it out, and let us know what you think!
July 4, 2025
In the Console UI, we have clarified the step-by-step procedure for setting up your livesync from self-hosted installations by:
Added the new refresh_newest_first optional argument that controls the order of incremental refreshes.
June 20, 2025
Execute complex queries with multiple commands in a single run—perfect for data transformations, table setup, and batch operations.
Start new discussion threads from any point in your SQL assistant chat to explore different approaches to your data questions more easily.
Individual job pages now display their corresponding configuration for TimescaleDB job types—for example, columnstore, retention, CAgg refreshes, tiering, and others.
You can now connect multiple AWS Transit Gateways, when those gateways use overlapping CIDRs. Ideal for teams with zero-trust policies, this lets you keep each network path isolated.
How it works: when you create a new peering connection, Tiger Cloud reuses the existing Transit Gateway if you supply the same ID—otherwise it automatically creates a new, isolated Transit Gateway.
The new service creation flow makes the choice of service type clearer. You can now create distinct types with Postgres extensions for real-time analytics (TimescaleDB), AI (pgvectorscale, pgai), and RTA/AI hybrid applications.
June 13, 2025
The latest version of the Timescale Terraform provider (2.3.0) adds support for:
Check the Timescale Terraform provider documentation for more details.
This patch release for TimescaleDB v2.20 includes several bug fixes and minor improvements. Notable bug fixes include:
For a comprehensive list of changes, refer to the TimescaleDB 2.20.3 release notes.
June 6, 2025
Read replica sets are an improved version of read replicas. They let you scale reads horizontally by creating up to 10 replica nodes behind a single read endpoint. Just point your read queries to the endpoint and configure the number of replicas you need without changing your application logic. You can increase or decrease the number of replicas in the set dynamically, with no impact on the endpoint.
Read replica sets are used to:
All existing read replicas have been automatically upgraded to a replica set with one node—no action required. Billing remains the same.
Read replica sets are available for all Scale and Enterprise customers.
We've completely rebuilt how query results are displayed in the data mode to give you a faster, more powerful way to work with your data. The new results table can handle millions of rows with smooth scrolling and instant responses when you sort, filter, or format your data. You'll find it today in notebooks and presentation pages, with more areas coming soon.
What's new:
As a result, working with large datasets is now faster and more intuitive. Whether you're exploring millions of rows or sharing results with your team, the new table keeps up with how you actually work with data.
Data mode's SQL assistant now supports Anthropic's latest models:
We previously made it much easier to connect newly created services to Timescale’s data mode. We have now expanded this functionality to services using a VPC.
May 30, 2025
In Timescale Console, we have consolidated multiple top-level service information tabs into the single Monitoring tab.
This tab houses information previously displayed in the Recommendations, Jobs, Connections, Metrics, Logs,
and Insights tabs.
In the Connections section under Monitoring, you can now see information like the query being run, the application
name, and duration for all current connections to a service.
The information in Connections enables you to debug misconfigured applications, or
cancel problematic queries to free up other connections to your database.
All new services created on Timescale Cloud are created using TimescaleDB v2.20. Existing services will be automatically upgraded during their maintenance window.
Highlighted features in TimescaleDB v2.20 include:
TimescaleDB version 2.20 is not compatible with Postgres versions v14 and below. TimescaleDB 2.19.3 is the last bug-fix release for Postgres 14. Future fixes are for Postgres 15+ only. To continue receiving critical fixes and security patches, and to take advantage of the latest TimescaleDB features, you must upgrade to Postgres 15 or newer. This deprecation affects all Tiger Cloud services currently running Postgres 13 or Postgres 14.
The timeline for the Postgres 13 and 14 deprecation is as follows:
You now can:
This enables you to sync data from multiple Postgres source databases into a single Timescale Cloud service.
May 22, 2025
We're excited to introduce enhanced storage, a new storage type in Timescale Cloud that significantly boosts both capacity and performance. Designed for customers with mission-critical workloads.
With enhanced storage, Timescale Cloud now supports:
Powered by AWS io2 volumes, enhanced storage gives your workloads the headroom they need—whether you're building financial data pipelines, developing IoT platforms, or processing billions of rows of telemetry. No more worrying about storage ceilings or IOPS bottlenecks.
Enable enhanced storage in Timescale Console under Operations → Compute & Storage. Enhanced storage is currently available on the Enterprise pricing plan only. Learn more here.
May 15, 2025
We’re excited to release the Prometheus Exporter for Timescale Cloud, making it easy to ship TimescaleDB metrics to your Prometheus instance. With the Prometheus Exporter, you can:
To get started, create a Prometheus Exporter in the Timescale Console, attach it to your service, and configure Prometheus to scrape from the exposed URL. Metrics are secured with basic auth. Available on Scale and Enterprise plans. Learn more here.
Our import options in Timescale Console have expanded to include local text files. You can add the content of multiple text files (one file per row) into a Postgres table for use with Vectorizers while creating embeddings for evaluation and development. This new option is located in Service > Actions > Import Data.
May 09, 2025
pgai vectorizer now supports automatic document vectorization. This makes it dramatically easier to build RAG and semantic search applications on top of unstructured data stored in Amazon S3. With just a SQL command, developers can create, update, and synchronize vector embeddings from a wide range of document formats—including PDFs, DOCX, XLSX, HTML, and more—without building or maintaining complex ETL pipelines.
Instead of juggling multiple systems and syncing metadata, vectorizer handles the entire process: downloading documents from S3, parsing them, chunking text, and generating vector embeddings stored right in Postgres using pgvector. As documents change, embeddings stay up-to-date automatically—keeping your Postgres database the single source of truth for both structured and semantic data.
You can now import a dataset directly from Hugging Face using Timescale Console. This dataset is ideal for testing vectorizers, you find it in the Import Data page under the Service > Actions tab.
April 25, 2025
Livesync for S3 is our second livesync offering in Timescale Console, following livesync for Postgres. This feature helps users sync data in their S3 buckets to a Timescale Cloud service, and simplifies data importing. Livesync handles both existing and new data in real time, automatically syncing everything into a Timescale Cloud service. Users can integrate Timescale Cloud alongside S3, where S3 stores data in raw form as the source for multiple destinations.
With livesync, users can connect Timescale Cloud with S3 in minutes, rather than spending days setting up and maintaining an ingestion layer.
In livesync for Postgres, getting started
requires setting the WAL_LEVEL to logical, and granting specific permissions to start a publication
on the source database. To simplify this setup process, we have added a detailed two-step checklist with comprehensive
configuration instructions to Timescale Console.
We’ve made connecting to your Timescale Cloud services from data mode in Timescale Console even easier! All new services created in Timescale Cloud are now automatically accessible from data mode without requiring you to enter your service credentials. Just open data mode, select your service, and start querying.
We will be expanding this functionality to existing services in the coming weeks (including services using VPC peering), so stay tuned.
April 18, 2025
In Timescale Cloud, you can now quickly check the quality of the embeddings from the vectorizers' outputs. Construct a similarity search query with additional filters on source metadata using a simple UI. Run the query right away, or copy it to the SQL editor or data mode and further customize it to your needs. Run the check in Timescale Console > Services > AI:
New services created in Timescale Cloud now use TimescaleDB v2.19.3. Existing services are in the process of being automatically upgraded to this version.
This release adds a number of bug fixes including:
The data mode's SQL Assistant now includes support for the latest models from OpenAI and Llama: GPT-4.1 (including mini and nano) and Llama 4 (Scout and Maverick). Additionally, we've added support for Gemini models, in particular Gemini 2.0 Nano and 2.5 Pro (experimental and preview). With the new additions, SQL Assistant supports more than 20 language models so you can select the one best suited to your needs.
April 11, 2025
Starting this week, all new services created on Timescale Cloud use TimescaleDB v2.19. Existing services will be upgraded gradually during their maintenance window.
Highlighted features in TimescaleDB v2.19 include:
INSERT, UPDATE, and DELETE operations on the columnstore by no longer blocking DML statements during the recompression of a chunk.GROUP BY over multiple columns.merge_chunk.The service overview page in Timescale Console has been overhauled to make it simpler and easier to use. Navigate to the Overview tab for any of your services and you will find an architecture diagram and general information pertaining to it. You may also see recommendations at the top, for how to optimize your service.
To leave the product team your feedback, open Help & Support on the left and select Send feedback to the product team.
Finding logs just got easier! We've added a date, time, and timezone picker, so you can jump straight to the exact moment you're interested in—no more endless scrolling.
April 4, 2025
This pgvectorscale release adds label-based filtered vector search to the StreamingDiskANN index. This enables you to return more precise and efficient results by combining vector similarity search with label filtering while still uitilizing the ANN index. This is a common need for large-scale RAG and Agentic applications that rely on vector searches with metadata filters to return relevant results. Filtered indexes add even more capabilities for filtered search at scale, complementing the high accuracy streaming filtering already present in pgvectorscale. The implementation is inspired by Microsoft's Filtered DiskANN research. For more information, see the pgvectorscale release notes and a usage example.
Each job now has an individual page in Timescale Console, and displays additional details about job errors. You use this information to debug failing jobs.
To see the job information page, in Timescale Console, select the service to check, then click Jobs > job ID to investigate.
March 21, 2025
You can now set up an active data ingestion pipeline with livesync for Postgres in Timescale Console. This tool enables you to replicate your source database tables into Timescale's hypertables indefinitely. Yes, you heard that right—keep livesync running for as long as you need, ensuring that your existing source Postgres tables stay in sync with Timescale Cloud. Read more about setting up and using Livesync for Postgres.
March 14, 2025
pgvectorscale 0.6.0 now supports storing vectors with up to 16,000 dimensions, removing the previous limitation of 2,000 from pgvector. This lets you use larger embedding models like OpenAI's text-embedding-3-large (3072 dim) with Postgres as your vector database. This release also includes key performance and capability enhancements, including NEON support for SIMD distance calculations on aarch64 processors, improved inner product distance metric implementation, and improved index statistics. See the release details here.
Access embedding models from popular cloud model hubs like AWS Bedrock, Azure AI Foundry, Google Vertex, as well as HuggingFace and Cohere as part of the LiteLLM integration with pgai Vectorizer. To use these models with pgai Vectorizer on Timescale Cloud, select Other when adding the API key in the credentials section of Timescale Console.
March 7, 2025
Introducing Agent Mode, a new feature in Timescale Console SQL Assistant. SQL Assistant lets you query your database using natural language. However, if you ran into errors, you have to approve the implementation of the Assistant's suggestions.
With Agent Mode on, SQL Assistant automatically adjusts and executes your query without intervention. It runs, diagnoses, and fixes any errors that it runs into until you get your desired results.
Below you can see SQL Assistant run into an error, identify the resolution, execute the fixed query, display results, and even change the title of the query:
To use Agent Mode, make sure you have SQL Assistant enabled, then click on the model selector dropdown, and tick the Agent Mode checkbox.
We've enhanced the AWS Marketplace workflow to make your experience even better! Now, everything is fully automated, ensuring a seamless process from setup to billing. If you're using the AWS Marketplace integration, you'll notice a smoother transition and clearer billing visibility—your Timescale Cloud subscription will be reflected directly in AWS Marketplace!
Sometimes it can be hard to know if you are getting the best use out of your service. To help with this, Timescale Cloud now provides recommendations based on your service's context, assisting with onboarding or notifying if there is a configuration concern with your service, such as consistently failing jobs.
To start, recommendations are focused primarily on onboarding or service health, though we will regularly add new ones. You can see if you have any existing recommendations for your service by going to the Actions tab in Timescale Console.
February 28, 2025
You can now modify the CIDRs blocks for your VPC or Transit Gateway directly from Timescale Console, giving you greater control over network access and security. This update makes it easier to adjust your private networking setup without needing to recreate your VPC or contact support.
We’ve enhanced the Logs screen with the new Warning and Log filters to help you quickly find the logs you need. These additions complement the existing Fatal, Error, and Detail filters, making it easier to pinpoint specific events and troubleshoot issues efficiently.
New services created in Timescale Cloud now use TimescaleDB v2.18.2. Existing services are in the process of being automatically upgraded to this version.
This new release fixes a number of bugs including:
ExplainHook breaking the call chain.ExecutorStart hooks of other extensions.drop_chunk().February 21, 2025
We have added fireworks.ai and Groq as service providers, and several new LLM options for SQL Assistant:
We've also improved the model picker by adding descriptions for each model:
We have improved the GitHub docs for pgai. Now relevant sections have been grouped into their own folders and we've created a comprehensive summary doc. Check it out here.
February 14, 2025
New services created in Timescale Cloud now use TimescaleDB v2.18.1. Existing services will be automatically upgraded in their next maintenance window starting next week.
This new release includes a number of bug fixes and small improvements including:
Timescale Cloud now fully supports AWS Transit Gateway, making it even easier to securely connect your database to multiple VPCs across different environments—including AWS, on-prem, and other cloud providers.
With this update, you can establish a peering connection between your Timescale Cloud services and an AWS Transit Gateway in your AWS account. This keeps your Timescale Cloud services safely behind a VPC while allowing seamless access across complex network setups.
February 6, 2025
Starting this week, all new services created on Timescale Cloud use TimescaleDB v2.18. Existing services will be upgraded gradually during their maintenance window.
Highlighted features in TimescaleDB v2.18.0 include:
We made a few improvements to SQL Assistant:
Dedicated SQL Assistant threads 🧵
Each query, notebook, and dashboard now gets its own conversation thread, keeping your chats organized.
Delete messages ❌
Made a typo? Asked the wrong question? You can now delete individual messages from your thread to keep the conversation clean and relevant.
Support for OpenAI o3-mini ⚡
We’ve added support for OpenAI’s latest o3-mini model, bringing faster response times and improved reasoning for SQL queries.
January 31, 2025
For enhanced network security, you can now also create IP allowlists in the Timescale Console data mode and PopSQL. Similarly to the ops mode IP allowlists, this feature grants access to your data only to certain IP addresses. For example, you might require your employees to use a VPN and add your VPN static egress IP to the allowlist.
This feature is available in:
Enable this feature in PopSQL/Timescale Console data mode > Project > Settings > IP Allowlist:
January 24, 2025
This release enhances the Vectorizer functionality by adding configurable base_url support for OpenAI API. This enables pgai Vectorizer to use all OpenAI-compatible models and APIs via the OpenAI integration simply by changing the base_url. This release also includes public granting of vectorizers, superuser creation on any table, an upgrade to the Ollama client to 0.4.5, a new docker-start command, and various fixes for struct handling, schema qualification, and system package management. See all changes on Github.
This release adds comprehensive SQLAlchemy and Alembic support for vector embeddings, including operations for migrations and improved model inheritance patterns. You can now seamlessly integrate vector search capabilities with SQLAlchemy models while utilizing Alembic for database migrations. This release also adds key improvements to the Ollama integration and self-hosted Vectorizer configuration. See all changes on Github.
January 17, 2025
Timescale Cloud now enables you to connect to your Timescale Cloud services through AWS Transit Gateway. This feature is available to Scale and Enterprise customers. It will be in Early Access for a short time and available in the Timescale Console very soon. If you are interested in implementing this Early Access Feature, reach out to your Rep.
January 10, 2025
Timescale Cloud now supports the Mumbai region. Starting today, you can run Timescale Cloud services in Mumbai, bringing our database solutions closer to users in India.
Timescale Cloud services can now be upgraded directly to Postgres 17 from versions 14, 15, or 16. Users running versions 12 or 13 must first upgrade to version 15 or 16, before upgrading to 17.
Timescale Cloud is now available in the AWS Marketplace. This allows you to keep billing centralized on your AWS account, use your already committed AWS Enterprise Discount Program spend to pay your Timescale Cloud bill and simplify procurement and vendor management.
December 20, 2024
All new Timescale Cloud services now come with Postgres 17.2, the latest version. Upgrades to Postgres 17 for services running on prior versions will be available in January. Postgres 17 adds new capabilities and improvements to Timescale like:
You can now submit feature requests directly from Console and see the list of feature requests you have made. Just click on Feature Requests on the right sidebar.
All feature requests are automatically published to the Timescale Forum and are reviewed by the product team, providing more visibility and transparency on their status as well as allowing other customers to vote for them.
We have built a new solution that helps you continuously replicate all or some of your Postgres tables directly into Timescale Cloud.
Livesync allows you to keep a current Postgres instance such as RDS as your primary database, and easily offload your real-time analytical queries to Timescale Cloud to boost their performance. If you have any questions or feedback, talk to us in #livesync in Timescale Community.
This is just the beginning—you'll see more from livesync in 2025!
December 13, 2024
Connect your S3 buckets to import data into Timescale Cloud. We support CSV (including .zip and .gzip) and Parquet files, with a 10 GB size limit in this initial release. This feature is accessible in the Import your data section right after service creation and through the Actions tab.
I/O Boost is an add-on for customers on Scale or Enterprise tiers that maximizes the I/O capacity of EBS storage to 16,000 IOPS and 1,000 MBps throughput per service. To enable I/O Boost, navigate to Services > Operations in Timescale Console. A simple toggle allows you to enable the feature, with pricing clearly displayed at $0.41/hour per node.
See all the jobs associated with your service through a new Jobs tab. You can see the type of job, its status (Running, Paused, and others), and a detailed history of the last 100 runs, including success rates and runtime statistics.
December 6, 2024
November 21, 2024
IP Allow Lists let you specify a list of IP addresses that have access to your Timescale Cloud services and block any others. IP Allow Lists are a lightweight but effective solution for customers concerned with security and compliance. They enable you to prevent unauthorized connections without the need for a Virtual Private Cloud (VPC).
To get started, in Timescale Console, select a service, then click Operations > Security > IP Allow List, then create an IP Allow List.
For more information, see our docs.
November 14, 2024
SQL Assistant uses AI to help you write SQL faster and more accurately.
Error resolution: when you run into an error, SQL Assistant proposes a recommended fix that you can choose to accept.
Generate titles and descriptions: click a button and SQL Assistant generates a title and description for your query. No more untitled queries!
See our blog post or docs for full details!
Starting this week, all new services created on Timescale Cloud use TimescaleDB v2.17. Existing services are upgraded gradually during their maintenance windows.
TimescaleDB v2.17 significantly improves the performance of continuous aggregate refreshes, and contains performance improvements for analytical queries and delete operations over compressed hypertables.
Best practice is to upgrade at the next available opportunity.
Highlighted features in TimescaleDB v2.17 are:
Significant performance improvements for continuous aggregate policies:
Continuous aggregate refresh now uses merge instead of deleting old materialized data and re-inserting.
Continuous aggregate policies are now more lightweight, use less system resources, and complete faster. This update:
WAL)Increased performance for real-time analytical queries over compressed hypertables:
We are excited to introduce additional Single Instruction, Multiple Data (SIMD) vectorization optimization to TimescaleDB. This release supports vectorized execution for queries that group by using the segment_by column(s), and aggregate using the sum, count, avg, min, and max basic aggregate functions.
Stay tuned for more to come in follow-up releases! Support for grouping on additional columns, filtered aggregation, vectorized expressions, and time_bucket is coming soon.
Improved performance of deletes on compressed hypertables when a large amount of data is affected.
This improvement speeds up operations that delete whole segments by skipping the decompression step. It is enabled for all deletes that filter by the segment_by column(s).
Timescale Cloud's Enterprise plan is now HIPAA (Health Insurance Portability and Accountability Act) compliant. This allows organizations to securely manage and analyze sensitive healthcare data, ensuring they meet regulatory requirements while building compliant applications.
Customers can now access more than just the most recent 500 logs within the Timescale Console. We've updated the user experience, including scrollbar with infinite scrolling capabilities.
November 07, 2024
We've added instructions for connecting to Timescale using your .NET workflow. In Console after service creation, or in the Actions tab, you can now select .NET from the developer library list. The guide demonstrates how to use Npgsql to integrate Timescale with your existing software stack.
In the Jobs section of the Explorer, users can now see the status (completed/failed) of the last 5 runs of each job.
October 31, 2024
This early access feature enables you to automatically create, update, and maintain embeddings as your data changes. Just like an index, Timescale handles all the complexity: syncing, versioning, and cleanup happen automatically. This means no manual tracking, zero maintenance burden, and the freedom to rapidly experiment with different embedding models and chunking strategies without building new pipelines. Navigate to the AI tab in your service overview and follow the instructions to add your OpenAI API key and set up your first vectorizer or read our guide to automate embedding generation with pgai Vectorizer for more details.
Fetch and query data from multiple Postgres databases, including time-series data in hypertables, directly within Timescale Cloud using foreign data wrappers (FDW). No more complicated ETL processes or external tools—just seamless integration right within your SQL editor. This feature is ideal for developers who manage multiple Postgres and time-series instances and need quick, easy access to data across databases.
This release adds support for runtime chunk exclusion for queries that need to access tiered storage. Chunk exclusion now works with queries that use stable expressions in the WHERE clause. The most common form of this type of query is:
SELECT * FROM hypertable WHERE timestamp_col > now() - '100 days'::interval
For more info on queries with immutable/stable/volatile filters, check our blog post on Implementing constraint exclusion for faster query performance.
If you no longer want to use tiered storage for a particular hypertable, you can now disable tiering and drop the associated tiering metadata on the hypertable with a call to disable_tiering function.
Timescale Console now shows recommendations for services with too many small chunks in their hypertables. Recommendations for new intervals that improve service performance are displayed for each underperforming service and hypertable. Users can then change their chunk interval and boost performance within Timescale Console.
October 18, 2024
After creating a service, users can now create a hypertable directly in Timescale Console by first creating a table, then converting it into a hypertable. This is possible using the in-console SQL editor. All standard hypertable configuration options are supported, along with any customization of the underlying table schema.

The newest version of Data Mode Notebooks is now waaaay faster. Why? We've incorporated the newly developed v3 of our query engine that currently powers Timescale Console's SQL Editor. Check out the difference in query response times.
October 10, 2024
Last year, we began developing a solution for low-downtime migration from Postgres and TimescaleDB. Since then, this solution has evolved significantly, featuring enhanced functionality, improved reliability, and performance optimizations. We're now proud to announce that live migration is production-ready with the release of version 1.0.
Many of our customers have successfully migrated databases to Timescale using live migration, with some databases as large as a few terabytes in size.
As part of the service creation flow, we offer the following:
Previously, these actions were only visible during the service creation process and couldn't be accessed later. Now, these actions are persisted within the service, allowing users to leverage them on-demand whenever they're ready to perform these tasks.
We've noticed users struggling to convert their MySQL schema and data into their Timescale Cloud services. This was due to the semantic differences between MySQL and Postgres. To simplify this process, we now offer easy-to-follow instructions to import data from MySQL to Timescale Cloud. This feature is available as part of the data import wizard, under the Import from MySQL option.
In Timescale Console, we offer the SQL editor so you can directly querying your service. As a new improvement, if a query is waiting on locks and can't complete execution, Timescale Console now displays the current lock contention in the results section .
October 3, 2024
Timescale now supports multiple CIDRs on the customer VPC. Customers who want to take advantage of multiple CIDRs will need to recreate their peering.
September 19, 2024
We've been listening to your feedback and noticed that Timescale Console users have diverse needs. Some of you are focused on operational tasks like adding replicas or changing parameters, while others are diving deep into data analysis to gather insights.
To better serve you, we've introduced new modes to the Timescale Console UI—tailoring the experience based on what you're trying to accomplish.
Ops mode is where you can manage your services, add replicas, configure compression, change parameters, and so on.
Data mode is the full PopSQL experience: write queries with autocomplete, visualize data with charts and dashboards, schedule queries and dashboards to create alerts or recurring reports, share queries and dashboards, and more.
Try it today and let us know what you think!
Now users can upload from Parquet to Timescale Cloud by uploading the file from their local file system. For files larger than 250 MB, or if you want to do it yourself, follow the three-step process to upload Parquet files to Timescale.
September 12, 2024
Scale and Enterprise customers can now configure two new multiple high availability (HA) replica options directly through Timescale Console:
Previously, Timescale offered only a single synchronous replica for customers seeking high availability. The single HA option is still available.
For more details on multiple HA replicas, see Manage high availability.
September 05, 2024
Now you can simply click to run SQL statements in various places in the Console. This requires that the SQL Editor is enabled for the service.
Enable Continuous Aggregates from the CAGGs wizard by clicking Run below the SQL statement.

Enable database extensions by clicking Run below the SQL statement.

Query data instantly with a single click in the Console after successfully uploading a CSV file.

Last week we announced the new in-console SQL editor. However, there was a limitation where a new database session was created for each query execution.
Today we removed that limitation and added support for keeping one database session for each user logged in, which means you can do things like start transactions:
begin;
insert into users (name, email) values ('john doe', 'john@example.com');
abort; -- nothing inserted
Or work with temporary tables:
create temporary table temp_users (email text);
insert into temp_sales (email) values ('john@example.com');
-- table will automatically disappear after your session ends
Or use the set command:
set search_path to 'myschema', 'public';
August 30, 2024
We've added a new tab to the service screen that allows users to query their database directly, without having to leave the console interface.
After service creation, we now offer a dedicated section for data import, including options to import from Postgres as a source or from CSV files.
The enhanced Postgres import instructions now offer several options: single table import, schema-only import, partial data import (allowing selection of a specific time range), and complete database import. Users can execute any of these data imports with just one or two simple commands provided in the data import section.
We've released v0.0.25 of Live migration that includes the following improvements:
August 22, 2024
We have added a CSV import tool to the Timescale Console. For all TimescaleDB services, after service creation you can:
Import data from .csv tile in the Import your data step of service creation.Customers now have more visibility into the state of replicas running on Timescale Cloud. We’ve released a new parameter called Replica Lag within the Service Overview for both Read and High Availability Replicas. Replica lag is measured in bytes against the current state of the primary database. For questions or concerns about the relative lag state of your replica, reach out to Customer Support.
Customers can now adjust their chunk interval for their hypertables and continuous aggregates through the Timescale UI. In the Explorer, select the corresponding hypertable you would like to adjust the chunk interval for. Under Chunk information, you can change the chunk interval. Note that this only changes the chunk interval going forward, and does not retroactively change existing chunks.
We've released permission granting via role assumption to CloudWatch. Role assumption is both more secure and more convenient for customers who no longer need to rotate credentials and update their exporter config.
For more details take a look at our documentation.

We’ve added a 2FA status column to the Members page, allowing customers to easily see whether each project member has 2FA enabled or disabled.
The pgai extension v0.3.0 now supports embedding creation and LLM reasoning using models from Anthropic and Cohere. For details and examples, see this post for pgai and Cohere, and this post for pgai and Anthropic.
pgvectorscale extension v0.3.0 adds support for ARM processors and improves recall when using StreamingDiskANN indexes with low dimensionality vectors. We recommend updating to this version if you are self-hosting.
August 15, 2024
TimescaleDB v2.16.0 contains significant performance improvements when working with compressed data, extended join support in continuous aggregates, and the ability to define foreign keys from regular tables towards hypertables. We recommend upgrading at the next available opportunity.
Any new service created on Timescale Cloud starting today uses TimescaleDB v2.16.0.
In TimescaleDB v2.16.0 we:
Improved upsert performance by more than 100x in some cases and more than 500x in some update/delete scenarios.
TimescaleDB v2.16.0 extends chunk exclusion to use these skipping (sparse) indexes when queries filter on the relevant columns, and prune chunks that do not include any relevant data for calculating the query response.
You can now add foreign keys from regular tables towards hypertables. We have also removed some really annoying locks in the reverse direction that blocked access to referenced tables while compression was running.
More types of joins are supported, additional equality operators on join clauses, and support for joins between multiple regular tables.
Highlighted features in this release
You can now define chunk skipping indexes on compressed chunks for any column with one of the following
integer data types: smallint, int, bigint, serial, bigserial, date, timestamp, timestamptz.
After calling enable_chunk_skipping on a column, TimescaleDB tracks the min and max values for
that column, using this information to exclude chunks for queries filtering on that
column, where no data would be found.
By using index scans to verify constraints during inserts on compressed chunks, TimescaleDB speeds up some ON CONFLICT clauses by more than 100x.
By filtering data while accessing the compressed data and before decompressing, TimescaleDB has improved performance for updates and deletes on all types of compressed chunks, as well as inserts into compressed chunks with unique constraints.
By signaling constraint violations without decompressing, or decompressing only when matching records are found in the case of updates, deletes and upserts, TimescaleDB v2.16.0 speeds up those operations more than 1000x in some update/delete scenarios, and 10x for upserts.
You can add foreign keys from regular tables to hypertables, with support for all types of cascading options. This is useful for hypertables that partition using sequential IDs, and need to reference these IDs from other tables.
Lower locking requirements during compression for hypertables with foreign keys
Advanced foreign key handling removes the need for locking referenced tables when new chunks are compressed. DML is no longer blocked on referenced tables while compression runs on a hypertable.
INNER/LEFT and LATERAL joins are now supported. Plus, you can now join with multiple regular tables,
and have more than one equality operator on join clauses.
Postgres 13 support removal announcement
Following the deprecation announcement for Postgres 13 in TimescaleDB v2.13, Postgres 13 is no longer supported in TimescaleDB v2.16.
The currently supported Postgres major versions are 14, 15, and 16.
August 8, 2024
To support evolving customer needs, Timescale Cloud now offers three plans to provide more value, flexibility, and efficiency.
Each plan continues to bill based on hourly usage, primarily for compute you run and storage you consume. You can upgrade or downgrade between Performance and Scale plans via the Console UI at any time. More information about the specifics and differences between these pricing plans can be found here in the docs.

The individual tiles on the services page have been enhanced with new information, including high-availability status. This will let you better assess the state of your services at a glance.

Improvements:
July 12, 2024
The following improvements have been made to Timescale products:
Timescale Cloud:
pg_checkpoint,pg_monitor,pg_signal_backend,pg_read_all_stats,pg_stat_scan_tablesTimescaleDB
June 27, 2024
The following improvements have been made to the Timescale live-migration docker image:
For improved stability and new features, update to the latest timescale/live-migration docker image. To learn more, see the live migration docs.
June 21, 2024
Ollama is now integrated with pgai.
Ollama is the easiest and most popular way to get up and running with open-source language models. Think of Ollama as Docker for LLMs, enabling easy access and usage of a variety of open-source models like Llama 3, Mistral, Phi 3, Gemma, and more.
With the pgai extension integrated in your database, embed Ollama AI into your app using SQL. For example:
select ollama_generate
( 'llava:7b'
, 'Please describe this image.'
, _images=> array[pg_read_binary_file('/pgai/tests/postgresql-vs-pinecone.jpg')]
, _system=>'you are a helpful assistant'
, _options=> jsonb_build_object
( 'seed', 42
, 'temperature', 0.9
)
)->>'response'
;
To learn more, see the pgai Ollama documentation.
June 13, 2024
The compression wizard is now available on Timescale Cloud. Select a hypertable and be guided through enabling compression through the UI!
To access the compression wizard, navigate to Explorer, and select the hypertable you would like to compress. In the top right corner, hover where it says Compression off, and open the wizard. You will then be guided through the process of configuring compression for your hypertable, and can compress it directly through the UI.
June 11, 2024
The vectorscale extension is now available on Timescale Cloud.
pgvectorscale complements pgvector, the open-source vector data extension for Postgres, and introduces the following key innovations for pgvector data:
On benchmark dataset of 50 million Cohere embeddings (768 dimensions each), Postgres with pgvector and pgvectorscale achieves 28x lower p95 latency and 16x higher query throughput compared to Pinecone's storage optimized (s1) index for approximate nearest neighbor queries at 99% recall, all at 75% less cost when self-hosted on AWS EC2.
To learn more, see the pgvectorscale documentation.
June 11, 2024
The pgai extension is now available on Timescale Cloud.
pgai brings embedding and generation AI models closer to the database. With pgai, you can now do the following directly from within Postgres in a SQL query:
To learn more, see the pgai documentation.
June 7, 2024
The 2.15.x releases contains performance improvements and bug fixes. Highlights in these releases are:
time_bucket with origin and/or offset.To learn more, see the TimescaleDB release notes.
May 31, 2024
The Postgres Audit extension(pgaudit) is now available on Timescale Cloud. pgaudit provides detailed database session and object audit logging in the Timescale Cloud logs.
If you have strict security and compliance requirements and need to log all operations on the database level, pgaudit can help. You can also export these audit logs to Amazon CloudWatch.
To learn more, see the pgaudit documentation.
May 31, 2024
The SI Units for Postgres extension(unit) provides support for the ISU in Timescale Cloud.
You can use Timescale Cloud to solve day-to-day questions. For example, to see what 50°C is in °F, run the following query in your Timescale Cloud service:
SELECT '50°C'::unit @ '°F' as temp;
temp
--------
122 °F
(1 row)
To learn more, see the postgresql-unit documentation.
===== PAGE: https://docs.tigerdata.com/about/timescaledb-editions/ =====
The following versions of TimescaleDB are available:
TimescaleDB Apache 2 Edition is available under the Apache 2.0 license. This is a classic open source license, meaning that it is completely unrestricted - anyone can take this code and offer it as a service.
You can install TimescaleDB Apache 2 Edition on your own on-premises or cloud infrastructure and run it for free.
You can sell TimescaleDB Apache 2 Edition as a service, even if you're not the main contributor.
You can modify the TimescaleDB Apache 2 Edition source code and run it for production use.
TimescaleDB Community Edition is the advanced, best, and most feature complete version of TimescaleDB, available under the terms of the Tiger Data License (TSL).
For more information about the Tiger Data license, see this blog post.
Many of the most recent features of TimescaleDB are only available in TimescaleDB Community Edition.
You can install TimescaleDB Community Edition in your own on-premises or cloud infrastructure and run it for free. TimescaleDB Community Edition is completely free if you manage your own service.
You cannot sell TimescaleDB Community Edition as a service, even if you are the main contributor.
You can modify the TimescaleDB Community Edition source code and run it for production use. Developers using TimescaleDB Community Edition have the "right to repair" and make modifications to the source code and run it in their own on-premises or cloud infrastructure. However, you cannot make modifications to the TimescaleDB Community Edition source code and offer it as a service.
You can access a hosted version of TimescaleDB Community Edition through Tiger Cloud, a cloud-native platform for time-series and real-time analytics.
<th>Features</th>
<th>TimescaleDB Apache 2 Edition</th>
<th>TimescaleDB Community Edition</th>
<td><strong>Hypertables and chunks</strong></td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/create_table/">CREATE TABLE</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/create_hypertable/">create_hypertable</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/show_chunks/">show_chunks</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/drop_chunks/">drop_chunks</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/split_chunk/">split_chunk</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/reorder_chunk/">reorder_chunk</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/move_chunk/">move_chunk</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/add_reorder_policy/">add_reorder_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/attach_tablespace/">attach_tablespace</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/detach_tablespace/">detach_tablespace()</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/detach_tablespaces/">detach_tablespaces()</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/show_tablespaces/">show_tablespaces</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/set_chunk_time_interval/">set_chunk_time_interval</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/set_integer_now_func/">set_integer_now_func</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/add_dimension/">add_dimension()</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/create_index/">create_index (Transaction Per Chunk)</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/hypertable_size/">hypertable_size</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/hypertable_detailed_size/">hypertable_detailed_size</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/hypertable_index_size/">hypertable_index_size</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypertable/chunks_detailed_size/">chunks_detailed_size</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.tigerdata.com/use-timescale/latest/query-data/skipscan/">SkipScan</a></td>
<td>❌</td>
<td>✅</td>
<td colspan="3"><strong>Distributed hypertables</strong>: This feature is <a href="https://github.com/timescale/timescaledb/blob/2.14.0/docs/MultiNodeDeprecation.md">sunsetted in all editions</a> in TimescaleDB v2.14.x</td>
<td><strong>Hypercore</strong> Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/alter_table/">ALTER TABLE (Hypercore)</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/add_columnstore_policy/">add_columnstore_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/remove_columnstore_policy/">remove_columnstore_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/convert_to_columnstore/">convert_to_columnstore</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/convert_to_rowstore/">convert_to_rowstore</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/hypertable_columnstore_settings/">hypertable_columnstore_settings</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/hypertable_columnstore_stats/">hypertable_columnstore_stats</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/chunk_columnstore_settings/">chunk_columnstore_settings</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hypercore/chunk_columnstore_stats/">chunk_columnstore_stats</a></td>
<td>❌</td>
<td>✅</td>
<td><strong>Continuous aggregates</strong></td>
<td><a href="https://docs.timescale.com/api/latest/continuous-aggregates/create_materialized_view/">CREATE MATERIALIZED VIEW (Continuous Aggregate)</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/continuous-aggregates/alter_materialized_view/">ALTER MATERIALIZED VIEW (Continuous Aggregate)</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/continuous-aggregates/drop_materialized_view/">DROP MATERIALIZED VIEW (Continuous Aggregate)</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/continuous-aggregates/add_continuous_aggregate_policy/">add_continuous_aggregate_policy()</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/continuous-aggregates/refresh_continuous_aggregate/">refresh_continuous_aggregate</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/continuous-aggregates/remove_continuous_aggregate_policy/">remove_continuous_aggregate_policy()</a></td>
<td>❌</td>
<td>✅</td>
<td><strong>Data retention</strong></td>
<td><a href="https://docs.timescale.com/api/latest/data-retention/add_retention_policy/">add_retention_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/data-retention/remove_retention_policy/">remove_retention_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><strong>Jobs and automation</strong></td>
<td><a href="https://docs.timescale.com/api/latest/jobs-automation/add_job/">add_job</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/jobs-automation/alter_job/">alter_job</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/jobs-automation/delete_job/">delete_job</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/jobs-automation/run_job/">run_job</a></td>
<td>❌</td>
<td>✅</td>
<td><strong>Hyperfunctions</strong></td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/approximate_row_count/">approximate_row_count</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/first/">first</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/last/">last</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/histogram/">histogram</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/time_bucket/">time_bucket</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/time_bucket_ng/">time_bucket_ng (experimental feature)</a></td>
<td>✅ </td>
<td>✅ </td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/gapfilling/time_bucket_gapfill/">time_bucket_gapfill</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.tigerdata.com/api/latest/hyperfunctions/gapfilling/time_bucket_gapfill#locf">locf</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/gapfilling/time_bucket_gapfill#interpolate">interpolate</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#percentile-agg">percentile_agg</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#approx_percentile">approx_percentile</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#approx_percentile_rank">approx_percentile_rank</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#rollup">rollup</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/tdigest/#max_val">max_val</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#mean">mean</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#error">error</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/tdigest/#min_val">min_val</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#num_vals">num_vals</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/uddsketch/#uddsketch">uddsketch</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/percentile-approximation/tdigest/#tdigest">tdigest</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/time-weighted-calculations/time_weight/">time_weight</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.tigerdata.com/api/latest/hyperfunctions/time-weighted-calculations/time_weight#rollup">rollup</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/hyperfunctions/time-weighted-calculations/time_weight#average">average</a></td>
<td>❌</td>
<td>✅</td>
<td><strong>Informational Views</strong></td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/chunks/#available-columns">timescaledb_information.chunks</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/continuous_aggregates/#sample-usage">timescaledb_information.continuous_aggregates</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/compression_settings/#sample-usage">timescaledb_information.compression_settings</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/data_nodes/#sample-usage">timescaledb_information.data_nodes</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/dimensions/#timescaledb-information-dimensions">timescaledb_information.dimension</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/hypertables/">timescaledb_information.hypertables</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/jobs/#available-columns">timescaledb_information.jobs</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/informational-views/job_stats/#available-columns">timescaledb_information.job_stats</a></td>
<td>✅</td>
<td>✅</td>
<td><strong>Administration functions</strong></td>
<td><a href="https://docs.timescale.com/api/latest/administration/#timescaledb_pre_restore">timescaledb_pre_restore</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/administration/#timescaledb_post_restore">timescaledb_post_restore</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/administration/#get_telemetry_report">get_telemetry_report</a></td>
<td>✅</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/administration/#dump-timescaledb-meta-data">dump_meta_data</a></td>
<td>✅</td>
<td>✅</td>
<td><strong>Compression</strong> Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) replaced by Hypercore</td>
<td><a href="https://docs.timescale.com/api/latest/compression/alter_table_compression/">ALTER TABLE (Compression)</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/compression/add_compression_policy/#sample-usage">add_compression_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/compression/remove_compression_policy/">remove_compression_policy</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/compression/compress_chunk/">compress_chunk</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/compression/decompress_chunk/">decompress_chunk</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/compression/hypertable_compression_stats/">hypertable_compression_stats</a></td>
<td>❌</td>
<td>✅</td>
<td><a href="https://docs.timescale.com/api/latest/compression/chunk_compression_stats/">chunk_compression_stats</a></td>
<td>❌</td>
<td>✅</td>
===== PAGE: https://docs.tigerdata.com/about/supported-platforms/ =====
This page lists the platforms and systems that Tiger Data products have been tested on for the following options:
Tiger Cloud always runs the latest version of all Tiger Data products. With Tiger Cloud you:
See the available service capabilities and regions.
Tiger Cloud services run optimized Tiger Data extensions on latest Postgres, in a highly secure cloud environment. Each service is a specialized database instance tuned for your workload. Available capabilities are:
<thead>
<tr>
<th>Capability</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Real-time analytics</strong> <p>Lightning-fast ingest and querying of time-based and event data.</p></td>
<td><ul><li>TimescaleDB</li><li>TimescaleDB Toolkit</li></ul> </td>
</tr>
<tr>
<td ><strong>AI and vector </strong><p>Seamlessly build RAG, search, and AI agents.</p></td>
<td><ul><li>TimescaleDB</li><li>pgvector</li><li>pgvectorscale</li><li>pgai</li></ul></td>
</tr>
<tr>
<td ><strong>Hybrid</strong><p>Everything for real-time analytics and AI workloads, combined.</p></td>
<td><ul><li>TimescaleDB</li><li>TimescaleDB Toolkit</li><li>pgvector</li><li>pgvectorscale</li><li>pgai</li></ul></td>
</tr>
<tr>
<td ><strong>Support</strong></td>
<td><ul><li>24/7 support no matter where you are.</li><li> Continuous incremental backup/recovery. </li><li>Point-in-time forking/branching.</li><li>Zero-downtime upgrades. </li><li>Multi-AZ high availability. </li><li>An experienced global ops and support team that can build and manage Postgres at scale.</li></ul></td>
</tr>
</tbody>
Tiger Cloud services run in the following Amazon Web Services (AWS) regions:
| Region | Zone | Location |
|---|---|---|
ap-south-1 |
Asia Pacific | Mumbai |
ap-southeast-1 |
Asia Pacific | Singapore |
ap-southeast-2 |
Asia Pacific | Sydney |
ap-northeast-1 |
Asia Pacific | Tokyo |
ca-central-1 |
Canada | Central |
eu-central-1 |
Europe | Frankfurt |
eu-west-1 |
Europe | Ireland |
eu-west-2 |
Europe | London |
sa-east-1 |
South America | São Paulo |
us-east-1 |
United States | North Virginia |
us-east-2 |
United States | Ohio |
us-west-2 |
United States | Oregon |
You use Tiger Data's open-source products to create your best app from the comfort of your own developer environment.
See the available services and supported systems.
Tiger Data offers the following services for your self-hosted installations:
<thead>
<tr>
<th>Service type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Self-hosted support</strong></td>
<td><ul><li>24/7 support no matter where you are.</li><li>An experienced global ops and support team that
can build and manage Postgres at scale.</li></ul>
Want to try it out? <a href="https://www.tigerdata.com/self-managed-support">See how we can help</a>.
</td>
</tr>
</tbody>
TimescaleDB and TimescaleDB Toolkit run on Postgres v10, v11, v12, v13, v14, v15, v16, and v17. Currently Postgres 15 and higher are supported.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10| |-----------------------|-|-|-|-|-|-|-|-| | 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌| | 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌| | 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌| | 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌| | 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌| | 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌| | 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌| | 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌ | 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21. These minor versions introduced a breaking binary interface change that, once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22. When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher. Users of Tiger Cloud and platform packages for Linux, Windows, MacOS, Docker, and Kubernetes are unaffected.
You can deploy TimescaleDB and TimescaleDB Toolkit on the following systems:
| Operation system | Version |
|---|---|
| Debian | 13 Trixe, 12 Bookworm, 11 Bullseye |
| Ubuntu | 24.04 Noble Numbat, 22.04 LTS Jammy Jellyfish |
| Red Hat Enterprise | Linux 9, Linux 8 |
| Fedora | Fedora 35, Fedora 34, Fedora 33 |
| Rocky Linux | Rocky Linux 9 (x86_64), Rocky Linux 8 |
| ArchLinux (community-supported) | Check the available packages |
| Operation system | Version |
|---|---|
| Microsoft Windows | 10, 11 |
| Microsoft Windows Server | 2019, 2020 |
| Operation system | Version |
|---|---|
| macOS | From 10.15 Catalina to 14 Sonoma |
===== PAGE: https://docs.tigerdata.com/about/contribute-to-timescale/ =====
TimescaleDB, pgai, pgvectorscale, TimescaleDB Toolkit, and the Tiger Data documentation are all open source. They are available in GitHub for you to use, review, and update. This page shows you where you can add to Tiger Data products.
Tiger Data appreciates any help the community can provide to make its products better! You can:
Head over to the Tiger Data source repositories to learn, review, and help improve our products!
Tiger Data documentation is hosted in the docs GitHub repository and open for contribution from all community members.
See the README and contribution guide for details.
===== PAGE: https://docs.tigerdata.com/about/release-notes/ =====
For information about new updates and improvement to Tiger Data products, see the Changelog. For release notes about our downloadable products, see:
Want to stay up-to-date with new releases? On the main page for each repository
click Watch, select Custom and then check Releases.
===== PAGE: https://docs.tigerdata.com/migrate/livesync-for-postgresql/ =====
You use the source Postgres connector in Tiger Cloud to synchronize all data or specific tables from a Postgres database instance to your service, in real time. You run the connector continuously, turning Postgres into a primary database with your service as a logical replica. This enables you to leverage Tiger Cloud’s real-time analytics capabilities on your replica data.
The source Postgres connector in Tiger Cloud leverages the well-established Postgres logical replication protocol. By relying on this protocol, Tiger Cloud ensures compatibility, familiarity, and a broader knowledge base—making it easier for you to adopt the connector and integrate your data.
You use the source Postgres connector for data synchronization, rather than migration. This includes:
Copy existing data from a Postgres instance to a Tiger Cloud service:
You need at least a 4 CPU/16 GB source database, and a 4 CPU/16 GB target service.
Large tables are still copied using a single connection. Parallel copying is in the backlog.
The connector disables foreign key validation during the sync. For example, if a metrics table refers to
the id column on the tags table, you can still sync only the metrics table without worrying about their
foreign key relationships.
Postgres exposes COPY progress under pg_stat_progress_copy.
Synchronize real-time changes from a Postgres instance to a Tiger Cloud service.
Add and remove tables on demand using the Postgres PUBLICATION interface.
Enable features such as hypertables, columnstore, and continuous aggregates on your logical replica.
Early access: this source Postgres connector is not yet supported for production use. If you have any questions or feedback, talk to us in #livesync in the Tiger Community.
To follow the steps on this page:
You need your connection details.
Install the Postgres client tools on your sync machine.
Ensure that the source Postgres instance and the target Tiger Cloud service have the same extensions installed.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension,
first create the extension on the target Tiger Cloud service before syncing the table.
Services hosted behind a firewall or VPC are not supported. This functionality is on the roadmap.
We recommend that, depending on your query patterns, you create only the necessary indexes on the target Tiger Cloud service.
This works for Postgres databases only as source. TimescaleDB is not yet supported.
The source must be running Postgres 13 or later.
Schema changes must be co-ordinated.
Make compatible changes to the schema in your Tiger Cloud service first, then make the same changes to the source Postgres instance.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension, first create the extension on the target Tiger Cloud service before syncing the table.
There is WAL volume growth on the source Postgres instance during large table copy.
Continuous aggregate invalidation
The connector uses session_replication_role=replica during data replication,
which prevents table triggers from firing. This includes the internal
triggers that mark continuous aggregates as invalid when underlying data
changes.
If you have continuous aggregates on your target database, they do not automatically refresh for data inserted during the migration. This limitation only applies to data below the continuous aggregate's materialization watermark. For example, backfilled data. New rows synced above the continuous aggregate watermark are used correctly when refreshing.
This can lead to:
If the continuous aggregate exists in the source database, best
practice is to add it to the Postgres connector publication. If it only exists on the
target database, manually refresh the continuous aggregate using the force
option of refresh_continuous_aggregate.
This variable holds the connection information for the source database. In the terminal on your migration machine, set the following:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
Tune the Write Ahead Log (WAL) on the RDS/Aurora Postgres source database
In https://console.aws.amazon.com/rds/home#databases:, select the RDS instance to migrate.
Click Configuration, scroll down and note the DB instance parameter group, then click Parameter Groups

Create parameter group, fill in the form with the following values, then click Create.
PostgreSQLDB instance parameter group in your Configuration.Parameter groups, select the parameter group you created, then click Edit.Update the following parameters, then click Save changes.
rds.logical_replication set to 1: record the information needed for logical decoding.wal_sender_timeout set to 0: disable the timeout for the sender process.In RDS, navigate back to your databases, select the RDS instance to migrate, and click Modify.
Scroll down to Database options, select your new parameter group, and click Continue.
Click Apply immediately or choose a maintenance window, then click Modify DB instance.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
Create a user for the source Postgres connector and assign permissions
Create <pg connector username>:
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
You can use an existing user. However, you must ensure that the user has the following permissions.
Grant permissions to create a replication slot:
psql source -c "GRANT rds_replication TO <pg connector username>"
Grant permissions to create a publication:
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
Assign the user permissions on the source database:
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
If the tables you are syncing are not in the public schema, grant the user permissions for each schema you are syncing:
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
On each table you want to sync, make <pg connector username> the owner:
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
You can skip this step if the replicating user is already the owner of the tables.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
Tune the Write Ahead Log (WAL) on the Postgres source database
psql source <<EOF
ALTER SYSTEM SET wal_level='logical';
ALTER SYSTEM SET max_wal_senders=10;
ALTER SYSTEM SET wal_sender_timeout=0;
EOF
This will require a restart of the Postgres source database.
Create a user for the connector and assign permissions
Create <pg connector username>:
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
You can use an existing user. However, you must ensure that the user has the following permissions.
Grant permissions to create a replication slot:
psql source -c "ALTER ROLE <pg connector username> REPLICATION"
Grant permissions to create a publication:
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
Assign the user permissions on the source database:
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
If the tables you are syncing are not in the public schema, grant the user permissions for each schema you are syncing:
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
On each table you want to sync, make <pg connector username> the owner:
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
You can skip this step if the replicating user is already the owner of the tables.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
To sync data from your Postgres database to your Tiger Cloud service using Tiger Cloud Console:
In Tiger Cloud Console, select the service to sync live data to.
Connectors > PostgreSQL.Set wal_level to logical and Update your credentials, then click Continue.Enter your database credentials or a Postgres connection string, then click Connect to database.
This is the connection string for <pg connector username>. Tiger Cloud Console connects to the source database and retrieves the schema information.
Optimize the data to synchronize in hypertables
Select table dropdown, select the tables to sync.Click Select tables + .
Tiger Cloud Console checks the table schema and, if possible, suggests the column to use as the time dimension in a hypertable.
Click Create Connector.
Tiger Cloud Console starts source Postgres connector between the source database and the target service and displays the progress.
Monitor synchronization
1. To view the amount of data replicated, click `Connectors`. The diagram in `Connector data flow` gives you an overview of the connectors you have created, their status, and how much data has been replicated.
1. To review the syncing progress for each table, click `Connectors` > `Source connectors`, then select the name of your connector in the table.
To edit the connector, click Connectors > Source connectors, then select the name of your connector in the table. You can rename the connector, delete or add new tables for syncing.
To pause a connector, click Connectors > Source connectors, then open the three-dot menu on the right and select Pause.
To delete a connector, click Connectors > Source connectors, then open the three-dot menu on the right and select Delete. You must pause the connector before deleting it.
And that is it, you are using the source Postgres connector to synchronize all the data, or specific tables, from a Postgres database instance to your Tiger Cloud service, in real time.
Best practice is to use an Ubuntu EC2 instance hosted in the same region as your Tiger Cloud service to move data. That is, the machine you run the commands on to move your data from your source database to your target Tiger Cloud service.
Before you move your data:
Each Tiger Cloud service has a single Postgres instance that supports the most popular extensions. Tiger Cloud services do not support tablespaces, and there is no superuser associated with a service. Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance can significantly reduce the overall migration window.
To ensure that maintenance does not run while migration is in progress, best practice is to adjust the maintenance window.
Ensure that the source Postgres instance and the target Tiger Cloud service have the same extensions installed.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension, first create the extension on the target Tiger Cloud service before syncing the table.
For a better experience, use a 4 CPU/16GB EC2 instance or greater to run the source Postgres connector.
This includes psql, pg_dump, pg_dumpall, and vacuumdb commands.
The schema is not migrated by the source Postgres connector, you use pg_dump/pg_restore to migrate it.
This works for Postgres databases only as source. TimescaleDB is not yet supported.
The source must be running Postgres 13 or later.
Schema changes must be co-ordinated.
Make compatible changes to the schema in your Tiger Cloud service first, then make the same changes to the source Postgres instance.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension, first create the extension on the target Tiger Cloud service before syncing the table.
There is WAL volume growth on the source Postgres instance during large table copy.
Continuous aggregate invalidation
The connector uses session_replication_role=replica during data replication,
which prevents table triggers from firing. This includes the internal
triggers that mark continuous aggregates as invalid when underlying data
changes.
If you have continuous aggregates on your target database, they do not automatically refresh for data inserted during the migration. This limitation only applies to data below the continuous aggregate's materialization watermark. For example, backfilled data. New rows synced above the continuous aggregate watermark are used correctly when refreshing.
This can lead to:
If the continuous aggregate exists in the source database, best
practice is to add it to the Postgres connector publication. If it only exists on the
target database, manually refresh the continuous aggregate using the force
option of refresh_continuous_aggregate.
The <user> in the SOURCE connection must have the replication role granted in order to create a replication slot.
These variables hold the connection information for the source database and target Tiger Cloud service. In Terminal on your migration machine, set the following:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
Update the DB instance parameter group for your source database
In https://console.aws.amazon.com/rds/home#databases:, select the RDS instance to migrate.
Click Configuration, scroll down and note the DB instance parameter group, then click Parameter groups

Create parameter group, fill in the form with the following values, then click Create.
PostgreSQLDB instance parameter group in your Configuration.Parameter groups, select the parameter group you created, then click Edit.Update the following parameters, then click Save changes.
rds.logical_replication set to 1: record the information needed for logical decoding.wal_sender_timeout set to 0: disable the timeout for the sender process.In RDS, navigate back to your databases, select the RDS instance to migrate, and click Modify.
Scroll down to Database options, select your new parameter group, and click Continue.
Click Apply immediately or choose a maintenance window, then click Modify DB instance.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
Tune the Write Ahead Log (WAL) on the Postgres source database
psql source <<EOF
ALTER SYSTEM SET wal_level='logical';
ALTER SYSTEM SET max_wal_senders=10;
ALTER SYSTEM SET wal_sender_timeout=0;
EOF
This will require a restart of the Postgres source database.
Create a user for the connector and assign permissions
Create <pg connector username>:
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
You can use an existing user. However, you must ensure that the user has the following permissions.
Grant permissions to create a replication slot:
psql source -c "ALTER ROLE <pg connector username> REPLICATION"
Grant permissions to create a publication:
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
Assign the user permissions on the source database:
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
If the tables you are syncing are not in the public schema, grant the user permissions for each schema you are syncing:
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
On each table you want to sync, make <pg connector username> the owner:
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
You can skip this step if the replicating user is already the owner of the tables.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
Use pg_dump to:
Download the schema from the source database
pg_dump source \
--no-privileges \
--no-owner \
--no-publications \
--no-subscriptions \
--no-table-access-method \
--no-tablespaces \
--schema-only \
--file=schema.sql
Apply the schema on the target service
psql target -f schema.sql
For efficient querying and analysis, you can convert tables which contain time-series or events data, and tables that are already partitioned using Postgres declarative partition into hypertables.
Run the following on each table in the target Tiger Cloud service to convert it to a hypertable:
psql -X -d target -c "SELECT public.create_hypertable('', by_range('<partition column>', '<chunk interval>'::interval));"
For example, to convert the metrics table into a hypertable with time as a partition column and 1 day as a partition interval:
psql -X -d target -c "SELECT public.create_hypertable('public.metrics', by_range('time', '1 day'::interval));"
Rename the partition and create a new regular table with the same name as the partitioned table, then convert to a hypertable:
psql target -f - <<'EOF'
BEGIN;
ALTER TABLE public.events RENAME TO events_part;
CREATE TABLE public.events(LIKE public.events_part INCLUDING ALL);
SELECT create_hypertable('public.events', by_range('time', '1 day'::interval));
COMMIT;
EOF
After the schema is migrated, you CREATE PUBLICATION on the source database that
specifies the tables to synchronize.
A PUBLICATION enables you to synchronize some or all the tables in the schema or database.
CREATE PUBLICATION <publication_name> FOR TABLE , ;
To add tables after to an existing publication, use [ALTER PUBLICATION][alter-publication]**
ALTER PUBLICATION <publication_name> ADD TABLE ;
Publish the Postgres declarative partitioned table
ALTER PUBLICATION <publication_name> SET(publish_via_partition_root=true);
To convert partitioned table to hypertable, follow Convert partitions and tables with time-series data into hypertables.
Stop syncing a table in the PUBLICATION, use DROP TABLE
ALTER PUBLICATION <publication_name> DROP TABLE ;
You use the source Postgres connector docker image to synchronize changes in real time from a Postgres database instance to a Tiger Cloud service:
As you run the source Postgres connector continuously, best practice is to run it as a Docker daemon.
docker run -d --rm --name livesync timescale/live-sync:v0.1.25 run \
--publication <publication_name> --subscription <subscription_name> \
--source source --target target --table-map
--publication: The name of the publication as you created in the previous step. To use multiple publications, repeat the --publication flag.
--subscription: The name that identifies the subscription on the target Tiger Cloud service.
--source: The connection string to the source Postgres database.
--target: The connection string to the target Tiger Cloud service.
--table-map: (Optional) A JSON string that maps source tables to target tables. If not provided, the source and target table names are assumed to be the same.
For example, to map the source table metrics to the target table metrics_data:
--table-map '{"source": {"schema": "public", "table": "metrics"}, "target": {"schema": "public", "table": "metrics_data"}}'
To map only the schema, use:
--table-map '{"source": {"schema": "public"}, "target": {"schema": "analytics"}}'
This flag can be repeated for multiple table mappings.
Once the source Postgres connector is running as a docker daemon, you can also capture the logs:
docker logs -f livesync
List the tables being synchronized by the source Postgres connector using the _ts_live_sync.subscription_rel table in the target Tiger Cloud service:
psql target -c "SELECT * FROM _ts_live_sync.subscription_rel"
You see something like the following:
| subname | pubname | schemaname | tablename | rrelid | state | lsn | updated_at | last_error | created_at | rows_copied | approximate_rows | bytes_copied | approximate_size | target_schema | target_table | |----------|---------|-------------|-----------|--------|-------|------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------|-------------|------------------|--------------|------------------|---------------|-------------| |livesync | analytics | public | metrics | 20856 | r | 6/1A8CBA48 | 2025-06-24 06:16:21.434898+00 | | 2025-06-24 06:03:58.172946+00 | 18225440 | 18225440 | 1387359359 | 1387359359 | public | metrics |
The state column indicates the current state of the table synchronization.
Possible values for state are:
| state | description | |-------|-------------| | d | initial table data sync | | f | initial table data sync completed | | s | catching up with the latest changes | | r | table is ready, syncing live changes |
To see the replication lag, run the following against the SOURCE database:
psql source -f - <<'EOF'
SELECT
slot_name,
pg_size_pretty(pg_current_wal_flush_lsn() - confirmed_flush_lsn) AS lag
FROM pg_replication_slots
WHERE slot_name LIKE 'live_sync_%' AND slot_type = 'logical'
EOF
To add tables, use ALTER PUBLICATION .. ADD TABLE**
ALTER PUBLICATION <publication_name> ADD TABLE ;
To remove tables, use ALTER PUBLICATION .. DROP TABLE**
ALTER PUBLICATION <publication_name> DROP TABLE ;
If you have a large table, you can run ANALYZE on the target Tiger Cloud service
to update the table statistics after the initial sync is complete.
This helps the query planner make better decisions for query execution plans.
vacuumdb --analyze --verbose --dbname=target
Stop the source Postgres connector
docker stop live-sync
(Optional) Reset sequence nextval on the target Tiger Cloud service
The source Postgres connector does not automatically reset the sequence nextval on the target Tiger Cloud service.
Run the following script to reset the sequence for all tables that have a serial or identity column in the target Tiger Cloud service:
psql target -f - <<'EOF'
DO $$
DECLARE
rec RECORD;
BEGIN
FOR rec IN (
SELECT
sr.target_schema AS table_schema,
sr.target_table AS table_name,
col.column_name,
pg_get_serial_sequence(
sr.target_schema || '.' || sr.target_table,
col.column_name
) AS seqname
FROM _ts_live_sync.subscription_rel AS sr
JOIN information_schema.columns AS col
ON col.table_schema = sr.target_schema
AND col.table_name = sr.target_table
WHERE col.column_default LIKE 'nextval(%' -- only serial/identity columns
) LOOP
EXECUTE format(
'SELECT setval(%L,
COALESCE((SELECT MAX(%I) FROM %I.%I), 0) + 1,
false
);',
rec.seqname, -- the sequence identifier
rec.column_name, -- the column to MAX()
rec.table_schema, -- schema for MAX()
rec.table_name -- table for MAX()
);
END LOOP;
END;
$$ LANGUAGE plpgsql;
EOF
Use the --drop flag to remove the replication slots created by the source Postgres connector on the source database.
docker run -it --rm --name livesync timescale/live-sync:v0.1.25 run \
--publication <publication_name> --subscription <subscription_name> \
--source source --target target \
--drop
===== PAGE: https://docs.tigerdata.com/migrate/livesync-for-s3/ =====
You use the source S3 connector in Tiger Cloud to synchronize CSV and Parquet files from an S3 bucket to your Tiger Cloud service in real time. The connector runs continuously, enabling you to leverage Tiger Cloud as your analytics database with data constantly synced from S3. This lets you take full advantage of Tiger Cloud's real-time analytics capabilities without having to develop or manage custom ETL solutions between S3 and Tiger Cloud.
You can use the source S3 connector to synchronize your existing and new data. Here's what the connector can do:
Sync data from an S3 bucket instance to a Tiger Cloud service:
Sync data from multiple file formats:
The source S3 connector offers an option to enable a hypertable during the file-to-table schema mapping setup. You can enable columnstore and continuous aggregates through the SQL editor once the connector has started running.
The connector offers a default 1-minute polling interval. This means that Tiger Cloud checks the S3 source every minute for new data. You can customize this interval by setting up a cron expression.
The source S3 connector continuously imports data from an Amazon S3 bucket into your database. It monitors your S3 bucket for new files matching a specified pattern and automatically imports them into your designated database table.
Note: the connector currently only syncs existing and new files—it does not support updating or deleting records based on updates and deletes from S3 to tables in a Tiger Cloud service.
Early access: this source S3 connector is not supported for production use. If you have any questions or feedback, talk to us in #livesync in the Tiger Community.
To follow the steps on this page:
You need your connection details.
Directory buckets are not supported.
Configure access credentials for the S3 bucket. The following credentials are supported:
Configure the trust policy. Set the:
Principal: arn:aws:iam::142548018081:role/timescale-s3-connections.
ExternalID: set to the Tiger Cloud project and Tiger Cloud service ID of the
service you are syncing to in the format <projectId>/<serviceId>.
This is to avoid the confused deputy problem.
Give the following access permissions:
s3:GetObject.
s3:ListBucket.
File naming:
Files must follow lexicographical ordering conventions. Files with names that sort earlier than already-processed files are permanently skipped. Example: if file_2024_01_15.csv has been processed, a file named file_2024_01_10.csv added later will never be synced.
Recommended naming patterns: timestamps (for example, YYYY-MM-DD-HHMMSS), sequential numbers with fixed padding (for example, file_00001, file_00002).
CSV:
To increase this limit, contact sales@tigerdata.com
,, you can choose a different delimiterParquet:
Sync iteration:
To prevent system overload, the connector tracks up to 100 files for each sync iteration. Additional checks only fill empty queue slots.
To sync data from your S3 bucket to your Tiger Cloud service using Tiger Cloud Console:
In Tiger Cloud Console, select the service to sync live data to.
Connectors > Amazon S3.Set the Bucket name and Authentication method, then click Continue.
For instruction on creating the IAM role to connect your S3 bucket, click Learn how. Tiger Cloud Console connects to the source bucket.
In Define files to sync, choose the File type and set the Glob pattern.
Use the following patterns:
<folder name>/*: match all files in a folder. Also, any pattern ending with / is treated as /*.<folder name>/**: match all recursively.<folder name>/**/*.csv: match a specific file type.The source S3 connector uses prefix filters where possible, place patterns carefully at the end of your glob expression. AWS S3 doesn't support complex filtering. If your expression filters too many files, the list operation may time out.
Click the search icon. You see the files to sync. Click Continue.
Optimize the data to synchronize in hypertables
Tiger Cloud Console checks the file schema and, if possible, suggests the column to use as the time dimension in a hypertable.
Create a new table for your data or Ingest data to an existing table.Data type for each column, then click Continue.Click Start Connector.
Tiger Cloud Console starts the connection between the source database and the target service and displays the progress.
Monitor synchronization
Connectors. The diagram in Connector data flow gives you an overview of the connectors you have created, their status, and how much data has been replicated.Connectors > Source connectors, then select the name of your connector in the table.Manage the connector
Connectors > Source connectors. Open the three-dot menu next to your connector in the table, then click Pause.Connectors > Source connectors. Open the three-dot menu next to your connector in the table, then click Edit and scroll down to Modify your Connector. You must pause the connector before editing it.Connectors > Source connectors, then open the three-dot menu on the right and select an option. You must pause the connector before deleting it.And that is it, you are using the source S3 connector to synchronize all the data, or specific files, from an S3 bucket to your Tiger Cloud service in real time.
===== PAGE: https://docs.tigerdata.com/migrate/livesync-for-kafka/ =====
You use the Kafka source connector in Tiger Cloud to stream events from Kafka into your service. Tiger Cloud connects to your Confluent Cloud Kafka cluster and Schema Registry using SASL/SCRAM authentication and service account–based API keys. Only the Avro format is currently supported with some limitations.
This page explains how to connect Tiger Cloud to your Confluence Cloud Kafka cluster.
Early access: the Kafka source connector is not yet supported for production use.
To follow the steps on this page:
You need your connection details.
Take the following steps to prepare your Kafka cluster for connection to Tiger Cloud:
Create a service account
If you already have a service account for Tiger Cloud, you can reuse it. To create a new service account:
Access control > Service accounts >Add service account.Enter the following details:
tigerdata-accessService account for the Tiger Cloud source connectorAdd the service account owner role, then click Next.
Select a role assignment, then click Add
Click Next, then click Create service account.
Create API keys
Home > Environments > Select your environment > Select your cluster.Cluster overview in the left sidebar, select API Keys.Add key, choose Service Account and click Next.tigerdata-access, then click Next.Operation and select the following Permissions, then click Next:
Resource type: ClusterOperation: DESCRIBEPermission: ALLOWDownload and continue, then securely store the ACL.Resource type: TopicTopic name: Select the topics that Tiger Cloud should readPattern type: LITERALOperation: READPermission: ALLOWResource type: Consumer groupConsumer group ID: tigerdata-kafka/<tiger_cloud_project_id>. See Find your connection details for where to find your project IDPattern type: PREFIXEDOperation: READPermission: ALLOW
You need these to configure your Kafka source connector in Tiger Cloud.Tiger Cloud requires access to the Schema Registry to fetch schemas for Kafka topics. To configure the Schema Registry:
Navigate to Schema Registry
In Confluent Cloud, click Environments and select your environment, then click Stream Governance.
Create a Schema Registry API key
API Keys, then click Add API Key.Service Account, select tigerdata-access, then click Next.Resource scope, choose Schema Registry, select the default environment, then click Next.In Create API Key, add the following, then click Create API Key :
Name: tigerdata-schema-registry-accessDescription: API key for Tiger Cloud schema registry accessClick Download API Key and securely store the API key and secret, then click Complete.
Assign roles for Schema Registry
Access control > Accounts & access > Service accounts.tigerdata-access service account.In the Access tab, add the following role assignments for All schema subjects:
ResourceOwner on the service account.DeveloperRead on schema subjects.Choose All schema subjects or restrict to specific subjects as required.
Save the role assignments.
Your Confluent Cloud Schema Registry is now accessible to Tiger Cloud using the API key and secret.
Take the following steps to create a Kafka source connector in Tiger Cloud Console.
Connectors > Source connectors. Click New Connector, then select KafkaEnter the name of your cluster in Confluent Cloud and the information from the first api-key-*.txt that you
downloaded, then click `Authenticate`.
Enter the service account ID and the information from the second api-key-*.txt that you
downloaded, then click Authenticate.
Select topics to sync
Add the schema and table, map the columns in the table, and click Create connector.
Your Kafka connector is configured and ready to stream events.
The following Avro schema types are not supported:
Multi-type non-nullable unions are blocked.
Examples:
Multiple type union:
{
"type": "record",
"name": "Message",
"fields": [
{"name": "content", "type": ["string", "bytes", "null"]}
]
}
Union as root schema:
["null", "string"]
Referencing a previously defined named type by name, instead of inline, is not supported.
Examples:
Named type definition:
{
"type": "record",
"name": "Address",
"fields": [
{"name": "street", "type": "string"},
{"name": "city", "type": "string"}
]
}
Failing reference:
{
"type": "record",
"name": "Person",
"fields": [
{"name": "name", "type": "string"},
{"name": "address", "type": "Address"}
]
}
Only the logical types in the hardcoded supported list are supported. This includes:
decimal, date, time-millis, time-micros
timestamp-millis, timestamp-micros, timestamp-nanos
local-timestamp-millis, local-timestamp-micros, local-timestamp-nanos
uuid, duration
Unsupported examples:
{
"type": "int",
"logicalType": "date-time"
}
{
"type": "string",
"logicalType": "json"
}
{
"type": "bytes",
"logicalType": "custom-type"
}
===== PAGE: https://docs.tigerdata.com/migrate/upload-file-using-console/ =====
You can upload files into your service using Tiger Cloud Console. This page explains how to upload CSV, Parquet, and text files, from your local machine and from an S3 bucket.
Tiger Cloud Console enables you to drag and drop files to upload from your local machine.
Early access
To follow the steps on this page:
To upload a CSV file to your service:
Actions > Import data > Upload your files > Upload CSV fileProcess CSV fileWhen the processing is completed, to find the data your imported, click Explorer.
To upload a Parquet file to your service:
Actions > Import data > Upload your files > Upload Parquet fileProcess Parquet fileWhen the processing is completed, to find the data your imported, click Explorer.
To upload a TXT or MD file to your service:
Actions > Import data > Upload your files > Upload Text fileProvide a name to create a new table, or select an existing table to add data to.
Upload filesWhen the upload is finished, find your data imported to a new or existing table in Explorer.
Tiger Cloud Console enables you to upload CSV and Parquet files, including archives compressed using GZIP and ZIP, by connecting to an S3 bucket.
This feature is not available under the Free pricing plan.
To follow the steps on this page:
Create a target Tiger Cloud service with real-time analytics enabled.
Ensure access to a standard Amazon S3 bucket containing your data files.
Configure access credentials for the S3 bucket. The following credentials are supported:
To import a CSV file from an S3 bucket:
Select your service in Console, then click Actions > Import data > Explore import options > Import from S3
Select your file in the S3 bucket
CSV in the file type dropdown.IAM role and provide the role.Public.Click Continue.
Configure the import
Process CSV fileWhen the processing is completed, to find the data your imported, click Explorer.
To import a Parquet file from an S3 bucket:
Select your service in Console, then click Actions > Import from S3
Select your file in the S3 bucket
Parquet in the file type dropdown.IAM role and provide the role.Public.Click Continue.
Configure the import
Create a new table for your data or Ingest data to an existing table.Click Process Parquet file
When the processing is completed, to find the data your imported, click Explorer.
And that is it, you have imported your data to your Tiger Cloud service.
===== PAGE: https://docs.tigerdata.com/migrate/upload-file-using-terminal/ =====
This page shows you how to upload CSV, MySQL, and Parquet files from a source machine into your service using the terminal.
The CSV file format is widely used for data migration. This page shows you how to import data into your Tiger Cloud service from a CSV file using the terminal.
To follow the procedure on this page you need to:
This procedure also works for self-hosted TimescaleDB.
Install Go v1.13 or later
Install timescaledb-parallel-copy
timescaledb-parallel-copy improves performance for large datasets by parallelizing the import process. It also preserves row order and uses a round-robin approach to optimize memory management and disk operations.
To verify your installation, run timescaledb-parallel-copy --version.
TIMESTAMPZ data type.For faster data transfer, best practice is that your target service and the system running the data import are in the same region.
To import data from a CSV file:
Set up your service connection string
This variable holds the connection information for the target Tiger Cloud service.
In the terminal on the source machine, set the following:
export TARGET=postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require
See where to find your connection details.
Create a hypertable with a schema that is compatible with the data in your parquet file. For example, if your parquet file contains the columns ts, location, and temperature with typesTIMESTAMP, STRING, and DOUBLE:
TimescaleDB v2.20 and above:
psql target -c "CREATE TABLE ( \
ts TIMESTAMPTZ NOT NULL, \
location TEXT NOT NULL, \
temperature DOUBLE PRECISION NULL \
) WITH (timescaledb.hypertable, timescaledb.partition_column = 'ts');"
- TimescaleDB v2.19.3 and below:
1. Create a new regular table:
```sql
psql target -c "CREATE TABLE ( \
ts TIMESTAMPTZ NOT NULL, \
location TEXT NOT NULL, \
temperature DOUBLE PRECISION NULL \
);"
```
1. Convert the empty table to a hypertable:
In the following command, replace `` with the name of the table you just created, and `<COLUMN_NAME>` with the partitioning column in ``.
```sql
psql target -c "SELECT create_hypertable('', by_range('<COLUMN_NAME>'))"
```
1. **Import your data**
In the folder containing your CSV files, either:
- Use [timescaledb-parallel-copy][install-parallel-copy]:
bash
timescaledb-parallel-copy \
--connection target \
--table \
--file <FILE_NAME>.csv \
--workers <NUM_WORKERS> \
--reporting-period 30s
For the best performances while avoiding resource competition, set `<NUM_WORKERS>` to twice the
number of CPUs in your service, but less than the available CPU cores.
For self-hosted TimescaleDB, set `target` to `host=localhost user=postgres sslmode=disable`
- Use `psql`:
bash psql target \c \COPY FROM .csv CSV"
`psql` COPY is single-threaded, and may be slower for large datasets.
1. **Verify the data was imported correctly into your service**
And that is it, you have imported your data from a CSV file.
MySQL is an open-source relational database management system (RDBMS). This page shows you how to import data into your Tiger Cloud service from a database running on MySQL version 8 or earlier.
## Prerequisites
To follow the procedure on this page you need to:
* Create a [target Tiger Cloud service][create-service].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
- [Install Docker][install-docker] on your migration machine.
This machine needs sufficient space to store the buffered changes that occur while your data is
being copied. This space is proportional to the amount of new uncompressed data being written to
the Tiger Cloud service during migration. A general rule of thumb is between 100GB and 500GB.
For faster data transfer, best practice is for your source database, target service, and
the system running the data import are in the same region .
## Import data into your service
To import data from a MySQL database:
1. **Set up the connection string for your target service**
This variable holds the connection information for the target Tiger Cloud service.
In the terminal on the source machine, set the following:
bash
export TARGET=postgres://tsdbadmin:@:/tsdb?sslmode=require
See where to [find your connection details][connection-info].
1. **Set up the connection string for your source database**
bash SOURCE="mysql://:@:/?sslmode=require"
where:
- `<mysql_username>`: your MySQL username
- `<mysql_password>`: your MySQL password
- `<mysql_host>`: the MySQL server hostname or IP address
- `<mysql_port>`: the MySQL server port, the default is 3306
- `<mysql_database>`: the name of your MySQL database
1. **Import your data**
On your data import machine, run the following command:
```docker
docker run -it ghcr.io/dimitri/pgloader:latest pgloader
--no-ssl-cert-verification \
"source" \
"target"
```
1. **Verify the data was imported correctly into your service**
And that is it, you have imported your data from MySQL.
[Apache Parquet][apache-parquet] is a free and open-source column-oriented data storage format in the
Apache Hadoop ecosystem. It provides efficient data compression and encoding schemes with
enhanced performance to handle complex data in bulk. This page shows you how to import data into your Tiger Cloud service from a Parquet file.
## Prerequisites
To follow the procedure on this page you need to:
* Create a [target Tiger Cloud service][create-service].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
- [Install DuckDB][install-duckdb] on the source machine where the Parquet file is located.
- Ensure that the time column in the Parquet file uses the `TIMESTAMP` data type.
For faster data transfer, best practice is that your target service and the system
running the data import are in the same region.
## Import data into your service
To import data from a Parquet file:
1. **Set up your service connection string**
This variable holds the connection information for the target Tiger Cloud service.
In the terminal on the source machine, set the following:
bash export TARGET=postgres://tsdbadmin:@:/tsdb?sslmode=require
See where to [find your connection details][connection-info].
1. **Create a [hypertable][hypertable-docs] to hold your data**
Create a hypertable with a schema that is compatible with the data in your parquet file. For example, if your parquet file contains the columns `ts`, `location`, and `temperature` with types`TIMESTAMP`, `STRING`, and `DOUBLE`:
- TimescaleDB v2.20 and above:
```sql
psql target -c "CREATE TABLE ( \
ts TIMESTAMPTZ NOT NULL, \
location TEXT NOT NULL, \
temperature DOUBLE PRECISION NULL \
) WITH (timescaledb.hypertable, timescaledb.partition_column = 'ts');"
- TimescaleDB v2.19.3 and below:
1. Create a new regular table:
```sql
psql target -c "CREATE TABLE ( \
ts TIMESTAMPTZ NOT NULL, \
location TEXT NOT NULL, \
temperature DOUBLE PRECISION NULL \
);"
```
1. Convert the empty table to a hypertable:
In the following command, replace `` with the name of the table you just created, and `<COLUMN_NAME>` with the partitioning column in ``.
```sql
psql target -c "SELECT create_hypertable('', by_range('<COLUMN_NAME>'))"
```
1. **Set up a DuckDB connection to your service**
1. In a terminal on the source machine with your Parquet files, start a new DuckDB interactive session:
```bash
duckdb
```
1. Connect to your service in your DuckDB session:
```bash
ATTACH '<Paste the value of target here' AS db (type postgres);
```
`target` is the connection string you used to connect to your service using psql.
1. **Import data from Parquet to your service**
1. In DuckDB, upload the table data to your service
```bash
COPY db. FROM '<FILENAME>.parquet' (FORMAT parquet);
```
Where:
- ``: the hypertable you created to import data to
- `<FILENAME>`: the Parquet file to import data from
1. Exit the DuckDB session:
```bash
EXIT;
```
1. **Verify the data was imported correctly into your service**
In your `psql` session, view the data in ``:
sql SELECT * FROM ;
And that is it, you have imported your data from a Parquet file to your Tiger Cloud service.
===== PAGE: https://docs.tigerdata.com/migrate/pg-dump-and-restore/ =====
# Migrate with downtime
You use downtime migration to move less than 100GB of data from a self-hosted database to a Tiger Cloud service.
Downtime migration uses the native Postgres [`pg_dump`][pg_dump] and [`pg_restore`][pg_restore] commands.
If you are migrating from self-hosted TimescaleDB, this method works for hypertables compressed into the columnstore without having
to convert the data back to the rowstore before you begin.
If you want to migrate more than 400GB of data, create a [Tiger Cloud Console support request](https://console.cloud.timescale.com/dashboard/support), or
send us an email at [support@tigerdata.com](mailto:support@tigerdata.com) saying how much data you want to migrate. We pre-provision
your Tiger Cloud service for you.
However, downtime migration for large amounts of data takes a large amount of time. For more than 100GB of data, best
practice is to follow [live migration].
This page shows you how to move your data from a self-hosted database to a Tiger Cloud service using
shell commands.
## Prerequisites
Best practice is to use an [Ubuntu EC2 instance][create-ec2-instance] hosted in the same region as your
Tiger Cloud service to move data. That is, the machine you run the commands on to move your
data from your source database to your target Tiger Cloud service.
Before you move your data:
- Create a target [Tiger Cloud service][created-a-database-service-in-timescale].
Each Tiger Cloud service has a single Postgres instance that supports the
[most popular extensions][all-available-extensions]. Tiger Cloud services do not support tablespaces,
and there is no superuser associated with a service.
Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance
can significantly reduce the overall migration window.
- To ensure that maintenance does not run while migration is in progress, best practice is to [adjust the maintenance window][adjust-maintenance-window].
- Install the Postgres client tools on your migration machine.
This includes `psql`, `pg_dump`, and `pg_dumpall`.
- Install the GNU implementation of `sed`.
Run `sed --version` on your migration machine. GNU sed identifies itself
as GNU software, BSD sed returns `sed: illegal option -- -`.
### Migrate to Tiger Cloud
To move your data from a self-hosted database to a Tiger Cloud service:
This section shows you how to move your data from self-hosted TimescaleDB to a Tiger Cloud service
using `pg_dump` and `psql` from Terminal.
## Prepare to migrate
1. **Take the applications that connect to the source database offline**
The duration of the migration is proportional to the amount of data stored in your database. By
disconnection your app from your database you avoid and possible data loss.
1. **Set your connection strings**
These variables hold the connection information for the source database and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
## Align the version of TimescaleDB on the source and target
1. Ensure that the source and target databases are running the same version of TimescaleDB.
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB](https://docs.tigerdata.com/self-hosted/latest/upgrades/).
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Migrate the roles from TimescaleDB to your Tiger Cloud service
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
1. **Dump the roles from your source database**
Export your role-based security hierarchy. `<db_name>` has the same value as `<db_name>` in `source`.
I know, it confuses me as well.
bash pg_dumpall -d "source"
-l <db_name>
--quote-all-identifiers \
--roles-only \
--file=roles.sql
If you only use the default `postgres` role, this step is not necessary.
1. **Remove roles with superuser access**
Tiger Cloud service do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "tsdbadmin";/d' \ -e '/ALTER ROLE "tsdbadmin"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Dump the source database schema and data**
The `pg_dump` flags remove superuser access and tablespaces from your data. When you run
`pgdump`, check the run time, [a long-running `pg_dump` can cause issues][long-running-pgdump].
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information,
see [dumping with concurrency][dumping-with-concurrency] and [restoring with concurrency][restoring-with-concurrency].
## Upload your data to the target Tiger Cloud service
This command uses the [timescaledb_pre_restore] and [timescaledb_post_restore] functions to put your database in the
correct state.
bash psql target -v ON_ERROR_STOP=1 --echo-errors \ -f roles.sql \ -c "SELECT timescaledb_pre_restore();" \ -f dump.sql \ -c "SELECT timescaledb_post_restore();"
## Validate your Tiger Cloud service and restart your app
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
And that is it, you have migrated your data from a self-hosted instance running TimescaleDB to a Tiger Cloud service.
This section shows you how to move your data from self-hosted Postgres to a Tiger Cloud service
using `pg_dump` and `psql` from Terminal.
Migration from Postgres moves the data only. You must manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention] after the migration is complete. You enable Tiger Cloud features while your database is offline.
## Prepare to migrate
1. **Take the applications that connect to the source database offline**
The duration of the migration is proportional to the amount of data stored in your database. By
disconnection your app from your database you avoid and possible data loss.
1. **Set your connection strings**
These variables hold the connection information for the source database and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Migrate the roles from TimescaleDB to your Tiger Cloud service
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
1. **Dump the roles from your source database**
Export your role-based security hierarchy. `<db_name>` has the same value as `<db_name>` in `source`.
I know, it confuses me as well.
bash pg_dumpall -d "source"
-l <db_name>
--quote-all-identifiers \
--roles-only \
--file=roles.sql
If you only use the default `postgres` role, this step is not necessary.
1. **Remove roles with superuser access**
Tiger Cloud service do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "tsdbadmin";/d' \ -e '/ALTER ROLE "tsdbadmin"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Dump the source database schema and data**
The `pg_dump` flags remove superuser access and tablespaces from your data. When you run
`pgdump`, check the run time, [a long-running `pg_dump` can cause issues][long-running-pgdump].
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information,
see [dumping with concurrency][dumping-with-concurrency] and [restoring with concurrency][restoring-with-concurrency].
## Upload your data to the target Tiger Cloud service
bash psql target -v ON_ERROR_STOP=1 --echo-errors \ -f roles.sql \ -f dump.sql
## Validate your Tiger Cloud service and restart your app
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
And that is it, you have migrated your data from a self-hosted instance running Postgres to a Tiger Cloud service.
To migrate your data from an Amazon RDS/Aurora Postgres instance to a Tiger Cloud service, you extract the data to an intermediary
EC2 Ubuntu instance in the same AWS region as your RDS/Aurora Postgres instance. You then upload your data to a Tiger Cloud service.
To make this process as painless as possible, ensure that the intermediary machine has enough CPU and disk space to
rapidLy extract and store your data before uploading to Tiger Cloud.
Migration from RDS/Aurora Postgres moves the data only. You must manually enable Tiger Cloud features like
[hypertables][about-hypertables], [data compression][data-compression] or [data retention][data-retention] after the migration is complete. You enable Tiger Cloud
features while your database is offline.
This section shows you how to move your data from a Postgres database running in an Amazon RDS/Aurora Postgres instance to a
Tiger Cloud service using `pg_dump` and `psql` from Terminal.
## Create an intermediary EC2 Ubuntu instance
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. Click `Actions` > `Set up EC2 connection`.
Press `Create EC2 instance` and use the following settings:
- **AMI**: Ubuntu Server.
- **Key pair**: use an existing pair or create a new one that you will use to access the intermediary machine.
- **VPC**: by default, this is the same as the database instance.
- **Configure Storage**: adjust the volume to at least the size of RDS/Aurora Postgres instance you are migrating from.
You can reduce the space used by your data on Tiger Cloud using [Hypercore][hypercore].
1. Click `Lauch instance`. AWS creates your EC2 instance, then click `Connect to instance` > `SSH client`.
Follow the instructions to create the connection to your intermediary EC2 instance.
## Install the psql client tools on the intermediary instance
1. Connect to your intermediary EC2 instance. For example:
sh ssh -i ".pem" ubuntu@
1. On your intermediary EC2 instance, install the Postgres client.
sh sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list' wget -qO- https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo tee /etc/apt/trusted.gpg.d/pgdg.asc &>/dev/null sudo apt update sudo apt install postgresql-client-16 -y # "postgresql-client-16" if your source DB is using PG 16. psql --version && pg_dump --version
Keep this terminal open, you need it to connect to the RDS/Aurora Postgres instance for migration.
## Set up secure connectivity between your RDS/Aurora Postgres and EC2 instances
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. Scroll down to `Security group rules (1)` and select the `EC2 Security Group - Inbound` group. The
`Security Groups (1)` window opens. Click the `Security group ID`, then click `Edit inbound rules`
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/rds-add-security-rule-to-ec2-instance.svg"
alt="Create security group rule to enable RDS/Aurora Postgres EC2 connection"/>
1. On your intermediary EC2 instance, get your local IP address:
sh ec2metadata --local-ipv4
Bear with me on this one, you need this IP address to enable access to your RDS/Aurora Postgres instance.
1. In `Edit inbound rules`, click `Add rule`, then create a `PostgreSQL`, `TCP` rule granting access
to the local IP address for your EC2 instance (told you :-)). Then click `Save rules`.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/rds-add-inbound-rule-for-ec2-instance.png"
alt="Create security rule to enable RDS/Aurora Postgres EC2 connection"/>
## Test the connection between your RDS/Aurora Postgres and EC2 instances
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. On your intermediary EC2 instance, use the values of `Endpoint`, `Port`, `Master username`, and `DB name`
to create the postgres connectivity string to the `SOURCE` variable.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/migrate-source-rds-instance.svg"
alt="Record endpoint, port, VPC details"/>
sh export SOURCE="postgres://:@:/"
The value of `Master password` was supplied when this RDS/Aurora Postgres instance was created.
1. Test your connection:
sh psql -d source
You are connected to your RDS/Aurora Postgres instance from your intermediary EC2 instance.
## Migrate your data to your Tiger Cloud service
To securely migrate data from your RDS instance:
## Prepare to migrate
1. **Take the applications that connect to the RDS instance offline**
The duration of the migration is proportional to the amount of data stored in your database.
By disconnection your app from your database you avoid and possible data loss. You should also ensure that your
source RDS instance is not receiving any DML queries.
1. **Connect to your intermediary EC2 instance**
For example:
sh ssh -i ".pem" ubuntu@
1. **Set your connection strings**
These variables hold the connection information for the RDS instance and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET=postgres://tsdbadmin:@:/tsdb?sslmode=require
You find the connection information for `SOURCE` in your RDS configuration. For `TARGET` in the configuration file you
downloaded when you created the Tiger Cloud service.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Migrate roles from RDS to your Tiger Cloud service
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
1. **Dump the roles from your RDS instance**
Export your role-based security hierarchy. If you only use the default `postgres` role, this
step is not necessary.
bash pg_dumpall -d "source"
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
AWS RDS does not allow you to export passwords with roles. You assign passwords to these roles
when you have uploaded them to your Tiger Cloud service.
1. **Remove roles with superuser access**
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "rds/d' \ -e '/ALTER ROLE "rds/d' \ -e '/TO "rds/d' \ -e '/GRANT "rds/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Upload the roles to your Tiger Cloud service**
bash psql -X -d "target"
-v ON_ERROR_STOP=1 \
--echo-errors \
-f roles.sql
1. **Manually assign passwords to the roles**
AWS RDS did not allow you to export passwords with roles. For each role, use the following command to manually
assign a password to a role:
bash
psql target -c "ALTER ROLE <role name> WITH PASSWORD '<highly secure password>';"
```
The pg_dump flags remove superuser access and tablespaces from your data. When you run
pgdump, check the run time, a long-running pg_dump can cause issues.
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--file=dump.sql
To dramatically reduce the time taken to dump the RDS instance, using multiple connections. For more information, see dumping with concurrency and restoring with concurrency.
Upload your data to your Tiger Cloud service
psql -d target -v ON_ERROR_STOP=1 --echo-errors \
-f dump.sql
Update the table statistics.
psql target -c "ANALYZE;"
Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like hypertables, hypercore or data retention while your database is offline.
And that is it, you have migrated your data from an RDS/Aurora Postgres instance to a Tiger Cloud service.
This section shows you how to move your data from a Managed Service for TimescaleDB instance to a
Tiger Cloud service using pg_dump and psql from Terminal.
The duration of the migration is proportional to the amount of data stored in your database. By disconnection your app from your database you avoid and possible data loss.
These variables hold the connection information for the source database and target Tiger Cloud service:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Ensure that the source and target databases are running the same version of TimescaleDB.
Check the version of TimescaleDB running on your Tiger Cloud service:
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service, you do not need to do this.
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
For more information and guidance, see Upgrade TimescaleDB.
Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
Check the extensions on the source database:
psql source -c "SELECT * FROM pg_extension;"
For each extension, enable it on your target Tiger Cloud service:
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
Export your role-based security hierarchy. <db_name> has the same value as <db_name> in source.
I know, it confuses me as well.
pg_dumpall -d "source" \
-l <db_name> \
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
MST does not allow you to export passwords with roles. You assign passwords to these roles when you have uploaded them to your Tiger Cloud service.
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from roles.sql:
sed -i -E \
-e '/DROP ROLE IF EXISTS "postgres";/d' \
-e '/DROP ROLE IF EXISTS "tsdbadmin";/d' \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e '/CREATE ROLE "rds/d' \
-e '/ALTER ROLE "rds/d' \
-e '/TO "rds/d' \
-e '/GRANT "rds/d' \
-e '/GRANT "pg_read_all_stats" TO "tsdbadmin"/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
-e '/CREATE ROLE "tsdbadmin";/d' \
-e '/ALTER ROLE "tsdbadmin"/d' \
-e 's/WITH ADMIN OPTION,/WITH /g' \
-e 's/WITH ADMIN OPTION//g' \
-e 's/GRANTED BY ".*"//g' \
-e '/GRANT "pg_.*" TO/d' \
-e '/CREATE ROLE "_aiven";/d' \
-e '/ALTER ROLE "_aiven"/d' \
-e '/GRANT SET ON PARAMETER "pgaudit\.[^"]+" TO "_tsdbadmin_auditing"/d' \
-e '/GRANT SET ON PARAMETER "anon\.[^"]+" TO "tsdbadmin_group"/d' \
roles.sql
The pg_dump flags remove superuser access and tablespaces from your data. When you run
pgdump, check the run time, a long-running pg_dump can cause issues.
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information, see dumping with concurrency and restoring with concurrency.
This command uses the timescaledb_pre_restore and timescaledb_post_restore functions to put your database in the correct state.
Upload your data
psql target -v ON_ERROR_STOP=1 --echo-errors \
-f roles.sql \
-c "SELECT timescaledb_pre_restore();" \
-f dump.sql \
-c "SELECT timescaledb_post_restore();"
Manually assign passwords to the roles
MST did not allow you to export passwords with roles. For each role, use the following command to manually assign a password to a role:
psql target -c "ALTER ROLE <role name> WITH PASSWORD '<highly secure password>';"
```
## Validate your Tiger Cloud service and restart your app
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
And that is it, you have migrated your data from a Managed Service for TimescaleDB instance to a Tiger Cloud service.
===== PAGE: https://docs.tigerdata.com/migrate/live-migration/ =====
# Live migration
Live migration is an end-to-end solution that copies the database schema and data to
your target Tiger Cloud service, then replicates the database activity in your source database to the target service in real time. Live migration uses the Postgres logical decoding functionality and leverages [pgcopydb].
You use the live migration Docker image to move 100GB-10TB+ of data to a Tiger Cloud service seamlessly with only a few minutes downtime.
If you want to migrate more than 400GB of data, create a [Tiger Cloud Console support request](https://console.cloud.timescale.com/dashboard/support), or
send us an email at [support@tigerdata.com](mailto:support@tigerdata.com) saying how much data you want to migrate. We pre-provision
your Tiger Cloud service for you.
Best practice is to use live migration when:
- Modifying your application logic to perform dual writes is a significant effort.
- The insert workload does not exceed 20,000 rows per second, and inserts are batched.
Use [Dual write and backfill][dual-write-and-backfill] for greater workloads.
- Your source database:
- Uses `UPDATE` and `DELETE` statements on uncompressed time-series data.
Live-migration does not support replicating `INSERT`/`UPDATE`/`DELETE` statements on compressed data.
- Has large, busy tables with primary keys.
- Does not have many `UPDATE` or `DELETE` statements.
This page shows you how to move your data from a self-hosted database to a Tiger Cloud service using
the live-migration Docker image.
## Prerequisites
Best practice is to use an [Ubuntu EC2 instance][create-ec2-instance] hosted in the same region as your
Tiger Cloud service to move data. That is, the machine you run the commands on to move your
data from your source database to your target Tiger Cloud service.
Before you move your data:
- Create a target [Tiger Cloud service][created-a-database-service-in-timescale].
Each Tiger Cloud service has a single Postgres instance that supports the
[most popular extensions][all-available-extensions]. Tiger Cloud services do not support tablespaces,
and there is no superuser associated with a service.
Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance
can significantly reduce the overall migration window.
- To ensure that maintenance does not run while migration is in progress, best practice is to [adjust the maintenance window][adjust-maintenance-window].
- [Install Docker][install-docker] on your migration machine.
This machine needs sufficient space to store the buffered changes that occur while your data is
being copied. This space is proportional to the amount of new uncompressed data being written to
the Tiger Cloud service during migration. A general rule of thumb is between 100GB and 500GB.
The CPU specifications of this EC2 instance should match those of your Tiger Cloud service for optimal performance. For example, if your service has an 8-CPU configuration, then your EC2 instance should also have 8 CPUs.
- Before starting live migration, read the [Frequently Asked Questions][FAQ].
### Migrate to Tiger Cloud
To move your data from a self-hosted database to a Tiger Cloud service:
This section shows you how to move your data from self-hosted TimescaleDB to a Tiger Cloud service
using live migration from Terminal.
## Set your connection strings
These variables hold the connection information for the source database and target Tiger Cloud service.
In Terminal on your migration machine, set the following:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
## Align the version of TimescaleDB on the source and target
1. Ensure that the source and target databases are running the same version of TimescaleDB.
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB](https://docs.tigerdata.com/self-hosted/latest/upgrades/).
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Tune your source database
You need admin rights to to update the configuration on your source database. If you are using
a managed service, follow the instructions in the `From MST` tab on this page.
1. **Install the `wal2json` extension on your source database**
[Install wal2json][install-wal2json] on your source database.
1. **Prevent Postgres from treating the data in a snapshot as outdated**
shell psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
This is not applicable if the source database is Postgres 17 or later.
1. **Set the write-Ahead Log (WAL) to record the information needed for logical decoding**
shell psql -X -d source -c 'alter system set wal_level=logical'
1. **Restart the source database**
Your configuration changes are now active. However, verify that the
settings are live in your database.
1. **Enable live-migration to replicate `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
## Migrate your data, then start downtime
2. **Pull the live-migration docker image to you migration machine**
shell sudo docker pull timescale/live-migration:latest
To list the available commands, run:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run `--help` for that command. For example:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
1. **Create a snapshot image of your source database in your Tiger Cloud service**
This process checks that you have tuned your source database and target service correctly for replication,
then creates a snapshot of your data on the migration machine:
shell docker run --rm -it --name live-migration-snapshot
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
shell 2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX) 2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB 2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
1. **Synchronize data between your source database and your Tiger Cloud service**
This command migrates data from the snapshot to your Tiger Cloud service, then streams
transactions from the source to the target.
shell docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag `-e PGVERSION=17` to the `migrate` command.
During this process, you see the migration process:
shell Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If `migrate` stops add `--resume` to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database,
you see the following message:
shell Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until `replay_lag` is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
1. **Start app downtime**
1. Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the `pg_top` CLI or
`pg_stat_activity` to view the current transaction on the source database.
1. Stop Live-migration.
```shell
hit 'c' and then ENTER
```
Live-migration continues the remaining work. This includes copying
TimescaleDB metadata, sequences, and run policies. When the migration completes,
you see the following message:
```sh
Migration successfully completed
```
## Validate your data, then restart your app
1. **Validate the migrated data**
The contents of both databases should be the same. To check this you could compare
the number of rows, or an aggregate of columns. However, the best validation method
depends on your app.
1. **Stop app downtime**
Once you are confident that your data is successfully replicated, configure your apps
to use your Tiger Cloud service.
1. **Cleanup resources associated with live-migration from your migration machine**
This command removes all resources and temporary files used in the migration process.
When you run this command, you can no longer resume live-migration.
shell docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
This section shows you how to move your data from self-hosted Postgres to a Tiger Cloud service using
live migration from Terminal.
## Set your connection strings
These variables hold the connection information for the source database and target Tiger Cloud service.
In Terminal on your migration machine, set the following:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Tune your source database
You need admin rights to to update the configuration on your source database. If you are using
a managed service, follow the instructions in the `From AWS RDS/Aurora` tab on this page.
1. **Install the `wal2json` extension on your source database**
[Install wal2json][install-wal2json] on your source database.
1. **Prevent Postgres from treating the data in a snapshot as outdated**
shell psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
This is not applicable if the source database is Postgres 17 or later.
1. **Set the write-Ahead Log (WAL) to record the information needed for logical decoding**
shell psql -X -d source -c 'alter system set wal_level=logical'
1. **Restart the source database**
Your configuration changes are now active. However, verify that the
settings are live in your database.
1. **Enable live-migration to replicate `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
## Migrate your data, then start downtime
1. **Pull the live-migration docker image to you migration machine**
shell sudo docker pull timescale/live-migration:latest
To list the available commands, run:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run `--help` for that command. For example:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
1. **Create a snapshot image of your source database in your Tiger Cloud service**
This process checks that you have tuned your source database and target service correctly for replication,
then creates a snapshot of your data on the migration machine:
shell docker run --rm -it --name live-migration-snapshot
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
shell 2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX) 2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB 2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
1. **Synchronize data between your source database and your Tiger Cloud service**
This command migrates data from the snapshot to your Tiger Cloud service, then streams
transactions from the source to the target.
shell docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag `-e PGVERSION=17` to the `migrate` command.
After migrating the schema, live-migration prompts you to create hypertables for tables that
contain time-series data in your Tiger Cloud service. Run `create_hypertable()` to convert these
table. For more information, see the [Hypertable docs][Hypertable docs].
During this process, you see the migration process:
shell Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If `migrate` stops add `--resume` to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database,
you see the following message:
shell Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until `replay_lag` is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
1. **Start app downtime**
1. Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the `pg_top` CLI or
`pg_stat_activity` to view the current transaction on the source database.
1. Stop Live-migration.
```shell
hit 'c' and then ENTER
```
Live-migration continues the remaining work. This includes copying
TimescaleDB metadata, sequences, and run policies. When the migration completes,
you see the following message:
```sh
Migration successfully completed
```
## Validate your data, then restart your app
1. **Validate the migrated data**
The contents of both databases should be the same. To check this you could compare
the number of rows, or an aggregate of columns. However, the best validation method
depends on your app.
1. **Stop app downtime**
Once you are confident that your data is successfully replicated, configure your apps
to use your Tiger Cloud service.
1. **Cleanup resources associated with live-migration from your migration machine**
This command removes all resources and temporary files used in the migration process.
When you run this command, you can no longer resume live-migration.
shell docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
To migrate your data from an Amazon RDS/Aurora Postgres instance to a Tiger Cloud service, you extract the data to an intermediary
EC2 Ubuntu instance in the same AWS region as your RDS/Aurora instance. You then upload your data to a Tiger Cloud service.
To make this process as painless as possible, ensure that the intermediary machine has enough CPU and disk space to
rapidly extract and store your data before uploading to Tiger Cloud.
Migration from RDS/Aurora gives you the opportunity to create [hypertables][about-hypertables] before copying the data. Once the migration is complete, you can manually enable Tiger Cloud features like [data compression][data-compression] or [data retention][data-retention].
This section shows you how to move your data from an Amazon RDS/Aurora instance to a Tiger Cloud service
using live migration.
## Create an intermediary EC2 Ubuntu instance
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. Click `Actions` > `Set up EC2 connection`.
Press `Create EC2 instance` and use the following settings:
- **AMI**: Ubuntu Server.
- **Key pair**: use an existing pair or create a new one that you will use to access the intermediary machine.
- **VPC**: by default, this is the same as the database instance.
- **Configure Storage**: adjust the volume to at least the size of RDS/Aurora Postgres instance you are migrating from.
You can reduce the space used by your data on Tiger Cloud using [Hypercore][hypercore].
1. Click `Lauch instance`. AWS creates your EC2 instance, then click `Connect to instance` > `SSH client`.
Follow the instructions to create the connection to your intermediary EC2 instance.
## Install the psql client tools on the intermediary instance
1. Connect to your intermediary EC2 instance. For example:
sh ssh -i ".pem" ubuntu@
1. On your intermediary EC2 instance, install the Postgres client.
sh sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list' wget -qO- https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo tee /etc/apt/trusted.gpg.d/pgdg.asc &>/dev/null sudo apt update sudo apt install postgresql-client-16 -y # "postgresql-client-16" if your source DB is using PG 16. psql --version && pg_dump --version
Keep this terminal open, you need it to connect to the RDS/Aurora Postgres instance for migration.
## Set up secure connectivity between your RDS/Aurora Postgres and EC2 instances
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. Scroll down to `Security group rules (1)` and select the `EC2 Security Group - Inbound` group. The
`Security Groups (1)` window opens. Click the `Security group ID`, then click `Edit inbound rules`
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/rds-add-security-rule-to-ec2-instance.svg"
alt="Create security group rule to enable RDS/Aurora Postgres EC2 connection"/>
1. On your intermediary EC2 instance, get your local IP address:
sh ec2metadata --local-ipv4
Bear with me on this one, you need this IP address to enable access to your RDS/Aurora Postgres instance.
1. In `Edit inbound rules`, click `Add rule`, then create a `PostgreSQL`, `TCP` rule granting access
to the local IP address for your EC2 instance (told you :-)). Then click `Save rules`.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/rds-add-inbound-rule-for-ec2-instance.png"
alt="Create security rule to enable RDS/Aurora Postgres EC2 connection"/>
## Test the connection between your RDS/Aurora Postgres and EC2 instances
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. On your intermediary EC2 instance, use the values of `Endpoint`, `Port`, `Master username`, and `DB name`
to create the postgres connectivity string to the `SOURCE` variable.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/migrate-source-rds-instance.svg"
alt="Record endpoint, port, VPC details"/>
sh export SOURCE="postgres://:@:/"
The value of `Master password` was supplied when this RDS/Aurora Postgres instance was created.
1. Test your connection:
sh psql -d source
You are connected to your RDS/Aurora Postgres instance from your intermediary EC2 instance.
## Set your connection strings
These variables hold the connection information for the source database and target Tiger Cloud service.
In Terminal on your migration machine, set the following:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Tune your source database
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
1. **Update the DB instance parameter group for your source database**
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS instance to migrate.
1. Click `Configuration`, scroll down and note the `DB instance parameter group`, then click `Parameter groups`
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/awsrds-parameter-groups.png"
alt="Create security rule to enable RDS EC2 connection"/>
1. Click `Create parameter group`, fill in the form with the following values, then click `Create`.
- **Parameter group name** - whatever suits your fancy.
- **Description** - knock yourself out with this one.
- **Engine type** - `PostgreSQL`
- **Parameter group family** - the same as `DB instance parameter group` in your `Configuration`.
1. In `Parameter groups`, select the parameter group you created, then click `Edit`.
1. Update the following parameters, then click `Save changes`.
- `rds.logical_replication` set to `1`: record the information needed for logical decoding.
- `wal_sender_timeout` set to `0`: disable the timeout for the sender process.
1. In RDS, navigate back to your [databases][databases], select the RDS instance to migrate, and click `Modify`.
1. Scroll down to `Database options`, select your new parameter group, and click `Continue`.
1. Click `Apply immediately` or choose a maintenance window, then click `Modify DB instance`.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
1. Verify that the settings are live in your database.
1. **Enable replication `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
## Migrate your data, then start downtime
1. **Pull the live-migration docker image to you migration machine**
shell sudo docker pull timescale/live-migration:latest
To list the available commands, run:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run `--help` for that command. For example:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
1. **Create a snapshot image of your source database in your Tiger Cloud service**
This process checks that you have tuned your source database and target service correctly for replication,
then creates a snapshot of your data on the migration machine:
shell docker run --rm -it --name live-migration-snapshot
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
shell 2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX) 2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB 2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
1. **Synchronize data between your source database and your Tiger Cloud service**
This command migrates data from the snapshot to your Tiger Cloud service, then streams
transactions from the source to the target.
shell docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag `-e PGVERSION=17` to the `migrate` command.
After migrating the schema, live-migration prompts you to create hypertables for tables that
contain time-series data in your Tiger Cloud service. Run `create_hypertable()` to convert these
table. For more information, see the [Hypertable docs][Hypertable docs].
During this process, you see the migration process:
shell Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If `migrate` stops add `--resume` to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database,
you see the following message:
shell Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until `replay_lag` is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
1. **Start app downtime**
1. Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the `pg_top` CLI or
`pg_stat_activity` to view the current transaction on the source database.
1. Stop Live-migration.
```shell
hit 'c' and then ENTER
```
Live-migration continues the remaining work. This includes copying
TimescaleDB metadata, sequences, and run policies. When the migration completes,
you see the following message:
```sh
Migration successfully completed
```
## Validate your data, then restart your app
1. **Validate the migrated data**
The contents of both databases should be the same. To check this you could compare
the number of rows, or an aggregate of columns. However, the best validation method
depends on your app.
1. **Stop app downtime**
Once you are confident that your data is successfully replicated, configure your apps
to use your Tiger Cloud service.
1. **Cleanup resources associated with live-migration from your migration machine**
This command removes all resources and temporary files used in the migration process.
When you run this command, you can no longer resume live-migration.
shell docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
This section shows you how to move your data from a MST instance to a
Tiger Cloud service using live migration from Terminal.
## Set your connection strings
These variables hold the connection information for the source database and target Tiger Cloud service.
In Terminal on your migration machine, set the following:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
## Align the version of TimescaleDB on the source and target
1. Ensure that the source and target databases are running the same version of TimescaleDB.
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB](https://docs.tigerdata.com/self-hosted/latest/upgrades/).
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Tune your source database
1. **Enable live-migration to replicate `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
## Migrate your data, then start downtime
2. **Pull the live-migration docker image to you migration machine**
shell sudo docker pull timescale/live-migration:latest
To list the available commands, run:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run `--help` for that command. For example:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
1. **Create a snapshot image of your source database in your Tiger Cloud service**
This process checks that you have tuned your source database and target service correctly for replication,
then creates a snapshot of your data on the migration machine:
shell docker run --rm -it --name live-migration-snapshot
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
shell 2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX) 2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB 2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
1. **Synchronize data between your source database and your Tiger Cloud service**
This command migrates data from the snapshot to your Tiger Cloud service, then streams
transactions from the source to the target.
shell docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag `-e PGVERSION=17` to the `migrate` command.
During this process, you see the migration process:
shell Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If `migrate` stops add `--resume` to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database,
you see the following message:
shell Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until `replay_lag` is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
1. **Start app downtime**
1. Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the `pg_top` CLI or
`pg_stat_activity` to view the current transaction on the source database.
1. Stop Live-migration.
```shell
hit 'c' and then ENTER
```
Live-migration continues the remaining work. This includes copying
TimescaleDB metadata, sequences, and run policies. When the migration completes,
you see the following message:
```sh
Migration successfully completed
```
## Validate your data, then restart your app
1. **Validate the migrated data**
The contents of both databases should be the same. To check this you could compare
the number of rows, or an aggregate of columns. However, the best validation method
depends on your app.
1. **Stop app downtime**
Once you are confident that your data is successfully replicated, configure your apps
to use your Tiger Cloud service.
1. **Cleanup resources associated with live-migration from your migration machine**
This command removes all resources and temporary files used in the migration process.
When you run this command, you can no longer resume live-migration.
shell docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
And you are done, your data is now in your Tiger Cloud service.
## Troubleshooting
This section shows you how to work around frequently seen issues when using live migration.
### ERROR: relation "xxx.yy" does not exist
This may happen when a relation is removed after executing the `snapshot` command. A relation can be
a table, index, view, or materialized view. When you see you this error:
- Do not perform any explicit DDL operation on the source database during the course of migration.
- If you are migrating from self-hosted TimescaleDB or MST, disable the chunk retention policy on your source database
until you have finished migration.
### FATAL: remaining connection slots are reserved for non-replication superuser connections
This may happen when the number of connections exhaust `max_connections` defined in your target Tiger Cloud service.
By default, live-migration needs around ~6 connections on the source and ~12 connections on the target.
### Migration seems to be stuck with “x GB copied to Target DB (Source DB is y GB)”
When you are migrating a lot of data involved in aggregation, or there are many materialized views taking time
to complete the materialization, this may be due to `REFRESH MATERIALIZED VIEWS` happening at the end of initial
data migration.
To resolve this issue:
1. See what is happening on the target Tiger Cloud service:
shell psql target -c "select * from pg_stat_activity where application_name ilike '%pgcopydb%';"
1. When you run the `migrate`, add the following flags to exclude specific materialized views being materialized:
shell --skip-table-data ”
1. When `migrate` has finished, manually refresh the materialized views you excluded.
### Restart migration from scratch after a non-resumable failure
If the migration halts due to a failure, such as a misconfiguration of the source or target database, you may need to
restart the migration from scratch. In such cases, you can reuse the original target Tiger Cloud service created for the
migration by utilizing the `--drop-if-exists` flag with the migrate command.
This flag ensures that the existing target objects created by the previous migration are dropped, allowing the migration
to proceed without trouble.
Note: This flag also requires you to manually recreate the TimescaleDB extension on the target.
Here’s an example command sequence to restart the migration:
shell psql target -c "DROP EXTENSION timescaledb CASCADE"
psql target -c 'CREATE EXTENSION timescaledb VERSION ""'
docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate --drop-if-exists
This approach provides a clean slate for the migration process while reusing the existing target instance.
### Inactive or lagging replication slots
If you encounter an “Inactive or lagging replication slots” warning on your cloud provider console after using live-migration, it might be due to lingering replication slots created by the live-migration tool on your source database.
To clean up resources associated with live migration, use the following command:
sh docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
The `--prune` flag is used to delete temporary files in the `~/live-migration` directory
that were needed for the migration process. It's important to note that executing the
`clean` command means you cannot resume the interrupted live migration.
### Role passwords
Because of issues dumping passwords from various managed service providers, Live-migration
migrates roles without passwords. You have to migrate passwords manually.
### Table privileges
Live-migration does not migrate table privileges. After completing Live-migration:
1. Grant all roles to `tsdbadmin`.
shell psql -d source -t -A -c "SELECT FORMAT('GRANT %I TO tsdbadmin;', rolname) FROM pg_catalog.pgroles WHERE rolname not like 'pg%' AND rolname != 'tsdbadmin' AND NOT rolsuper" | psql -d target -f -
1. On your migration machine, edit `/tmp/grants.psql` to match table privileges on your source database.
shell pg_dump --schema-only --quote-all-identifiers --exclude-schema=_timescaledb_catalog --format=plain --dbname "source" | grep "(ALTER.OWNER.|GRANT|REVOKE)" > /tmp/grants.psql
1. Run `grants.psql` on your target Tiger Cloud service.
shell psql -d target -f /tmp/grants.psql
### Postgres to Tiger Cloud: “live-replay not keeping up with source load”
1. Go to Tiger Cloud Console -> `Monitoring` -> `Insights` tab and find the query which takes significant time
2. If the query is either UPDATE/DELETE, make sure the columns used on the WHERE clause have necessary indexes.
3. If the query is either UPDATE/DELETE on the tables which are converted as hypertables, make sure the REPLIDA IDENTITY(defaults to primary key) on the source is compatible with the target primary key. If not, create an UNIQUE index source database by including the hypertable partition column and make it as a REPLICA IDENTITY. Also, create the same UNIQUE index on target.
### ERROR: out of memory (or) Failed on request of size xxx in memory context "yyy" on a Tiger Cloud service
This error occurs when the Out of Memory (OOM) guard is triggered due to memory allocations exceeding safe limits. It typically happens when multiple concurrent connections to the TimescaleDB instance are performing memory-intensive operations. For example, during live migrations, this error can occur when large indexes are being created simultaneously.
The live-migration tool includes a retry mechanism to handle such errors. However, frequent OOM crashes may significantly delay the migration process.
One of the following can be used to avoid the OOM errors:
1. Upgrade to Higher Memory Spec Instances: To mitigate memory constraints, consider using a TimescaleDB instance with higher specifications, such as an instance with 8 CPUs and 32 GB RAM (or more). Higher memory capacity can handle larger workloads and reduce the likelihood of OOM errors.
1. Reduce Concurrency: If upgrading your instance is not feasible, you can reduce the concurrency of the index migration process using the `--index-jobs=<value>` flag in the migration command. By default, the value of `--index-jobs` matches the GUC max_parallel_workers. Lowering this value reduces the memory usage during migration but may increase the total migration time.
By taking these steps, you can prevent OOM errors and ensure a smoother migration experience with TimescaleDB.
===== PAGE: https://docs.tigerdata.com/migrate/dual-write-and-backfill/ =====
# Low-downtime migrations with dual-write and backfill
Dual-write and backfill is a migration strategy to move a large amount of
time-series data (100 GB-10 TB+) with low downtime (on the order of
minutes of downtime). It is significantly more complicated to execute than a
migration with downtime using [pg_dump/restore][pg-dump-and-restore], and has
some prerequisites on the data ingest patterns of your application, so it may
not be universally applicable.
In the context of migrations, your existing production database is referred to
as the SOURCE database, the Tiger Cloud service that you are migrating your data to is the TARGET.
Roughly, it consists of three steps:
1. Clone schema and relational data from source to target
1. Dual-write to source and target
1. Backfill time-series data
Dual-write and backfill can be used for any source database type, as long as it
can provide data in csv format. It can be used to move data from a PostgresSQL
source, and from TimescaleDB to TimescaleDB.
Dual-write and backfill works well when:
1. The bulk of the (on-disk) data is in time-series tables.
1. Writes by the application do not reference historical time-series data.
1. Writes to time-series data are append-only.
1. No `UPDATE` or `DELETE` queries will be run on time-series data in the
source database during the migration process (or if they are, it happens in
a controlled manner, such that it's possible to either ignore, or
re-backfill).
1. Either the relational (non-time-series) data is small enough to be copied
from source to target in an acceptable amount of time for this to be done
with downtime, or the relational data can be copied asynchronously while the
application continues to run (that is, changes relatively infrequently).
For more information, consult the step-by-step guide for your source database:
- [Dual-write and backfill from TimescaleDB][from-timescaledb]
- [Dual-write and backfill from Postgres][from-postgres]
- [Dual-write and backfill from other][from-other]
If you get stuck, you can get help by either opening a support request, or take
your issue to the `#migration` channel in the [community slack](https://slack.timescale.com/),
where the developers of this migration method are there to help.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
===== PAGE: https://docs.tigerdata.com/migrate/troubleshooting/ =====
# FAQ and troubleshooting
## Unsupported in live migration
Live migration tooling is currently experimental. You may run into the following shortcomings:
- Live migration does not yet support mutable columnstore compression (`INSERT`, `UPDATE`,
`DELETE` on data in the columnstore).
- By default, numeric fields containing `NaN`/`+Inf`/`-Inf` values are not
correctly replicated, and will be converted to `NULL`. A workaround is available, but is not enabled by default.
Should you run into any problems, please open a support request before losing
any time debugging issues.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## Where can I find logs for processes running during live migration?
Live migration involves several background processes to manage different stages of
the migration. The logs of these processes can be helpful for troubleshooting
unexpected behavior. You can find these logs in the `<volume_mount>/logs` directory.
## Source and target databases have different TimescaleDB versions
When you migrate a [self-hosted][self hosted] or [Managed Service for TimescaleDB (MST)][mst]
database to Tiger Cloud, the source database and the destination
[Tiger Cloud service][timescale-service] must run the same version of TimescaleDB.
Before you start [live migration][live migration]:
1. Check the version of TimescaleDB running on the source database and the
target Tiger Cloud service:
```sql
select extversion from pg_extension where extname = 'timescaledb';
```
1. If the version of TimescaleDB on the source database is lower than your Tiger Cloud service, either:
- **Downgrade**: reinstall an older version of TimescaleDB on your Tiger Cloud service that matches the source database:
1. Connect to your Tiger Cloud service and check the versions of TimescaleDB available:
```sql
SELECT version FROM pg_available_extension_versions WHERE name = 'timescaledb' ORDER BY 1 DESC;
```
2. If an available TimescaleDB release matches your source database:
1. Uninstall TimescaleDB from your Tiger Cloud service:
```sql
DROP EXTENSION timescaledb;
```
1. Reinstall the correct version of TimescaleDB:
```sql
CREATE EXTENSION timescaledb VERSION '<version>';
```
You may need to reconnect to your Tiger Cloud service using `psql -X` when you're creating the TimescaleDB extension.
- **Upgrade**: for self-hosted databases, [upgrade TimescaleDB][self hosted upgrade] to match your Tiger Cloud service.
## Why does live migration log "no tuple identifier" warning?
Live migration logs a warning `WARNING: no tuple identifier for UPDATE in table`
when it cannot determine which specific rows should be updated after receiving an
`UPDATE` statement from the source database during replication. This occurs when tables
in the source database that receive `UPDATE` statements lack either a `PRIMARY KEY` or
a `REPLICA IDENTITY` setting. For live migration to successfully replicate `UPDATE` and
`DELETE` statements, tables must have either a `PRIMARY KEY` or `REPLICA IDENTITY` set
as a prerequisite.
## Set REPLICA IDENTITY on Postgres partitioned tables
If your Postgres tables use native partitioning, setting `REPLICA IDENTITY` on the
root (parent) table will not automatically apply it to the partitioned child tables.
You must manually set `REPLICA IDENTITY` on each partitioned child table.
## Can I use read/failover replicas as source database for live migration?
Live migration does not support replication from read or failover replicas. You must
provide a connection string that points directly to your source database for
live migration.
## Can I use live migration with a Postgres connection pooler like PgBouncer?
Live migration does not support connection poolers. You must provide a
connection string that points directly to your source and target databases
for live migration to work smoothly.
## Can I use Tiger Cloud instance as source for live migration?
No, Tiger Cloud cannot be used as a source database for live migration.
## How can I exclude a schema/table from being replicated in live migration?
At present, live migration does not allow for excluding schemas or tables from
replication, but this feature is expected to be added in future releases.
However, a workaround is available for skipping table data using the `--skip-table-data` flag.
For more information, please refer to the help text under the `migrate` subcommand.
## Large migrations blocked
Tiger Cloud automatically manages the underlying disk volume. Due to
platform limitations, it is only possible to resize the disk once every six
hours. Depending on the rate at which you're able to copy data, you may be
affected by this restriction. Affected instances are unable to accept new data
and error with: `FATAL: terminating connection due to administrator command`.
If you intend on migrating more than 400 GB of data to Tiger Cloud, open a
support request requesting the required storage to be pre-allocated in your
Tiger Cloud service.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## Dumping and locks
When `pg_dump` starts, it takes an `ACCESS SHARE` lock on all tables which it
dumps. This ensures that tables aren't dropped before `pg_dump` is able to drop
them. A side effect of this is that any query which tries to take an
`ACCESS EXCLUSIVE` lock on a table is be blocked by the `ACCESS SHARE` lock.
A number of Tiger Cloud-internal processes require taking `ACCESS EXCLUSIVE`
locks to ensure consistency of the data. The following is a non-exhaustive list
of potentially affected operations:
- converting a chunk into the columnstore/rowstore and back
- continuous aggregate refresh (before 2.12)
- create hypertable with foreign keys, truncate hypertable
- enable hypercore on a hypertable
- drop chunks
The most likely impact of the above is that background jobs for retention
policies, columnstore compression policies, and continuous aggregate refresh policies are
blocked for the duration of the `pg_dump` command. This may have unintended
consequences for your database performance.
## Dumping with concurrency
When using the `pg_dump` directory format, it is possible to use concurrency to
use multiple connections to the source database to dump data. This speeds up
the dump process. Due to the fact that there are multiple connections, it is
possible for `pg_dump` to end up in a deadlock situation. When it detects a
deadlock it aborts the dump.
In principle, any query which takes an `ACCESS EXCLUSIVE` lock on a table
causes such a deadlock. As mentioned above, some common operations which take
an `ACCESS EXCLUSIVE` lock are:
- retention policies
- columnstore compression policies
- continuous aggregate refresh policies
If you would like to use concurrency nonetheless, turn off all background jobs
in the source database before running `pg_dump`, and turn them on once the dump
is complete. If the dump procedure takes longer than the continuous aggregate
refresh policy's window, you must manually refresh the continuous aggregate in
the correct time range. For more information, consult the
[refresh policies documentation].
To turn off the jobs:
sql SELECT public.alter_job(id::integer, scheduled=>false) FROM _timescaledb_config.bgw_job WHERE id >= 1000;
To turn on the jobs:
sql SELECT public.alter_job(id::integer, scheduled=>true) FROM _timescaledb_config.bgw_job WHERE id >= 1000;
## Restoring with concurrency
If the directory format is used for `pg_dump` and `pg_restore`, concurrency can be
employed to speed up the process. Unfortunately, loading the tables in the
`timescaledb_catalog` schema concurrently causes errors. Furthermore, the
`tsdbadmin` user does not have sufficient privileges to turn off triggers in
this schema. To get around this limitation, load this schema serially, and then
load the rest of the database concurrently.
bash pg_restore -d "target"
--format=directory \
--schema='_timescaledb_catalog' \
--exit-on-error \
--no-tablespaces \
--no-owner \
--no-privileges \
dump
pg_restore -d "target"
--format=directory \
--jobs=8 \
--exclude-schema='_timescaledb_catalog' \
--exit-on-error \
--disable-triggers \
--no-tablespaces \
--no-owner \
--no-privileges \
dump
## Ownership of background jobs
The `_timescaledb_config.bgw_jobs` table is used to manage background jobs.
This includes custom jobs, columnstore compression policies, retention
policies, and continuous aggregate refresh policies. On Tiger Cloud, this table
has a trigger which ensures that no database user can create or modify jobs
owned by another database user. This trigger can provide an obstacle for migrations.
If the `--no-owner` flag is used with `pg_dump` and `pg_restore`, all
objects in the target database are owned by the user that ran
`pg_restore`, likely `tsdbadmin`.
If all the background jobs in the source database were owned by a user of the
same name as the user running the restore (again likely `tsdbadmin`), then
loading the `_timescaledb_config.bgw_jobs` table should work.
If the background jobs in the source were owned by the `postgres` user, they
are be automatically changed to be owned by the `tsdbadmin` user. In this case,
one just needs to verify that the jobs do not make use of privileges that the
`tsdbadmin` user does not possess.
If background jobs are owned by one or more users other than the user
employed in restoring, then there could be issues. To work around this
issue, do not dump this table with `pg_dump`. Provide either
`--exclude-table-data='_timescaledb_config.bgw_job'` or
`--exclude-table='_timescaledb_config.bgw_job'` to `pg_dump` to skip
this table. Then, use `psql` and the `COPY` command to dump and
restore this table with modified values for the `owner` column.
bash psql -d "source" -X -v ON_ERROR_STOP=1 --echo-errors -f - <<'EOF' begin; select string_agg ( case attname
when 'owner' then $$'tsdbadmin' as "owner"$$
else format('%I', attname)
end , ', ' ) as cols from pg_namespace n inner join pg_class c on (n.nspname = '_timescaledb_config' and n.oid = c.relnamespace and c.relname = 'bgw_job') inner join pg_attribute a on (c.oid = a.attrelid and a.attnum > 0) \gset copy (
select :cols
from _timescaledb_config.bgw_job
where id >= 1000
) to stdout with (format csv, header true) \g bgw_job.csv rollback; \q EOF
psql -X -d "target" -v ON_ERROR_STOP=1 --echo-errors
-c "\copy _timescaledb_config.bgw_job from 'bgw_job.csv' with (format csv, header match)"
Once the table has been loaded and the restore completed, you may then use SQL
to adjust the ownership of the jobs and/or the associated stored procedures and
functions as you wish.
## Extension availability
There are a vast number of Postgres extensions available in the wild.
Tiger Cloud supports many of the most popular extensions, but not all extensions.
Before migrating, check that the extensions you are using are supported on
Tiger Cloud. Consult the [list of supported extensions].
## TimescaleDB extension in the public schema
When self-hosting, the TimescaleDB extension may be installed in an arbitrary
schema. Tiger Cloud only supports installing the TimescaleDB extension in the
`public` schema. How to go about resolving this depends heavily on the
particular details of the source schema and the migration approach chosen.
## Tablespaces
Tiger Cloud does not support using custom tablespaces. Providing the
`--no-tablespaces` flag to `pg_dump` and `pg_restore` when
dumping/restoring the schema results in all objects being in the
default tablespace as desired.
## Only one database per instance
While Postgres clusters can contain many databases, Tiger Cloud services are
limited to a single database. When migrating a cluster with multiple databases
to Tiger Cloud, one can either migrate each source database to a separate
Tiger Cloud service or "merge" source databases to target schemas.
## Superuser privileges
The `tsdbadmin` database user is the most powerful available on Tiger Cloud, but it
is not a true superuser. Review your application for use of superuser privileged
operations and mitigate before migrating.
## Migrate partial continuous aggregates
In order to improve the performance and compatibility of continuous aggregates, TimescaleDB
v2.7 replaces _partial_ continuous aggregates with _finalized_ continuous aggregates.
To test your database for partial continuous aggregates, run the following query:
SQL SELECT exists (SELECT 1 FROM timescaledb_information.continuous_aggregates WHERE NOT finalized);
If you have partial continuous aggregates in your database, [migrate them][migrate]
from partial to finalized before you migrate your database.
If you accidentally migrate partial continuous aggregates across Postgres
versions, you see the following error when you query any continuous aggregates:
ERROR: insufficient data left in message.
===== PAGE: https://docs.tigerdata.com/ai/mcp-server/ =====
# Integrate Tiger Cloud with your AI Assistant
The Tiger Model Context Protocol Server provides access to your Tiger Cloud resources through Claude and other AI Assistants. Tiger MCP Server
mirrors the functionality of Tiger CLI and is integrated directly into the CLI binary. You manage your
Tiger Cloud resources using natural language from your AI Assistant. As Tiger MCP Server is integrated with the
Tiger Data documentation, ask any question and you will get the best answer.
This page shows you how to install Tiger CLI and set up secure authentication for Tiger MCP Server, then manage the
resources in your Tiger Data account through the Tiger Model Context Protocol Server using your AI Assistant.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Data account][create-account].
* Install an AI Assistant on your developer device with an active API key.
The following AI Assistants are automatically configured by the Tiger Model Context Protocol Server: `claude-code`, `cursor`, `windsurf`, `codex`, `gemini/gemini-cli`, `vscode/code/vs-code`.
You can also [manually configure][manual-config] Tiger MCP Server.
## Install and configure Tiger MCP Server
The Tiger MCP Server is bundled with Tiger CLI:
1. **Install Tiger CLI**
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
1. **Set up API credentials**
1. Log Tiger CLI into your Tiger Data account:
```shell
tiger auth login
```
Tiger CLI opens Console in your browser. Log in, then click `Authorize`.
You can have a maximum of 10 active client credentials. If you get an error, open [credentials][rest-api-credentials]
and delete an unused credential.
1. Select a Tiger Cloud project:
```terminaloutput
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
```
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in `~/.config/tiger/credentials` with restricted file permissions (600).
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`.
1. **Test your authenticated connection to Tiger Cloud by listing services**
```bash
tiger service list
```
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
1. **Configure your AI Assistant to interact with the project and services in your Tiger Data account**
For example:
shell tiger mcp install
1. **Choose the client to integrate with, then press `Enter` **
shell Select an MCP client to configure:
- Claude Code
- Codex
- Cursor
- Gemini CLI
- VS Code
- Windsurf
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
And that is it, you are ready to use the Tiger Model Context Protocol Server to manage your services in Tiger Cloud.
## Manage the resources in your Tiger Data account through your AI Assistant
Your AI Assistant is connected to your Tiger Data account and the Tiger Data documentation, you can now use it to
manage your services and learn more about how to implement Tiger Cloud features. For example:
1. **Run your AI Assistant**
shell claude
Claude automatically runs the Tiger MCP Server server that enables you to interact with Tiger Cloud from your
AI Assistant.
1. **Check your Tiger Model Context Protocol Server configuration**
shell
is the tigerdata mcp server active for you?
You see something like:shell MCP server is active. I can see the following Tiger Data-related tools available:
Is there something specific you'd like to do with the Tiger Data MCP server?
1. **Ask a basic question about your services**
shell
can you list my active services please
You see something like:shell ⏺ You have 3 active services, all with the same name "my-first-service":
tgrservice1 - READY - TimescaleDB - us-east-1 - 1 CPU/4GB - Created: 2025-09-30
1. **Manage your services without having to learn how to**
For example:
shell
Can you create a new ai service called bob with a replica for me please
You see something like:
shell
tiger - Create Database Service (MCP)(name: "bob", addons: ["ai"], replicas: 1, wait: false)
1. **Find best practice for things you need to do**
For example:
shell
I need to migrate a database with 25 million rows of data to Tiger Cloud, please tell me what service optimizations i should do before migration.
You see something like:
shell ⏺ For migrating a database with 25 million rows to Tiger Cloud, here are the key service optimizations to do before migration:
Pre-Migration Service Optimizations
Right-size your compute resources:
Enable the appropriate addons:
Choose optimal region:
Consider enhanced storage (Enterprise only):
Skip replicas initially:
Plan for storage space:
During Migration Best Practices
Migration method selection:
- 25M rows: Use schema-then-data migration (migrate schema first, then copy data in chunks)
- Allows restart if a copy operation fails
- Better for databases >10GB
Database configuration to set AFTER migration:
- Set up compression policies (once data is loaded)
- Configure retention policies
- Create continuous aggregates
- Enable tiered storage for cost optimization
Connection settings:
- Use the pooled connection endpoint for better performance during bulk inserts
- Disable unnecessary constraints/indexes during migration, re-enable after
Would you like me to help you create an optimized service for this migration?
That beats working. Let the Tiger MCP Server do it all for you.
## Manually configure the Tiger MCP Server
If your MCP client is not supported by `tiger mcp install`, follow the client's instructions to install
MCP servers. For example, many clients use a JSON file like the following that use `tiger mcp start` to
start Tiger Model Context Protocol Server:
json { "mcpServers": {
"tiger": {
"command": "tiger",
"args": [
"mcp",
"start"
]
}
} }
## Tiger Model Context Protocol Server commands
Tiger Model Context Protocol Server exposes the following MCP tools to your AI Assistant:
| Command | Parameter | Required | Description |
|--------------------------|---------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `service_list` | - | - | Returns a list of the services in the current project. |
| `service_get` | - | - | Returns detailed information about a service. |
| | `service_id` | ✓ | The unique identifier of the service (10-character alphanumeric string). |
| | `with_password` | - | Set to `true` to include the password in the response and connection string. <br/> **WARNING**: never do this unless the user explicitly requests the password. |
| `service_create` | - | - | Create a new service in Tiger Cloud. <br/> **WARNING**: creates billable resources. |
| | `name` | - | Set the human-readable name of up to 128 characters for this service. |
| | `addons` | - | Set the array of [addons][create-service] to enable for the service. Options: <ul><li>`time-series`: enables TimescaleDB</li><li>`ai`: enables the AI and vector extensions</li></ul> Set an empty array for Postgres-only. |
| | `region` | - | Set the [AWS region][cloud-regions] to deploy this service in. |
| | `cpu_memory` | - | CPU and memory allocation combination. <br /> Available configurations are: <ul><li>shared/shared</li><li>0.5 CPU/2 GB</li><li>1 CPU/4 GB</li><li>2 CPU/8 GB</li><li>4 CPU/16 GB</li><li>8 CPU/32 GB</li><li>16 CPU/64 GB</li><li>32 CPU/128 GB</li></ul> |
| | `replicas` | - | Set the number of [high-availability replicas][readreplica] for fault tolerance. |
| | `wait` | - | Set to `true` to wait for service to be fully ready before returning. |
| | `timeout_minutes` | - | Set the timeout in minutes to wait for service to be ready. Only used when `wait=true`. Default: 30 minutes |
| | `set_default` | - | By default, the new service is the default for following commands in CLI. Set to `false` to keep the previous service as the default. |
| | `with_password` | - | Set to `true` to include the password for this service in response and connection string. <br/> **WARNING**: never set to `true` unless user explicitly requests the password. |
| `service_update_password` | - | - | Update the password for the `tsdbadmin` for this service. The password change takes effect immediately and may terminate existing connections. |
| | `service_id` | ✓ | The unique identifier of the service you want to update the password for. |
| | `password` | ✓ | The new password for the `tsdbadmin` user. |
| `db_execute_query` | - | - | Execute a single SQL query against a service. This command returns column metadata, result rows, affected row count, and execution time. Multi-statement queries are not supported. <br/> **WARNING**: can execute destructive SQL including INSERT, UPDATE, DELETE, and DDL commands. |
| | `service_id` | ✓ | The unique identifier of the service. Use `tiger_service_list` to find service IDs. |
| | `query` | ✓ | The SQL query to execute. Single statement queries are supported. |
| | `parameters` | - | Query parameters for parameterized queries. Values are substituted for the `$n` placeholders in the query. |
| | `timeout_seconds` | - | The query timeout in seconds. Default: `30`. |
| | `role` | - | The service role/username to connect as. Default: `tsdbadmin`. |
| | `pooled` | - | Use [connection pooling][Connection pooling]. This is only available if you have already enabled it for the service. Default: `false`. |
## Tiger CLI commands for Tiger MCP Server
You can use the following Tiger CLI commands to run Tiger MCP Server:
Usage: `tiger mcp [subcommand] --<flags>`
| Command | Subcommand | Description |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mcp | | Manage the Tiger Model Context Protocol Server |
| | install `[client]` | Install and configure Tiger MCP Server for a specific client installed on your developer device. <br/>Supported clients are: `claude-code`, `cursor`, `windsurf`, `codex`, `gemini/gemini-cli`, `vscode/code/vs-code`. <br/> Flags: <ul><li>`--no-backup`: do not back up the existing configuration</li><li>`--config-path`: open the configuration file at a specific location</li></ul> |
| | start | Start the Tiger MCP Server. This is the same as `tiger mcp start stdio` |
| | start stdio | Start the Tiger MCP Server with stdio transport |
| | start http | Start the Tiger MCP Server with HTTP transport. This option is for users who wish to access Tiger Model Context Protocol Server without using stdio. For example, your AI Assistant does not support stdio, or you do not want to run CLI on your device. <br/> Flags are: <ul><li>`--port <port number>`: the default is `8000`</li><li>`--host <hostname>`: the default is `localhost`</li></ul> |
## Global flags
You can use the following Tiger CLI global flags when you run the Tiger MCP Server:
| Flag | Default | Description |
|-------------------------------|-------------------|-----------------------------------------------------------------------------|
| `--analytics` | `true` | Set to `false` to disable usage analytics |
| `--color ` | `true` | Set to `false` to disable colored output |
| `--config-dir` string | `.config/tiger` | Set the directory that holds `config.yaml` |
| `--debug` | No debugging | Enable debug logging |
| `--help` | - | Print help about the current command. For example, `tiger service --help` |
| `--password-storage` string | keyring | Set the password storage method. Options are `keyring`, `pgpass`, or `none` |
| `--service-id` string | - | Set the Tiger Cloud service to manage |
| ` --skip-update-check ` | - | Do not check if a new version of Tiger CLI is available|
===== PAGE: https://docs.tigerdata.com/ai/tiger-eon/ =====
# Aggregate organizational data with AI agents
Your business already has the answers in Slack threads, GitHub pull requests, Linear tasks, your own docs, Salesforce
service tickets, anywhere you store data. However, those answers are scattered, hard to find, and often forgotten.
Tiger Eon automatically integrates Tiger Agents for Work with your organizational data so you can let AI Assistants analyze your
company data and give you the answers you need. For example:
- What did we ship last week?
- What's blocking the release?
- Summarize the latest GitHub pull requests.
Eon responds instantly, pulling from the tools you already use. No new UI, no new workflow, just answers in Slack.

Tiger Eon:
- **Unlocks hidden value**: your data in Slack, GitHub, and Linear already contains the insights you need. Eon makes them accessible.
- **Enables faster decisions**: no need to search or ask around, you get answers in seconds.
- **Is easy to use**: Eon runs a Tiger Agent and MCP servers statelessly in lightweight Docker containers.
- **Integrates seamlessly with Tiger Cloud**: Eon uses a Tiger Cloud service so you securely and reliably store
your company data. Prefer to self-host? Use a [Postgres instance with TimescaleDB][install-self-hosted].
Tiger Eon's real-time ingestion system connects to Slack and captures everything: every message, reaction, edit, and
channel update. It can also process historical Slack exports. Eon had instant access to years
of institutional knowledge from the very beginning.
All of this data is stored in your Tiger Cloud service as time-series data: conversations are events unfolding over time,
and Tiger Cloud is purpose-built for precisely this. Your data is optimized by:
- Automatically partitioning the data into 7-day chunks for efficient queries
- Compressing the data after 45 days to save space
- Segmenting by channel for faster retrieval
When someone asks Eon a question, it uses simple SQL to instantly retrieve the full thread context, related
conversations, and historical decisions. No rate limits. No API quotas. Just direct access to your data.
This page shows you how to install and run Eon.
## Prerequisites
To follow the procedure on this page you need to:
* Create a [Tiger Data account][create-account].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
- [Install Docker][install-docker] on your developer device
- Install [Tiger CLI][tiger-cli]
- Have rights to create an [Anthropic API key][claude-api-key]
- Optionally:
- Have rights to create a [GitHub token][github-token]
- Have rights to create a [Logfire token][logfire-token]
- Have rights to create a [Linear token][linear-token]
## Interactive setup
Tiger Eon is a production-ready repository running [Tiger CLI][tiger-cli] and [Tiger Agents for Work][tiger-agents] that creates
and runs the following components for you:
- An ingest Slack app that consumes all messages and reactions from public channels in your Slack workspace
- A [Tiger Agent][tiger-agents] that analyzes your company data for you
- A Tiger Cloud service instance that stores data from the Slack apps
- MCP servers that connect data sources to Eon
- A listener Slack app that passes questions to the Tiger Agent when you @tag it in a public channel, and returns the
AI analysis on your data
All local components are run in lightweight Docker containers via Docker Compose.
This section shows you how to run the Eon setup to configure Eon to connect to your Slack app, and give it access to your
data and analytics stored in Tiger Cloud.
1. **Install Tiger Eon to manage and run your AI-powered Slack bots**
In a local folder, run the following command from the terminal:
```shell
git clone git@github.com:timescale/tiger-eon.git
```
1. **Start the Eon setup**
shell cd tiger-eon ./setup-tiger-eon.sh
You see a summary of the setup procedure. Type `y` and press `Enter`.
1. **Create the Tiger Cloud service to use with Eon**
You see `Do you want to use a free tier Tiger Cloud Database? [y/N]:`. Press `Y` to create a free
Tiger Cloud service.
Eon opens the Tiger Cloud authentication page in your browser. Click `Authorize`. Eon creates a
Tiger Cloud service called [tiger-eon][services-portal] and stores the credentials in your local keychain.
If you press `N`, the Eon setup creates and runs TimescaleDB in a local Docker container.
1. **Create the ingest Slack app**
1. In the terminal, name your ingest Slack app:
1. Eon proposes to create an ingest app called `tiger-slack-ingest`, press `Enter`.
1. Do the same for the App description.
Eon opens `Your Apps` in https://api.slack.com/apps/.
1. Start configuring your ingest app in Slack:
In the Slack `Your Apps` page:
1. Click `Create New App`, click `From an manifest`, then select a workspace.
1. Click `Next`. Slack opens `Create app from manifest`.
1. Add the Slack app manifest:
1. In terminal press `Enter`. The setup prints the Slack app manifest to terminal and adds it to your clipboard.
1. In the Slack `Create app from manifest` window, paste the manifest.
1. Click `Next`, then click `Create`.
1. Configure an app-level token:
1. In your app settings, go to `Basic Information`.
1. Scroll to `App-Level Tokens`.
1. Click `Generate Token and Scopes`.
1. Add a `Token Name`, then click `Add Scope` add `connections:write`, then click `Generate`.
1. Copy the `xapp-*` token and click `Done`.
1. In the terminal, paste the token, then press `Enter`.
1. Configure a bot user OAuth token:
1. In your app settings, under `Features`, click `App Home`.
1. Scroll down, then enable `Allow users to send Slash commands and messages from the messages tab`.
1. In your app settings, under `Settings`, click `Install App`.
1. Click `Install to <workspace name>`, then click `Allow`.
1. Copy the `xoxb-` Bot User OAuth Token locally.
1. In the terminal, paste the token, then press `Enter`.
1. **Create the Eon Slack app**
Follow the same procedure as you did for the ingest Slack app.
1. **Integrate Eon with Anthropic**
The Eon setup opens https://console.anthropic.com/settings/keys. Create a Claude Code key, then
paste it in the terminal.
1. **Integrate Eon with Logfire**
If you would like to integrate logfire with Eon, paste your token and press `Enter`. If not, press `Enter`.
1. **Integrate Eon with GitHub**
The Eon setup asks if you would like to `Enable github MCP server?". For Eon to answer questions
about the activity in your Github organization`. Press `y` to integrate with GitHub.
1. **Integrate Eon with Linear**
The Eon setup asks if you would like to `Enable linear MCP server? [y/N]:`. Press `y` to integrate with Linear.
1. **Give Eon access to private repositories**
1. The setup asks if you would like to include access to private repositories. Press `y`.
1. Follow the GitHub token creation process.
1. In the Eon setup add your organization name, then paste the GitHub token.
The setup sets up a new Tiger Cloud service for you called `tiger-eon`, then starts Eon in Docker.

You have created:
* The Eon ingest and chat apps in Slack
* A private MCP server connecting Eon to your data in GitHub
* A Tiger Cloud service that securely stores the data used by Eon
## Integrate Eon in your Slack workspace
To enable your AI Assistant to analyze your data for you when you ask a question, open a public channel,
invite `@eon` to join, then ask a question:

===== PAGE: https://docs.tigerdata.com/ai/tiger-agents-for-work/ =====
# Integrate a slack-native AI agent
Tiger Agents for Work is a Slack-native AI agent that you use to unify the knowledge in your company. This includes your Slack
history, docs, GitHub repositories, Salesforce and so on. You use your Tiger Agent to get instant answers for real
business, technical, and operations questions in your Slack channels.

Tiger Agents for Work can handle concurrent conversations with enterprise-grade reliability. They have the following features:
- **Durable and atomic event handling**: Postgres-backed event claiming ensures exactly-once processing, even under high concurrency and failure conditions
- **Bounded concurrency**: fixed worker pools prevent resource exhaustion while maintaining predictable performance under load
- **Immediate event processing**: Tiger Agents for Work provide real-time responsiveness. Events are processed within milliseconds of arrival rather than waiting for polling cycles
- **Resilient retry logic**: automatic retry with visibility thresholds, plus stuck or expired event cleanup
- **Horizontal scalability**: run multiple Tiger Agent instances simultaneously with coordinated work distribution across all instances
- **AI-Powered Responses**: use the AI model of your choice, you can also integrate with MCP servers
- **Extensible architecture**: zero code integration for basic agents. For more specialized use cases, easily customize your agent using [Jinja templates][jinja-templates]
- **Complete observability**: detailed tracing of event flow, worker activity, and database operations with full [Logfire][logfire] instrumentation
This page shows you how to install the Tiger Agent CLI, connect to the Tiger Data MCP server, and customize prompts for
your specific needs.
## Prerequisites
To follow the procedure on this page you need to:
* Create a [Tiger Data account][create-account].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
* Install the [uv package manager][uv-install]
* Get an [Anthropic API key][claude-api-key]
* Optional: get a [Logfire token][logfire]
## Create a Slack app
Before installing Tiger Agents for Work, you need to create a Slack app that the Tiger Agent will connect to. This app
provides the security tokens for Slack integration with your Tiger Agent:
1. **Create a manifest for your Slack App**
1. In a temporary directory, download the Tiger Agent Slack manifest template:
```bash
curl -O https://raw.githubusercontent.com/timescale/tiger-agents-for-work/main/slack-manifest.json
```
1. Edit `slack-manifest.json` and customize your name and description of your Slack App. For example:
```json
"display_information": {
"name": "Tiger Agent",
"description": "Tiger AI Agent helps you easily access your business information, and tune your Tiger services",
"background_color": "#000000"
},
"features": {
"bot_user": {
"display_name": "Tiger Agent",
"always_online": true
}
},
```
1. Copy the contents of `slack-manifest.json` to the clipboard:
```shell
cat slack-manifest.json| pbcopy
```
1. **Create the Slack app**
1. Go to [api.slack.com/apps](https://api.slack.com/apps).
1. Click `Create New App`.
1. Select `From a manifest`.
1. Choose your workspace, then click `Next`.
1. Paste the contents of `slack-manifest.json` and click `Next`.
1. Click `Create`.
1. **Generate an app-level token**
1. In your app settings, go to `Basic Information`.
1. Scroll to `App-Level Tokens`.
1. Click `Generate Token and Scopes`.
1. Add a `Token Name`, then click `Add Scope`, add `connections:write` then click `Generate`.
1. Copy the `xapp-*` token locally and click `Done`.
1. **Install your app to a Slack workspace**
1. In the sidebar, under `Settings`, click `Install App`.
1. Click `Install to <workspace name>`, then click `Allow`.
1. Copy the `xoxb-` Bot User OAuth Token locally.
You have created a Slack app and obtained the necessary tokens for Tiger Agent integration.
## Install and configure your Tiger Agent instance
Tiger Agents for Work are a production-ready library and CLI written in Python that you use to create Slack-native AI agents.
This section shows you how to configure a Tiger Agent to connect to your Slack app, and give it access to your
data and analytics stored in Tiger Cloud.
1. **Create a project directory**
bash mkdir my-tiger-agent cd my-tiger-agent
1. **Create a Tiger Agent environment with your Slack, AI Assistant, and database configuration**
1. Download `.env.sample` to a local `.env` file:
```shell
curl -L -o .env https://raw.githubusercontent.com/timescale/tiger-agent/refs/heads/main/.env.sample
```
1. In `.env`, add your Slack tokens and Anthropic API key:
```bash
SLACK_APP_TOKEN=xapp-your-app-token
SLACK_BOT_TOKEN=xoxb-your-bot-token
ANTHROPIC_API_KEY=sk-ant-your-api-key
LOGFIRE_TOKEN=your-logfire-token
```
1. Add the [connection details][connection-info] for the Tiger Cloud service you are using for this Tiger Agent:
```bash
PGHOST=<host>
PGDATABASE=tsdb
PGPORT=<port>
PGUSER=tsdbadmin
PGPASSWORD=<password>
```
1. Save and close `.env`.
1. **Add the default Tiger Agent prompts to your project**
```bash
mkdir prompts
curl -L -o prompts/system_prompt.md https://raw.githubusercontent.com/timescale/tiger-agent/refs/heads/main/prompts/system_prompt.md
curl -L -o prompts/user_prompt.md https://raw.githubusercontent.com/timescale/tiger-agent/refs/heads/main/prompts/user_prompt.md
```
1. **Install Tiger Agents for Work to manage and run your AI-powered Slack bots**
1. Install the Tiger Agent CLI using uv.
```bash
uv tool install --from git+https://github.com/timescale/tiger-agents-for-work.git tiger-agent
```
`tiger-agent` is installed in `~/.local/bin/tiger-agent`. If necessary, add this folder to your `PATH`.
1. Verify the installation.
```bash
tiger-agent --help
```
You see the Tiger Agent CLI help output with the available commands and options.
1. **Connect your Tiger Agent with Slack**
1. Run your Tiger Agent:
```bash
tiger-agent run --prompts prompts/ --env .env
```
If you open the explorer in [Tiger Cloud Console][portal-ops-mode], you can see the tables used by your Tiger Agent.
1. In Slack, open a public channel app and ask Tiger Agent a couple of questions. You see the response in your
public channel and log messages in the terminal.

## Add information from MCP servers to your Tiger Agent
To increase the amount of specialized information your AI Assistant can use, you can add MCP servers supplying data
your users need. For example, to add the Tiger Data MCP server to your Tiger Agent:
1. **Copy the example `mcp_config.json` to your project**
In `my-tiger-agent`, run the following command:
```bash
curl -L -o mcp_config.json https://raw.githubusercontent.com/timescale/tiger-agent/refs/heads/main/examples/mcp_config.json
```
1. **Configure your Tiger Agent to connect to the most useful MCP servers for your organization**
For example, to add the Tiger Data documentation MCP server to your Tiger Agent, update the docs entry to the
following:
```json
"docs": {
"tool_prefix": "docs",
"url": "https://mcp.tigerdata.com/docs",
"allow_sampling": false
},
```
To avoid errors, delete all entries in `mcp_config.json` with invalid URLs. For example the `github` entry with `http://github-mcp-server/mcp`.
1. **Restart your Tiger Agent**
bash tiger-agent run --prompts prompts/ --mcp-config mcp_config.json
You have configured your Tiger Agent to connect to the Tiger MCP Server. For more information,
see [MCP Server Configuration][mcp-configuration-docs].
## Customize prompts for personalization
Tiger Agents for Work uses Jinja2 templates for dynamic, context-aware prompt generation. This system allows for sophisticated
prompts that adapt to conversation context, user preferences, and event metadata. Tiger Agents for Work uses the following
templates:
- `system_prompt.md`: defines the AI Assistant's role, capabilities, and behavior patterns. This template sets the
foundation for the way your Tiger Agent will respond and interact.
- `user_prompt.md`: formats the user's request with relevant context, providing the AI Assistant with the
information necessary to generate an appropriate response.
To change the way your Tiger Agents interact with users in your Slack app:
1. **Update the prompt**
For example, in `prompts/system_prompt.md`, add another item in the `Response Protocol` section to fine tune
the behavior of your Tiger Agents. For example:
shell
Be snarky but vaguely amusing
1. **Test your configuration**
Run Tiger Agent with your custom prompt:
bash
tiger-agent run --mcp-config mcp_config.json --prompts prompts/
For more information, see [Prompt tempates][prompt-templates].
## Advanced configuration options
For additional customization, you can modify the following Tiger Agent parameters:
* `--model`: change AI model (default: `anthropic:claude-sonnet-4-20250514`)
* `--num-workers`: adjust concurrent workers (default: `5`)
* `--max-attempts`: set retry attempts per event (default: `3`)
Example with custom settings:
bash tiger-agent run \ --model claude-3-5-sonnet-latest \ --mcp-config mcp_config.json \ --prompts prompts/ \ --num-workers 10 \ --max-attempts 5
Your Tiger Agents are now configured with Tiger Data MCP server access and personalized prompts.
===== PAGE: https://docs.tigerdata.com/ai/key-vector-database-concepts-for-understanding-pgvector/ =====
# Key vector database concepts for understanding pgvector
<!-- vale Google.Headings = NO -->
<!-- vale Google.Headings = YES -->
## `Vector` data type provided by pgvector
Vectors inside of the database are stored in regular Postgres tables using `vector` columns. The `vector` column type is provided by the [pgvector](https://github.com/pgvector/pgvector) extension. A common way to store vectors is alongside the data they have indexed. For example, to store embeddings for documents, a common table structure is:
sql CREATE TABLE IF NOT EXISTS document_embedding (
id BIGINT PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
document_id BIGINT FOREIGN KEY(document.id)
metadata JSONB,
contents TEXT,
embedding VECTOR(1536)
)
This table contains a primary key, a foreign key to the document table, some metadata, the text being embedded (in the `contents` column), and the embedded vector.
This may seem like a bit of a weird design: why aren't the embeddings simply a separate column in the document table? The answer has to do with context length limits of embedding models and of LLMs. When embedding data, there is a limit to the length of content you can embed (for example, OpenAI's ada-002 has a limit of [8191 tokens](https://platform.openai.com/docs/guides/embeddings/embedding-models) ), and so, if you are embedding a long piece of text, you have to break it up into smaller chunks and embed each chunk individually. Therefore, when thinking about this at the database layer, there is usually a one-to-many relationship between the thing being embedded and the embeddings which is represented by a foreign key from the embedding to the thing.
Of course, if you do not want to store the original data in the database and you are just storing only the embeddings, that's totally fine too. Just omit the foreign key from the table. Another popular alternative is to put the foreign key into the metadata JSONB.
## Querying vectors using pgvector
The canonical query for vectors is for the closest query vectors to an embedding of the user's query. This is also known as finding the [K nearest neighbors](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm).
In the example query below, `$1` is a parameter taking a query embedding, and the `<=>` operator calculates the distance between the query embedding and embedding vectors stored in the database (and returns a float value).
sql SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10
The query above returns the 10 rows with the smallest distance between the query's embedding and the row's embedding. Of course, this being Postgres, you can add additional `WHERE` clauses (such as filters on the metadata), joins, etc.
### Vector distance types
The query shown above uses something called cosine distance (using the <=> operator) as a measure of how similar two embeddings are. But, there are multiple ways to quantify how far apart two vectors are from each other.
In practice, the choice of distance measure doesn't matters much and it is recommended to just stick with cosine distance for most applications.
#### Description of cosine distance, negative inner product, and Euclidean distance
Here's a succinct description of three common vector distance measures
- **Cosine distance a.k.a. angular distance**: This measures the cosine of the angle between two vectors. It's not a true "distance" in the mathematical sense but a similarity measure, where a smaller angle corresponds to a higher similarity. The cosine distance is particularly useful in high-dimensional spaces where the magnitude of the vectors (their length) is less important, such as in text analysis or information retrieval. It ranges from -1 (meaning exactly opposite) to 1 (exactly the same), with 0 typically indicating orthogonality (no similarity). See here for more on [cosine similarity](https://en.wikipedia.org/wiki/Cosine_similarity).
- **Negative inner product**: This is simply the negative of the inner product (also known as the dot product) of two vectors. The inner product measures vector similarity based on the vectors' magnitudes and the cosine of the angle between them. A higher inner product indicates greater similarity. However, it's important to note that, unlike cosine similarity, the magnitude of the vectors influences the inner product.
- **Euclidean distance**: This is the "ordinary" straight-line distance between two points in Euclidean space. In terms of vectors, it's the square root of the sum of the squared differences between corresponding elements of the vectors. This measure is sensitive to the magnitude of the vectors and is widely used in various fields such as clustering and nearest neighbor search.
Many embedding systems (for example OpenAI's ada-002) use vectors with length 1 (unit vectors). For those systems, the rankings (ordering) of all three measures is the same. In particular,
- The cosine distance is `1−dot product`.
- The negative inner product is `−dot product`.
- The Euclidean distance is related to the dot product, where the squared Euclidean distance is `2(1−dot product)`.
<!-- vale Google.Headings = NO -->
#### Recommended vector distance for use in Postgres
<!-- vale Google.Headings = YES -->
Using cosine distance, especially on unit vectors, is recommended. These recommendations are based on OpenAI's [recommendation](https://platform.openai.com/docs/guides/embeddings/which-distance-function-should-i-use) as well as the fact that the ranking of different distances on unit vectors is preserved.
## Vector search indexing (approximate nearest neighbor search)
In Postgres and other relational databases, indexing is a way to speed up queries. For vector data, indexes speed up the similarity search query shown above where you find the most similar embedding to some given query embedding. This problem is often referred to as finding the [K nearest neighbors](https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm).
The term "index" in the context of vector databases has multiple meanings. It can refer to both the storage mechanism for your data and the tool that enhances query efficiency. These docs use the latter meaning.
Finding the K nearest neighbors is not a new problem in Postgres, but existing techniques only work with low-dimensional data. These approaches cease to be effective when dealing with data larger than approximately 10 dimensions due to the "curse of dimensionality." Given that embeddings often consist of more than a thousand dimensions(OpenAI's are 1,536) new techniques had to be developed.
There are no known exact algorithms for efficiently searching in such high-dimensional spaces. Nevertheless, there are excellent approximate algorithms that fall into the category of approximate nearest neighbor algorithms.
<!-- vale Google.Colons = NO -->
There are 3 different indexing algorithms available as part of pgai on Tiger Cloud: StreamingDiskANN, HNSW, and ivfflat. The table below illustrates the high-level differences between these algorithms:
<!-- vale Google.Colons = YES -->
| Algorithm | Build Speed | Query Speed | Need to rebuild after updates |
|------------------|-------------|-------------|-------------------------------|
| StreamingDiskANN | Fast | Fastest | No |
| HNSW | Fast | Fast | No |
| ivfflat | Fastest | Slowest | Yes |
See the [performance benchmarks](https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database) for details on how the each index performs on a dataset of 1 million OpenAI embeddings.
## Recommended index types
For most applications, the StreamingDiskANN index is recommended.
===== PAGE: https://docs.tigerdata.com/ai/sql-interface-for-pgvector-and-timescale-vector/ =====
# SQL inteface for pgvector and pgvectorscale
## Installing the pgvector and pgvectorscale extensions
If not already installed, install the `vector` and `vectorscale` extensions on your Tiger Data database.
sql CREATE EXTENSION IF NOT EXISTS vector; CREATE EXTENSION IF NOT EXISTS vectorscale;
## Creating the table for storing embeddings using pgvector
Vectors inside of the database are stored in regular Postgres tables using `vector` columns. The `vector` column type is provided by the pgvector extension. A common way to store vectors is alongside the data they are embedding. For example, to store embeddings for documents, a common table structure is:
sql CREATE TABLE IF NOT EXISTS document_embedding (
id BIGINT PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
document_id BIGINT FOREIGN KEY(document.id)
metadata JSONB,
contents TEXT,
embedding VECTOR(1536)
)
This table contains a primary key, a foreign key to the document table, some metadata, the text being embedded (in the `contents` column) and the embedded vector.
You may ask why not just add an embedding column to the document table? The answer is that there is a limit on the length of text an embedding can encode and so there needs to be a one-to-many relationship between the full document and its embeddings.
The above table is just an illustration, it's totally fine to have a table without a foreign key and/or without a metadata column. The important thing is to have a column with the data being embedded and the vector in the same row, enabling you to return the raw data for a given similarity search query
The vector type can specify an optional number of dimensions (1,538) in the example above). If specified, it enforces the constraint that all vectors in the column have that number of dimensions. A plain `VECTOR` (without specifying the number of dimensions) column is also possible and allows a variable number of dimensions.
## Query the vector embeddings
The canonical query is:
sql SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10
Which returns the 10 rows whose distance is the smallest. The distance function used here is cosine distance (specified by using the `<=>` operator). Other distance functions are available, see the [discussion][distance-functions].
The available distance types and their operators are:
| Distance type | Operator |
|------------------------|---------------|
| Cosine/Angular | `<=>` |
| Euclidean | `<->` |
| Negative inner product | `<#>` |
If you are using an index, you need to make sure that the distance function used in index creation is the same one used during query (see below). This is important because if you create your index with one distance function but query with another, your index cannot be used to speed up the query.
## Indexing the vector data using indexes provided by pgvector and pgvectorscale
Indexing helps speed up similarity queries of the basic form:
sql SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10
The key part is that the `ORDER BY` contains a distance measure against a constant or a pseudo-constant.
Note that if performing a query without an index, you always get an exact result, but the query is slow (it has to read all of the data you store for every query). With an index, your queries are an order-of-magnitude faster, but the results are approximate (because there are no known indexing techniques that are exact see [here for more][vector-search-indexing]).
<!-- vale Google.Colons = NO -->
Nevertheless, there are excellent approximate algorithms. There are 3 different indexing algorithms available on TimescaleDB: StreamingDiskANN, HNSW, and ivfflat. Below is the trade-offs between these algorithms:
<!-- vale Google.Colons = Yes -->
| Algorithm | Build Speed | Query Speed | Need to rebuild after updates |
|------------------|-------------|-------------|-------------------------------|
| StreamingDiskANN | Fast | Fastest | No |
| HNSW | Fast | Fast | No |
| ivfflat | Fastest | Slowest | Yes |
You can see [benchmarks](https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database/) in the blog.
For most use cases, the StreamingDiskANN index is recommended.
Each of these indexes has a set of build-time options for controlling the speed/accuracy trade-off when creating the index and an additional query-time option for controlling accuracy during a particular query.
You can see the details of each index below.
### StreamingDiskANN index
The StreamingDiskANN index is a graph-based algorithm that was inspired by the [DiskANN](https://github.com/microsoft/DiskANN) algorithm.
You can read more about it in
[How We Made Postgres as Fast as Pinecone for Vector Data](https://www.timescale.com/blog/how-we-made-postgresql-as-fast-as-pinecone-for-vector-data).
To create an index named `document_embedding_idx` on table `document_embedding` having a vector column named `embedding`, with cosine distance metric, run:
sql CREATE INDEX document_embedding_cos_idx ON document_embedding USING diskann (embedding vector_cosine_ops);
Since this index uses cosine distance, you should use the `<=>` operator in your queries. StreamingDiskANN also supports L2 distance:
sql CREATE INDEX document_embedding_l2_idx ON document_embedding USING diskann (embedding vector_l2_ops);
For L2 distance, use the `<->` operator in queries.
These examples create the index with smart defaults for all parameters not listed. These should be the right values for most cases. But if you want to delve deeper, the available parameters are below.
#### StreamingDiskANN index build-time parameters
These parameters can be set when an index is created.
| Parameter name | Description | Default value |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| `storage_layout` | `memory_optimized` which uses SBQ to compress vector data or `plain` which stores data uncompressed | memory_optimized
| `num_neighbors` | Sets the maximum number of neighbors per node. Higher values increase accuracy but make the graph traversal slower. | 50 |
| `search_list_size` | This is the S parameter used in the greedy search algorithm used during construction. Higher values improve graph quality at the cost of slower index builds. | 100 |
| `max_alpha` | Is the alpha parameter in the algorithm. Higher values improve graph quality at the cost of slower index builds. | 1.2 |
| `num_dimensions` | The number of dimensions to index. By default, all dimensions are indexed. But you can also index less dimensions to make use of [Matryoshka embeddings](https://huggingface.co/blog/matryoshka) | 0 (all dimensions)
| `num_bits_per_dimension` | Number of bits used to encode each dimension when using SBQ | 2 for less than 900 dimensions, 1 otherwise
An example of how to set the `num_neighbors` parameter is:
sql CREATE INDEX document_embedding_idx ON document_embedding USING diskann (embedding) WITH(num_neighbors=50);
<!---
TODO: Add PQ options
-->
#### StreamingDiskANN query-time parameters
You can also set two parameters to control the accuracy vs. query speed trade-off at query time. We suggest adjusting `diskann.query_rescore` to fine-tune accuracy.
| Parameter name | Description | Default value |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| `diskann.query_search_list_size` | The number of additional candidates considered during the graph search. | 100
| `diskann.query_rescore` | The number of elements rescored (0 to disable rescoring) | 50
You can set the value by using `SET` before executing a query. For example:
sql SET diskann.query_rescore = 400;
Note the [SET command](https://www.postgresql.org/docs/current/sql-set.html) applies to the entire session (database connection) from the point of execution. You can use a transaction-local variant using `LOCAL` which will
be reset after the end of the transaction:
sql BEGIN; SET LOCAL diskann.query_search_list_size= 10; SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10 COMMIT;
#### StreamingDiskANN index-supported queries
You need to use the cosine-distance embedding measure (`<=>`) in your `ORDER BY` clause. A canonical query would be:
sql SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10
### pgvector HNSW
Pgvector provides a graph-based indexing algorithm based on the popular [HNSW algorithm](https://arxiv.org/abs/1603.09320).
To create an index named `document_embedding_idx` on table `document_embedding` having a vector column named `embedding`, run:
sql CREATE INDEX document_embedding_idx ON document_embedding USING hnsw(embedding vector_cosine_ops);
This command creates an index for cosine-distance queries because of `vector_cosine_ops`. There are also "ops" classes for Euclidean distance and negative inner product:
| Distance type | Query operator | Index ops class |
|------------------------|----------------|-------------------|
| Cosine / Angular | `<=>` | `vector_cosine_ops` |
| Euclidean / L2 | `<->` | `vector_ip_ops` |
| Negative inner product | `<#>` | `vector_l2_ops` |
Pgvector HNSW also includes several index build-time and query-time parameters.
#### pgvector HNSW index build-time parameters
These parameters can be set at index build time:
| Parameter name | Description | Default value |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| `m` | Represents the maximum number of connections per layer. Think of these connections as edges created for each node during graph construction. Increasing m increases accuracy but also increases index build time and size. | 16 |
| `ef_construction` | Represents the size of the dynamic candidate list for constructing the graph. It influences the trade-off between index quality and construction speed. Increasing `ef_construction` enables more accurate search results at the expense of lengthier index build times. | 64 |
An example of how to set the m parameter is:
sql CREATE INDEX document_embedding_idx ON document_embedding USING hnsw(embedding vector_cosine_ops) WITH (m = 20);
#### pgvector HNSW query-time parameters
You can also set a parameter to control the accuracy vs. query speed trade-off at query time. The parameter is called `hnsw.ef_search`. This parameter specifies the size of the dynamic candidate list used during search. Defaults to 40. Higher values improve query accuracy while making the query slower.
You can set the value by running:
sql SET hnsw.ef_search = 100;
Before executing the query, note the [SET command](https://www.postgresql.org/docs/current/sql-set.html) applies to the entire session (database connection) from the point of execution. You can use a transaction-local variant using `LOCAL`:
sql BEGIN; SET LOCAL hnsw.ef_search = 100; SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10 COMMIT;
#### pgvector HNSW index-supported queries
You need to use the distance operator (`<=>`, `<->`, or `<#>`) matching the ops class you used during index creation in your `ORDER BY` clause. A canonical query would be:
sql SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10
### pgvector ivfflat
Pgvector provides a clustering-based indexing algorithm. The [blog post](https://www.timescale.com/blog/nearest-neighbor-indexes-what-are-ivfflat-indexes-in-pgvector-and-how-do-they-work) describes how it works in detail. It provides the fastest index-build speed but the slowest query speeds of any indexing algorithm.
To create an index named `document_embedding_idx` on table `document_embedding` having a vector column named `embedding`, run:
sql CREATE INDEX document_embedding_idx ON document_embedding USING ivfflat(embedding vector_cosine_ops) WITH (lists = 100);
This command creates an index for cosine-distance queries because of `vector_cosine_ops`. There are also "ops" classes for Euclidean distance and negative inner product:
| Distance type | Query operator | Index ops class |
|------------------------|----------------|-------------------|
| Cosine / Angular | `<=>` | `vector_cosine_ops` |
| Euclidean / L2 | `<->` | `vector_ip_ops` |
| Negative inner product | `<#>` | `vector_l2_ops` |
Note: *ivfflat should never be created on empty tables* because it needs to cluster data, and that only happens when an index is first created, not when new rows are inserted or modified. Also, if your table undergoes a lot of modifications, you need to rebuild this index occasionally to maintain good accuracy. See the [blog post](https://www.timescale.com/blog/nearest-neighbor-indexes-what-are-ivfflat-indexes-in-pgvector-and-how-do-they-work) for details.
Pgvector ivfflat has a `lists` index parameter that should be set. See the next section.
#### pgvector ivfflat index build-time parameters
Pgvector has a `lists` parameter that should be set as follows:
For datasets with less than one million rows, use lists = rows / 1000.
For datasets with more than one million rows, use lists = sqrt(rows).
It is generally advisable to have at least 10 clusters.
You can use the following code to simplify creating ivfflat indexes:
python def create_ivfflat_index(conn, table_name, column_name, query_operator="<=>"):
index_method = "invalid"
if query_operator == "<->":
index_method = "vector_l2_ops"
elif query_operator == "<#>":
index_method = "vector_ip_ops"
elif query_operator == "<=>":
index_method = "vector_cosine_ops"
else:
raise ValueError(f"unrecognized operator {query_operator}")
with conn.cursor() as cur:
cur.execute(f"SELECT COUNT(*) as cnt FROM {table_name};")
num_records = cur.fetchone()[0]
num_lists = num_records / 1000
if num_lists < 10:
num_lists = 10
if num_records > 1000000:
num_lists = math.sqrt(num_records)
cur.execute(f'CREATE INDEX ON {table_name} USING ivfflat ({column_name} {index_method}) WITH (lists = {num_lists});')
conn.commit()
#### pgvector ivfflat query-time parameters
You can also set a parameter to control the accuracy vs. query speed tradeoff at query time. The parameter is called `ivfflat.probes`. This parameter specifies the number of clusters searched during a query. It is recommended to set this parameter to `sqrt(lists)` where lists is the parameter used above during index creation. Higher values improve query accuracy while making the query slower.
You can set the value by running:
sql SET ivfflat.probes = 100;
Before executing the query, note the [SET command](https://www.postgresql.org/docs/current/sql-set.html) applies to the entire session (database connection) from the point of execution. You can use a transaction-local variant using `LOCAL`:
sql BEGIN; SET LOCAL ivfflat.probes = 100; SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10 COMMIT;
#### pgvector ivfflat index-supported queries
You need to use the distance operator (`<=>`, `<->`, or `<#>`) matching the ops class you used during index creation in your `ORDER BY` clause. A canonical query would be:
sql SELECT * FROM document_embedding ORDER BY embedding <=> $1 LIMIT 10
===== PAGE: https://docs.tigerdata.com/ai/python-interface-for-pgvector-and-timescale-vector/ =====
# Python interface for pgvector and pgvectorscale
You use pgai to power production grade AI applications. `timescale_vector` is the
Python interface you use to interact with a pgai on Tiger Cloud service programmatically.
Before you get started with `timescale_vector`:
- [Sign up for pgai on Tiger Cloud](https://console.cloud.timescale.com/signup?utm_campaign=vectorlaunch&utm_source=docs&utm_medium=direct): Get 90 days free to try pgai on Tiger Cloud.
- [Follow the Get Started Tutorial](https://timescale.github.io/python-vector/tsv_python_getting_started_tutorial.html):
Learn how to use pgai on Tiger Cloud for semantic search on a real-world dataset.
If you prefer to use an LLM development or data framework, see pgai's integrations with [LangChain](https://python.langchain.com/docs/integrations/vectorstores/timescalevector) and [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/vector_stores/Timescalevector.html).
## Prerequisites
`timescale_vector` depends on the source distribution of `psycopg2` and adheres
to [best practices for psycopg2](https://www.psycopg.org/docs/install.html#psycopg-vs-psycopg-binary).
Before you install `timescale_vector`:
* Follow the [psycopg2 build prerequisites](https://www.psycopg.org/docs/install.html#build-prerequisites).
## Install
To interact with pgai on Tiger Cloud using Python:
1. Install `timescale_vector`:
```bash
pip install timescale_vector
```
1. Install `dotenv`:
```bash
pip install python-dotenv
```
In these examples, you use `dotenv` to pass secrets and keys.
That is it, you are ready to go.
## Basic usage of the timescale_vector library
First, import all the necessary libraries:
python from dotenv import load_dotenv, find_dotenv import os from timescale_vector import client import uuid from datetime import datetime, timedelta
Load up your Postgres credentials, the safest way is with a `.env` file:
python _ = load_dotenv(find_dotenv(), override=True) service_url = os.environ['TIMESCALE_SERVICE_URL']
Next, create the client. This tutorial, uses the sync client. But the library has an async client as well (with an identical interface that
uses async functions).
The client constructor takes three required arguments:
| name | description |
|----------------|-------------------------------------------------------------------------------------------|
| `service_url` | Tiger Cloud service URL / connection string |
| `table_name` | Name of the table to use for storing the embeddings. Think of this as the collection name |
| `num_dimensions` | Number of dimensions in the vector |
python vec = client.Sync(service_url, "my_data", 2)
Next, create the tables for the collection:
python vec.create_tables()
Next, insert some data. The data record contains:
- A UUID to uniquely identify the embedding
- A JSON blob of metadata about the embedding
- The text the embedding represents
- The embedding itself
Because this data includes UUIDs which become primary keys, upserts should be used for ingest.
python vec.upsert([
(uuid.uuid1(), {"animal": "fox"}, "the brown fox", [1.0,1.3]),\
(uuid.uuid1(), {"animal": "fox", "action":"jump"}, "jumped over the", [1.0,10.8]),\
])
You can now create a vector index to speed up similarity search:
python vec.create_embedding_index(client.TimescaleVectorIndex())
Then, you can query for similar items:
python vec.search([1.0, 9.0])
[[UUID('73d05df0-84c1-11ee-98da-6ee10b77fd08'),
{'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456],
[UUID('73d05d6e-84c1-11ee-98da-6ee10b77fd08'),
{'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
There are many search options which are covered below in the
`Advanced search` section.
A simple search example that returns one item using a similarity search
constrained by a metadata filter is shown below:
python vec.search([1.0, 9.0], limit=1, filter={"action": "jump"})
[[UUID('73d05df0-84c1-11ee-98da-6ee10b77fd08'),
{'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
The returned records contain 5 fields:
| name | description |
|-----------|---------------------------------------------------------|
| id | The UUID of the record |
| metadata | The JSON metadata associated with the record |
| contents | the text content that was embedded |
| embedding | The vector embedding |
| distance | The distance between the query embedding and the vector |
You can access the fields by simply using the record as a dictionary
keyed on the field name:
python records = vec.search([1.0, 9.0], limit=1, filter={"action": "jump"}) (records[0]["id"],records[0]["metadata"], records[0]["contents"], records[0]["embedding"], records[0]["distance"])
(UUID('73d05df0-84c1-11ee-98da-6ee10b77fd08'),
{'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456)
You can delete by ID:
python vec.delete_by_ids([records[0]["id"]])
Or you can delete by metadata filters:
python vec.delete_by_metadata({"action": "jump"})
To delete all records use:
python vec.delete_all()
## Advanced usage
This section goes into more detail about the Python interface. It covers:
1. Search filter options - how to narrow your search by additional
constraints
2. Indexing - how to speed up your similarity queries
3. Time-based partitioning - how to optimize similarity queries that
filter on time
4. Setting different distance types to use in distance calculations
### Search options
The `search` function is very versatile and allows you to search for the right vector in a wide variety of ways. This section describes the search option in 3 parts:
1. Basic similarity search.
2. How to filter your search based on the associated metadata.
3. Filtering on time when time-partitioning is enabled.
The following examples are based on this data:
python vec.upsert([
(uuid.uuid1(), {"animal":"fox", "action": "sit", "times":1}, "the brown fox", [1.0,1.3]),\
(uuid.uuid1(), {"animal":"fox", "action": "jump", "times":100}, "jumped over the", [1.0,10.8]),\
])
The basic query looks like this:
python vec.search([1.0, 9.0])
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456],
[UUID('7487af14-84c1-11ee-98da-6ee10b77fd08'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
You could provide a limit for the number of items returned:
python vec.search([1.0, 9.0], limit=1)
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
#### Narrowing your search by metadata
There are two main ways to filter results by metadata:
- `filters` for equality matches on metadata.
- `predicates` for complex conditions on metadata.
Filters are more limited in what they can express, but are also more performant. You should use filters if your use case allows it.
##### Using filters for equality matches
You could specify a match on the metadata as a dictionary where all keys
have to match the provided values (keys not in the filter are
unconstrained):
python vec.search([1.0, 9.0], limit=1, filter={"action": "sit"})
[[UUID('7487af14-84c1-11ee-98da-6ee10b77fd08'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
You can also specify a list of filter dictionaries, where an item is
returned if it matches any dict:
python vec.search([1.0, 9.0], limit=2, filter=[{"action": "jump"}, {"animal": "fox"}])
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456],
[UUID('7487af14-84c1-11ee-98da-6ee10b77fd08'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
##### Using predicates for more advanced filtering on metadata
Predicates allow for more complex search conditions. For example, you
could use greater than and less than conditions on numeric values.
python vec.search([1.0, 9.0], limit=2, predicates=client.Predicates("times", ">", 1))
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
`Predicates`
objects are defined by the name of the metadata key, an operator, and a value.
The supported operators are: `==`, `!=`, `<`, `<=`, `>`, `>=`
The type of the values determines the type of comparison to perform. For
example, passing in `"Sam"` (a string) performs a string comparison while
a `10` (an int) performs an integer comparison, and a `10.0`
(float) performs a float comparison. It is important to note that using a
value of `"10"` performs a string comparison as well so it's important to
use the right type. Supported Python types are: `str`, `int`, and
`float`.
One more example with a string comparison:
python vec.search([1.0, 9.0], limit=2, predicates=client.Predicates("action", "==", "jump"))
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
The real power of predicates is that they can also be combined using the
`&` operator (for combining predicates with `AND` semantics) and `|`(for
combining using OR semantic). So you can do:
python vec.search([1.0, 9.0], limit=2, predicates=client.Predicates("action", "==", "jump") & client.Predicates("times", ">", 1))
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
Just for sanity, the next example shows a case where no results are returned because
of predicates:
python vec.search([1.0, 9.0], limit=2, predicates=client.Predicates("action", "==", "jump") & client.Predicates("times", "==", 1))
[]
And one more example where the predicates are defined as a variable
and use grouping with parenthesis:
python my_predicates = client.Predicates("action", "==", "jump") & (client.Predicates("times", "==", 1) | client.Predicates("times", ">", 1)) vec.search([1.0, 9.0], limit=2, predicates=my_predicates)
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
There is also semantic sugar for combining many predicates with `AND`
semantics. You can pass in multiple 3-tuples to
`Predicates`:
python vec.search([1.0, 9.0], limit=2, predicates=client.Predicates(("action", "==", "jump"), ("times", ">", 10)))
[[UUID('7487af96-84c1-11ee-98da-6ee10b77fd08'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
#### Filter your search by time
When using `time-partitioning` (see below) you can very efficiently
filter your search by time. Time-partitioning associates the timestamp embedded
in a UUID-based ID with an embedding. First,
create a collection with time partitioning and insert some data (one
item from January 2018 and another in January 2019):
python tpvec = client.Sync(service_url, "time_partitioned_table", 2, time_partition_interval=timedelta(hours=6)) tpvec.create_tables()
specific_datetime = datetime(2018, 1, 1, 12, 0, 0) tpvec.upsert([
(client.uuid_from_time(specific_datetime), {"animal":"fox", "action": "sit", "times":1}, "the brown fox", [1.0,1.3]),\
(client.uuid_from_time(specific_datetime+timedelta(days=365)), {"animal":"fox", "action": "jump", "times":100}, "jumped over the", [1.0,10.8]),\
])
Then, you can filter using the timestamps by specifying a
`uuid_time_filter`:
python tpvec.search([1.0, 9.0], limit=4, uuid_time_filter=client.UUIDTimeRange(specific_datetime, specific_datetime+timedelta(days=1)))
[[UUID('33c52800-ef15-11e7-be03-4f1f9a1bde5a'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
A
[`UUIDTimeRange`](https://timescale.github.io/python-vector/vector.html#uuidtimerange)
can specify a `start_date` or `end_date` or both(as in the example above).
Specifying only the `start_date` or `end_date` leaves the other end
unconstrained.
python tpvec.search([1.0, 9.0], limit=4, uuid_time_filter=client.UUIDTimeRange(start_date=specific_datetime))
[[UUID('ac8be800-0de6-11e9-889a-5eec84ba8a7b'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456],
[UUID('33c52800-ef15-11e7-be03-4f1f9a1bde5a'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
You have the option to define whether the start and end dates
are inclusive with the `start_inclusive` and `end_inclusive` parameters. Setting
`start_inclusive` to true results in comparisons using the `>=`
operator, whereas setting it to false applies the `>` operator. By
default, the start date is inclusive, while the end date is exclusive.
One example:
python tpvec.search([1.0, 9.0], limit=4, uuid_time_filter=client.UUIDTimeRange(start_date=specific_datetime, start_inclusive=False))
[[UUID('ac8be800-0de6-11e9-889a-5eec84ba8a7b'),
{'times': 100, 'action': 'jump', 'animal': 'fox'},
'jumped over the',
array([ 1. , 10.8], dtype=float32),
0.00016793422934946456]]
Notice how the results are different when using the
`start_inclusive=False` option because the first row has the exact
timestamp specified by `start_date`.
It is also easy to integrate time filters using the `filter` and
`predicates` parameters described above using special reserved key names
to make it appear that the timestamps are part of your metadata. This
is useful when integrating with other systems that just want to
specify a set of filters (often these are "auto retriever" type
systems). The reserved key names are `__start_date` and `__end_date` for
filters and `__uuid_timestamp` for predicates. Some examples below:
python tpvec.search([1.0, 9.0], limit=4, filter={ "start_date": specific_datetime, "end_date": specific_datetime+timedelta(days=1)})
[[UUID('33c52800-ef15-11e7-be03-4f1f9a1bde5a'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
python tpvec.search([1.0, 9.0], limit=4,
predicates=client.Predicates("__uuid_timestamp", ">", specific_datetime) & client.Predicates("__uuid_timestamp", "<", specific_datetime+timedelta(days=1)))
[[UUID('33c52800-ef15-11e7-be03-4f1f9a1bde5a'),
{'times': 1, 'action': 'sit', 'animal': 'fox'},
'the brown fox',
array([1. , 1.3], dtype=float32),
0.14489260377438218]]
### Indexing
Indexing speeds up queries over your data. By default, the system creates indexes
to query your data by the UUID and the metadata.
To speed up similarity search based on the embeddings, you have to
create additional indexes.
Note that if performing a query without an index, you always get an
exact result, but the query is slow (it has to read all of the data
you store for every query). With an index, your queries are
order-of-magnitude faster, but the results are approximate (because there
are no known indexing techniques that are exact).
Luckily, TimescaleDB provides 3 excellent approximate indexing algorithms,
StreamingDiskANN, HNSW, and ivfflat.
Below are the trade-offs between these algorithms:
| Algorithm | Build speed | Query speed | Need to rebuild after updates |
|------------------|-------------|-------------|-------------------------------|
| StreamingDiskAnn | Fast | Fastest | No |
| HNSW | Fast | Faster | No |
| ivfflat | Fastest | Slowest | Yes |
You can see
[benchmarks](https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database/)
on the blog.
You should use the StreamingDiskANN index for most use cases. This
can be created with:
python vec.create_embedding_index(client.TimescaleVectorIndex())
Indexes are created for a particular distance metric type. So it is
important that the same distance metric is set on the client during
index creation as it is during queries. See the `distance type` section
below.
Each of these indexes has a set of build-time options for controlling
the speed/accuracy trade-off when creating the index and an additional
query-time option for controlling accuracy during a particular query. The
library uses smart defaults for all of these options. The
details for how to adjust these options manually are below.
<!-- vale Google.Headings = NO -->
#### StreamingDiskANN index
<!-- vale Google.Headings = YES -->
The StreamingDiskANN index is a graph-based algorithm that uses the
[DiskANN](https://github.com/microsoft/DiskANN) algorithm. You can read
more about it in the
[blog](https://www.timescale.com/blog/how-we-made-postgresql-the-best-vector-database/)
announcing its release.
To create this index, run:
python vec.create_embedding_index(client.TimescaleVectorIndex())
The above command creates the index using smart defaults. There are
a number of parameters you could tune to adjust the accuracy/speed
trade-off.
The parameters you can set at index build time are:
| Parameter name | Description | Default value |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| `num_neighbors` | Sets the maximum number of neighbors per node. Higher values increase accuracy but make the graph traversal slower. | 50 |
| `search_list_size` | This is the S parameter used in the greedy search algorithm used during construction. Higher values improve graph quality at the cost of slower index builds. | 100 |
| `max_alpha` | Is the alpha parameter in the algorithm. Higher values improve graph quality at the cost of slower index builds. | 1.0 |
To set these parameters, you could run:
python vec.create_embedding_index(client.TimescaleVectorIndex(num_neighbors=50, search_list_size=100, max_alpha=1.0))
You can also set a parameter to control the accuracy vs. query speed
trade-off at query time. The parameter is set in the `search()` function
using the `query_params` argument. You can set the
`search_list_size`(default: 100). This is the number of additional
candidates considered during the graph search at query time. Higher
values improve query accuracy while making the query slower.
You can specify this value during search as follows:
python vec.search([1.0, 9.0], limit=4, query_params=TimescaleVectorIndexParams(search_list_size=10))
To drop the index, run:
python vec.drop_embedding_index()
#### pgvector HNSW index
Pgvector provides a graph-based indexing algorithm based on the popular
[HNSW algorithm](https://arxiv.org/abs/1603.09320).
To create this index, run:
python vec.create_embedding_index(client.HNSWIndex())
The above command creates the index using smart defaults. There are
a number of parameters you could tune to adjust the accuracy/speed
trade-off.
The parameters you can set at index build time are:
| Parameter name | Description | Default value |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| `m` | Represents the maximum number of connections per layer. Think of these connections as edges created for each node during graph construction. Increasing m increases accuracy but also increases index build time and size. | 16 |
| `ef_construction` | Represents the size of the dynamic candidate list for constructing the graph. It influences the trade-off between index quality and construction speed. Increasing `ef_construction` enables more accurate search results at the expense of lengthier index build times. | 64 |
To set these parameters, you could run:
python vec.create_embedding_index(client.HNSWIndex(m=16, ef_construction=64))
You can also set a parameter to control the accuracy vs. query speed
trade-off at query time. The parameter is set in the `search()` function
using the `query_params` argument. You can set the `ef_search`(default:
40). This parameter specifies the size of the dynamic candidate list
used during search. Higher values improve query accuracy while making
the query slower.
You can specify this value during search as follows:
python vec.search([1.0, 9.0], limit=4, query_params=HNSWIndexParams(ef_search=10))
To drop the index run:
python vec.drop_embedding_index()
#### pgvector ivfflat index
Pgvector provides a clustering-based indexing algorithm. The [blog
post](https://www.timescale.com/blog/nearest-neighbor-indexes-what-are-ivfflat-indexes-in-pgvector-and-how-do-they-work/)
describes how it works in detail. It provides the fastest
index-build speed but the slowest query speeds of any indexing
algorithm.
To create this index, run:
python vec.create_embedding_index(client.IvfflatIndex())
Note: *ivfflat should never be created on empty tables* because it needs
to cluster data, and that only happens when an index is first created,
not when new rows are inserted or modified. Also, if your table
undergoes a lot of modifications, you need to rebuild this index
occasionally to maintain good accuracy. See the [blog
post](https://www.timescale.com/blog/nearest-neighbor-indexes-what-are-ivfflat-indexes-in-pgvector-and-how-do-they-work/)
for details.
Pgvector ivfflat has a `lists` index parameter that is automatically set
with a smart default based on the number of rows in your table. If you
know that you'll have a different table size, you can specify the number
of records to use for calculating the `lists` parameter as follows:
python vec.create_embedding_index(client.IvfflatIndex(num_records=1000000))
You can also set the `lists` parameter directly:
python vec.create_embedding_index(client.IvfflatIndex(num_lists=100))
You can also set a parameter to control the accuracy vs. query speed
trade-off at query time. The parameter is set in the `search()` function
using the `query_params` argument. You can set the `probes`. This
parameter specifies the number of clusters searched during a query. It
is recommended to set this parameter to `sqrt(lists)` where lists is the
`num_list` parameter used above during index creation. Higher values
improve query accuracy while making the query slower.
You can specify this value during search as follows:
python vec.search([1.0, 9.0], limit=4, query_params=IvfflatIndexParams(probes=10))
To drop the index, run:
python vec.drop_embedding_index()
### Time partitioning
In many use cases where you have many embeddings, time is an important
component associated with the embeddings. For example, when embedding
news stories, you often search by time as well as similarity
(for example, stories related to Bitcoin in the past week or stories about
Clinton in November 2016).
Yet, traditionally, searching by two components "similarity" and "time"
is challenging for Approximate Nearest Neighbor (ANN) indexes and makes the
similarity-search index less effective.
One approach to solving this is partitioning the data by time and
creating ANN indexes on each partition individually. Then, during search,
you can:
- Step 1: filter partitions that don't match the time predicate.
- Step 2: perform the similarity search on all matching partitions.
- Step 3: combine all the results from each partition in step 2, re-rank,
and filter out results by time.
Step 1 makes the search a lot more efficient by filtering out whole
swaths of data in one go.
Timescale-vector supports time partitioning using TimescaleDB's
hypertables. To use this feature, simply indicate the length of time for
each partition when creating the client:
python from datetime import timedelta from datetime import datetime
python vec = client.Async(service_url, "my_data_with_time_partition", 2, time_partition_interval=timedelta(hours=6)) await vec.create_tables()
Then, insert data where the IDs use UUIDs v1 and the time component of
the UUIDspecifies the time of the embedding. For example, to create an
embedding for the current time, simply do:
python id = uuid.uuid1() await vec.upsert([(id, {"key": "val"}, "the brown fox", [1.0, 1.2])])
To insert data for a specific time in the past, create the UUID using the
`uuid_from_time` function
python specific_datetime = datetime(2018, 8, 10, 15, 30, 0) await vec.upsert([(client.uuid_from_time(specific_datetime), {"key": "val"}, "the brown fox", [1.0, 1.2])])
You can then query the data by specifying a `uuid_time_filter` in the
search call:
python rec = await vec.search([1.0, 2.0], limit=4, uuid_time_filter=client.UUIDTimeRange(specific_datetime-timedelta(days=7), specific_datetime+timedelta(days=7)))
### Distance metrics
Cosine distance is used by default to measure how similarly an embedding
is to a given query. In addition to cosine distance, Euclidean/L2 distance is
also supported. The distance type is set when creating the client
using the `distance_type` parameter. For example, to use the Euclidean
distance metric, you can create the client with:
python vec = client.Sync(service_url, "my_data", 2, distance_type="euclidean")
Valid values for `distance_type` are `cosine` and `euclidean`.
It is important to note that you should use consistent distance types on
clients that create indexes and perform queries. That is because an
index is only valid for one particular type of distance measure.
Note that the StreamingDiskANN index only supports cosine distance at
this time.
===== PAGE: https://docs.tigerdata.com/ai/langchain-integration-for-pgvector-and-timescale-vector/ =====
# LangChain Integration for pgvector, pgvectorscale, and pgai
[LangChain](https://www.langchain.com/) is a popular framework for development applications powered by LLMs. pgai on Tiger Cloud has a native LangChain integration, enabling you to use it as a vector store and leverage all its capabilities in your applications built with LangChain.
Here are resources about using pgai on Tiger Cloud with LangChain:
- [Getting started with LangChain and pgvectorscale](https://python.langchain.com/docs/integrations/vectorstores/timescalevector): You'll learn how to use pgai on Tiger Data for (1) semantic search, (2) time-based vector search, (3) self-querying, and (4) how to create indexes to speed up queries.
- [Postgres Self Querying](https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query): Learn how to use pgai on Tiger Data with self-querying in LangChain.
- [Learn more about pgai on Tiger Data and LangChain](https://blog.langchain.dev/timescale-vector-x-langchain-making-postgresql-a-better-vector-database-for-ai-applications/): A blog post about the unique capabilities that pgai on Tiger Cloud brings to the LangChain ecosystem.
===== PAGE: https://docs.tigerdata.com/ai/llamaindex-integration-for-pgvector-and-timescale-vector/ =====
# LlamaIndex Integration for pgvector and Tiger Data Vector
## LlamaIndex integration for pgvector and Tiger Data Vector
[LlamaIndex](https://www.llamaindex.ai/) is a popular data framework for connecting custom data sources to large language models (LLMs). Tiger Data Vector has a native LlamaIndex integration that supports all the features of pgvector and Tiger Data Vector. It enables you to use Tiger Data Vector as a vector store and leverage all its capabilities in your applications built with LlamaIndex.
Here are resources about using Tiger Data Vector with LlamaIndex:
- [Getting started with LlamaIndex and TigerData Vector](https://docs.llamaindex.ai/en/stable/examples/vector_stores/Timescalevector.html): You'll learn how to use Tiger Data Vector for (1) similarity search, (2) time-based vector search, (3) faster search with indexes, and (4) retrieval and query engine.
- [Time-based retrieval](https://youtu.be/EYMZVfKcRzM?si=I0H3uUPgzKbQw__W): Learn how to power RAG applications with time-based retrieval.
- [Llama Pack: Auto Retrieval with time-based search](https://github.com/run-llama/llama-hub/tree/main/llama_hub/llama_packs/timescale_vector_autoretrieval): This pack demonstrates performing auto-retrieval for hybrid search based on both similarity and time, using the timescale-vector (Postgres) vector store.
- [Learn more about TigerData Vector and LlamaIndex ](https://www.timescale.com/blog/timescale-vector-x-llamaindex-making-postgresql-a-better-vector-database-for-ai-applications/): How Tiger Data Vector is a better Postgres for AI applications.
===== PAGE: https://docs.tigerdata.com/ai/pgvectorizer/ =====
# Embed your Postgres data with PgVectorizer
## Embed Postgres data with PgVectorizer
PgVectorizer enables you to create vector embeddings from any data that
you already have stored in Postgres. You can get more background
information in the [blog
post](https://www.timescale.com/blog/a-complete-guide-to-creating-and-storing-embeddings-for-postgresql-data/)
announcing this feature, as well as the ["how we built
it"](https://www.timescale.com/blog/how-we-designed-a-resilient-vector-embedding-creation-system-for-postgresql-data/)
post going into the details of the design.
To create vector embeddings, simply attach PgVectorizer to any Postgres
table to automatically sync that table's data with a set of
embeddings stored in Postgres. For example, say you have a
blog table defined in the following way:
python import psycopg2 from langchain.docstore.document import Document from langchain.text_splitter import CharacterTextSplitter from timescale_vector import client, pgvectorizer from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores.timescalevector import TimescaleVector from datetime import timedelta
python with psycopg2.connect(service_url) as conn:
with conn.cursor() as cursor:
cursor.execute('''
CREATE TABLE IF NOT EXISTS blog (
id INT PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
title TEXT NOT NULL,
author TEXT NOT NULL,
contents TEXT NOT NULL,
category TEXT NOT NULL,
published_time TIMESTAMPTZ NULL --NULL if not yet published
);
''')
You can insert some data as follows:
python with psycopg2.connect(service_url) as conn:
with conn.cursor() as cursor:
cursor.execute('''
INSERT INTO blog (title, author, contents, category, published_time) VALUES ('First Post', 'Matvey Arye', 'some super interesting content about cats.', 'AI', '2021-01-01');
''')
Now, say you want to embed these blogs and store the embeddings in Postgres. First, you
need to define an `embed_and_write` function that takes a set of blog
posts, creates the embeddings, and writes them into TigerData Vector. For
example, if using LangChain, it could look something like the following.
python def get_document(blog):
text_splitter = CharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
docs = []
for chunk in text_splitter.split_text(blog['contents']):
content = f"Author {blog['author']}, title: {blog['title']}, contents:{chunk}"
metadata = {
"id": str(client.uuid_from_time(blog['published_time'])),
"blog_id": blog['id'],
"author": blog['author'],
"category": blog['category'],
"published_time": blog['published_time'].isoformat(),
}
docs.append(Document(page_content=content, metadata=metadata))
return docs
def embed_and_write(blog_instances, vectorizer):
embedding = OpenAIEmbeddings()
vector_store = TimescaleVector(
collection_name="blog_embedding",
service_url=service_url,
embedding=embedding,
time_partition_interval=timedelta(days=30),
)
metadata_for_delete = [{"blog_id": blog['locked_id']} for blog in blog_instances]
vector_store.delete_by_metadata(metadata_for_delete)
documents = []
for blog in blog_instances:
if blog['published_time'] != None:
documents.extend(get_document(blog))
if len(documents) == 0:
return
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
ids = [d.metadata["id"] for d in documents]
vector_store.add_texts(texts, metadatas, ids)
Then, all you have to do is run the following code in a scheduled job
(cron job, Lambda job, etc):
python vectorizer = pgvectorizer.Vectorize(service_url, 'blog') while vectorizer.process(embed_and_write) > 0:
pass
Every time that job runs, it syncs the table with your embeddings. It
syncs all inserts, updates, and deletes to an embeddings table called
`blog_embedding`.
Now, you can simply search the embeddings as follows (again, using
LangChain in the example):
python embedding = OpenAIEmbeddings() vector_store = TimescaleVector(
collection_name="blog_embedding",
service_url=service_url,
embedding=embedding,
time_partition_interval=timedelta(days=30),
)
res = vector_store.similarity_search_with_score("Blogs about cats") res
[(Document(page_content='Author Matvey Arye, title: First Post, contents:some super interesting content about cats.', metadata={'id': '4a784000-4bc4-11eb-855a-06302dbc8ce7', 'author': 'Matvey Arye', 'blog_id': 1, 'category': 'AI', 'published_time': '2021-01-01T00:00:00+00:00'}),
0.12595687795193833)]
===== PAGE: https://docs.tigerdata.com/README/ =====
<div align=center>
<picture align=center>
<source media="(prefers-color-scheme: dark)" srcset="https://assets.timescale.com/docs/images/tigerdata-gradient-white.svg">
<source media="(prefers-color-scheme: light)" srcset="https://assets.timescale.com/docs/images/tigerdata-gradient-black.svg">
<img alt="Tiger Data logo" >
</picture>
</div>
<div align=center>
<h3>Tiger Cloud is the modern Postgres data platform for all your applications. It enhances Postgres to handle time series, events, real-time analytics, and vector search—all in a single database alongside transactional workloads.
</h3>
[](https://docs.tigerdata.com/)
[](https://timescaledb.slack.com/archives/C4GT3N90X)
[](https://console.cloud.timescale.com/signup)
</div>
This repository contains the current source for Tiger Data documentation available at https://docs.tigerdata.com/.
We welcome contributions! You can contribute to Tiger Data documentation in the following ways:
- [Create an issue][docs-issues] in this repository and describe the proposed change. Our doc team takes care of it.
- Update the docs yourself and have your change reviewed and published by our doc team.
## Contribute to the Tiger Data docs
To make the contribution yourself:
1. Get the documentation source:
- No write access? [Fork this repository][github-fork].
- Already have a write access? [Clone this repository][github-clone].
2. Create a branch from `latest`, make your changes, and raise a pull request back to `latest`.
3. Sign a Contributor License Agreement (CLA).
You have to sign the CLA only the first time you raise a PR. This helps to ensure that the community is free to use your contributions.
4. Review your changes.
The documentation site is generated in a separate private repository using [Gatsby][gatsby]. Once you raise a PR for any branch, GitHub **automatically** generates a preview for your changes and attaches the link in the comments. Any new commits are visible at the same URL. If you don't see the latest changes, try an incognito browser window. Automated builds are not available for PRs from forked repositories.
See the [Contributing guide](CONTRIBUTING.md) for style and language guidance.
## Learn about Tiger Data
Tiger Data is Postgres made powerful. To learn more about the company and its products, visit [tigerdata.com](https://www.tigerdata.com).
===== PAGE: https://docs.tigerdata.com/CONTRIBUTING/ =====
# Contribute to Tiger Data documentation
Tiger Data documentation is open for contribution from all community members. The current source is in this repository.
This page explains the structure and language guidelines for contributing to Tiger Data documentation. See the [README][readme] for how to contribute.
## Language
Write in a clear, concise, and actionable manner. Tiger Data documentation uses the [Google Developer Documentation Style Guide][google-style] with the following exceptions:
- Do not capitalize the first word after a colon.
- Use code font (back ticks) for UI elements instead of semi-bold.
## Edit individual pages
Each major doc section has a dedicated directory with `.md` files inside, representing its child pages. This includes an `index.md` file that serves as a landing page for that doc section by default, unless specifically changed in the navigation tree. To edit a page, modify the corresponding `.md` file following these recommendations:
- **Regular pages** should include:
- A short intro describing the main subject of the page.
- A visual illustrating the main concept, if relevant.
- Paragraphs with descriptive headers, organizing the content into logical sections.
- Procedures to describe the sequence of steps to reach a certain goal. For example, create a Tiger Cloud service.
- Other visual aids, if necessary.
- Links to other relevant resources.
- **API pages** should include:
- The function name, with empty parentheses if it takes arguments.
- A brief, specific description of the function, including any possible warnings.
- One or two samples of the function being used to demonstrate argument syntax.
- An argument table with `Name`, `Type`, `Default`, `Required`, `Description` columns.
- A return table with `Column`, `Type`, and `Description` columns.
- **Troubleshooting pages** are not written as whole Markdown files, but are programmatically assembled from individual files in the`_troubleshooting` folder. Each entry describes a single troubleshooting case and its solution, and contains the following front matter:
|Key| Type |Required| Description |
|-|-------|-|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`title`| string |✅| The title of the troubleshooting entry, displayed as a heading above it |
|`section`| The literal string `troubleshooting` |✅| Must be `troubleshooting`, used to identify troubleshooting entries during site build |
|`products` or `topics`| array of strings |✅ (can have either or both, but must have at least one)| The products or topics related to the entry. The entry shows up on the troubleshooting pages for the listed products and topics. |
|`errors`| object of form `{language: string, message: string}` |❌| The error, if any, related to the troubleshooting entry. Displayed as a code block right underneath the title. `language` is the programming language to use for syntax highlighting. |
|`keywords`| array of strings |❌| These are displayed at the bottom of every troubleshooting page. Each keyword links to a collection of all pages associated with that keyword. |
|`tags`| array of strings |❌| Concepts, actions, or things associated with the troubleshooting entry. These are not displayed in the UI, but they affect the calculation of related pages. |
Beneath the front matter, describe the error and its solution in regular Markdown. You can also use any other components allowed within the docs site.
The entry shows up on the troubleshooting pages for its associated products and topics. If the page doesn't already exist, add an entry for it in the page
index, setting `type` to `placeholder`. See [Navigation tree](#navigation-tree).
## Edit the navigation hierarchy
The navigation hierarchy of a doc section is governed by `page-index/page-index.js` within the corresponding directory. For example:
js
{
title: "Tiger Cloud services",
href: "services",
excerpt: "About Tiger Cloud services",
children: [
{
title: "Services overview",
href: "service-overview",
excerpt: "Tiger Cloud services overview",
},
{
title: "Service explorer",
href: "service-explorer",
excerpt: "Tiger Cloud services explorer",
},
{
title: "Troubleshooting Tiger Cloud services",
href: "troubleshooting",
type: "placeholder",
},
],
},
See [Use Tiger Cloud section navigation][use-navigation] for reference.
To change the structure, add or delete pages in a section, modify the corresponding `page-index.js`. An entry in a `page-index.js` includes the following fields:
| Key | Type | Required | Description |
|--------------------|-----------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `href` | string | ✅ | The URL segment to use for the page. If there is a corresponding Markdown file, `href` must match the name of the Markdown file, minus the file extension. |
| `title` | string | ✅ | The title of the page, used as the page name within the TOC on the left. Must be the same as the first header in the corresponding Markdown file. |
| `excerpt` | string | ✅ | The short description of the page, used for the page card if `pageComponents` is set to `featured-cards`. Should be up to 100 characters. See `pageComponents` for details. |
| `type` | One of `[directory, placeholder, redirect-to-child-page]` | ❌ | If no type is specified, the page is built as a regular webpage. The structure of its children, if present, is defined by `children` entries and the corresponding structure of subfolders. If the type is `directory`, the corresponding file becomes a directory. The difference of the directory page is that its child pages sit at the same level as the `directory` page. They only become children during the site build. If the type is `placeholder`, the corresponding page is produced programmatically upon site build. If not produced, the link in the navigation tree returns a 404. In particular, this is used for troubleshooting pages. If the type is `redirect-to-child-page`, no page is built and the link in the navigation tree goes directly to the first child. |
| `children` | Array of page entries | ❌ | Child pages of the current page. For regular pages, the children should be located in a directory with the same name as the parent. The parent is the `index.md` file in that directory. For`directory` pages, the children should be located in the same directory as the parent. |
| `pageComponents` | One of `[['featured-cards'], ['content-list']]` | ❌ | Any page that has child pages can list its children in either card or list style at the bottom of the page. Specify the desired style with this key. |
| `featuredChildren` | Array of URLs | ❌ | Similar to `pageComponents`, this displays the children of the current page, but only the selected ones. |
| `index` | string | ❌ | If a section landing page needs to be different from the `index.md` file in that directory, this field specifies the corresponding Markdown file name. |
## Reuse text in multiple pages
Partials allow you to reuse snippets of content in multiple places. All partials
live in the `_partials` top-level directory. To make a new partial, create a new
`.md` file in this directory. The filename must start with an underscore. Then import it into the target page as an `.mdx` file and reference in the relevant place. See [Formatting examples][formatting].
## Formatting
In addition to all the [regular Markdown formatting][markdown-syntax], the following elements are available for Tiger Data docs:
- Procedure blocks
- Highlight blocks
- Tabs
- Code blocks without line numbers and the copy button
- Multi-tab code blocks
- Tags
See [Formatting examples][formatting] for how to use them.
## Variables
Tiger Data documentation uses variables for its product names, features, and UI elements in Tiger Cloud Console with the following syntax: `$VARIABLE_NAME`. Variables do not work inside the following:
- Front matter on each page
- HTML tables and tabs
See the [full list of available variables][variables].
## Links
- Internal page links: internal links do not need to include the domain name `https://docs.tigerdata.com`. Use the `:currentVersion:` variable instead of `latest` in the URL.
- External links: input external links as is.
See [Formatting examples][formatting] for details.
## Visuals
When adding screenshots to the docs, aim for a full-screen view to provide better context. Reduce the size of your browser so there is as little wasted space as possible.
Attach the image to your issue or PR, and the doc team uploads and inserts it for you.
## SEO optimization
To make a documentation page more visible and clear for Google:
- Include the `title` and `excerpt` meta tags at the top of the page. These represent meta title and description required for SEO optimization.
- `title`: up to 60 characters, a short description of the page contents. In most cases a variation of the page title.
- `excerpt`: under 200 characters, a longer description of the page contents. In most cases a variation of the page intro.
- Summarize the contents of each paragraph in the first sentence of that paragraph.
- Include main page keywords into the meta tags, page title, first header, and intro. These are usually the names of features described in the page. For example, for a page dedicated to creating hypertables, you can use the keyword **hypertable** in the following way:
- Title: Create a hypertable in Tiger Cloud
- Description: Turn a regular Postgres table into a hypertable in a few steps, using Tiger Cloud Console.
- First header: Create a hypertable
## Docs for deprecated products
The previous documentation source is in the deprecated repository called [docs.timescale.com-content][legacy-source].
===== PAGE: https://docs.tigerdata.com/mst/index/ =====
# Managed Service for TimescaleDB
Managed Service for TimescaleDB (MST) is [TimescaleDB ](https://github.com/timescale/timescaledb) hosted on Azure and GCP.
MST is offered in partnership with Aiven.
Tiger Cloud is a high-performance developer focused cloud that provides Postgres services enhanced
with our blazing fast vector search. You can securely integrate Tiger Cloud with your AWS, GCS or Azure
infrastructure. [Create a Tiger Cloud service][timescale-service] and try for free.
If you need to run TimescaleDB on GCP or Azure, you're in the right place — keep reading.
===== PAGE: https://docs.tigerdata.com/.helper-scripts/README/ =====
# README
This directory includes helper scripts for writing and editing docs content. It
doesn't include scripts for building content; those are in the web-documentation
repo.
## Bulk editing for API frontmatter
API frontmatter metadata is stored with the API content it describes. This makes
sense in most cases, but sometimes you want to bulk edit metadata or compare
phrasing across all API references. There are 2 scripts to help with this. They
are currently written to edit the `excerpts` field, but can be adapted for other
fields.
### `extract_excerpts.sh`
This extracts the excerpt from every API reference into a single file named
`extracted_excerpts.md`.
To use:
1. `cd` into the `_scripts/` directory.
1. If you already have an `extracted_excerpts.md` file from a previous run,
delete it.
1. Run `./extract_excerpts.sh`.
1. Open `extracted_excerpts.md` and edit the excerpts directly within the file.
Only change the actual excerpts, not the filename or `excerpt: ` label.
Otherwise, the next script fails.
### `insert_excerpts.sh`
This takes the edited excerpts from `extracted_excerpts.md` and updates the
original files with the new edits. A backup is created so the data is saved if
something goes horribly wrong. (If something goes wrong with the backup, you can
always also restore from git.)
To use:
1. Save your edited `extracted_excerpts.md`.
1. Make sure you are in the `_scripts/` directory.
1. Run `./insert_excerpts.sh`.
1. Run `git diff` to double-check that the update worked correctly.
1. Delete the unnecessary backups.
===== PAGE: https://docs.tigerdata.com/navigation/index/ =====
# Find a docs page
Looking for information on something specific? There are several ways to find
it:
1. For help with the [Tiger Cloud Console][cloud-console], try the [Tiger Cloud Console index][cloud-console-index].
1. For help on a specific topic, try browsing by [keyword][keywords].
1. Or try the [full search][search], which also returns results from the
Tiger Data blog and forum.
===== PAGE: https://docs.tigerdata.com/about/index/ =====
# About Tiger Data products
===== PAGE: https://docs.tigerdata.com/use-timescale/index/ =====
# Use Tiger Data products
This section contains information about using TimescaleDB and Tiger Cloud. If you're not sure how
to find the information you need, try the [Find a docs page][find-docs] section.
===== PAGE: https://docs.tigerdata.com/use-timescale/OLD-cloud-multi-node/ =====
# Multi-node
If you have a larger workload, you might need more than one Timescale
instance. Multi-node can give you faster data ingest, and more responsive and
efficient queries for many large workloads.
This section shows you how to use multi-node on Timescale. You can also
set up multi-node on [self-hosted TimescaleDB][multinode-timescaledb].
Early access: TimescaleDB v2.18.0
In some cases, your processing speeds could be slower in a multi-node cluster,
because distributed hypertables need to push operations down to the various data
nodes. It is important that you understand multi-node architecture before you
begin, and plan your database according to your specific environment.
## Set up multi-node
To create a multi-node cluster, you need an access node that stores metadata
for the distributed hypertable and performs query planning across the cluster,
and any number of data nodes that store subsets of the distributed hypertable
dataset and run queries locally.
### Setting up multi-node
1. [Log in to your Tiger Cloud account][cloud-login] and click
`Create Service`.
1. Click `Advanced configuration`.
1. Under `Choose your architecture`, click `Multi-node`.
1. The customer support team contacts you. When your request is approved,
return to the screen for creating a multi-node service.
1. Choose your preferred region, or accept the default region of `us-east-1`.
1. Accept the default for the data nodes, or click `Edit` to choose the number
of data nodes, and their compute and disk size.
1. Accept the default for the access node, or click `Edit` to choose the
compute and disk size.
1. Click `Create service`. Take a note of the service information, you need
these details to connect to your multi-node cluster. The service takes a few
minutes to start up.
1. When the service is ready, you can see the service in the Service Overview
page. Click on the name of your new multi-node service to see more
information, and to make changes.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/tsc-running-service-multinode.png"
alt="TimescaleDB running multi-node service"/>
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migration_rds_roles/ =====
bash pg_dumpall -d "source" \ --quote-all-identifiers \ --roles-only \ --no-role-passwords \ --file=roles.sql
AWS RDS does not permit dumping of roles with passwords, which
is why the above command is executed with the `--no-role-passwords`. However,
when the migration of roles to your Tiger Cloud service is complete, you
need to manually assign passwords to the necessary roles using the following
command:`ALTER ROLE name WITH PASSWORD 'password';`
Tiger Cloud services do not support roles with superuser access. If your SQL
dump includes roles that have such permissions, you'll need to modify the file
to be compliant with the security model.
You can use the following `sed` command to remove unsupported statements and
permissions from your roles.sql file:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "rds/d' \ -e '/ALTER ROLE "rds/d' \ -e '/TO "rds/d' \ -e '/GRANT "rds/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
This command works only with the GNU implementation of sed (sometimes referred
to as gsed). For the BSD implementation (the default on macOS), you need to
add an extra argument to change the `-i` flag to `-i ''`.
To check the sed version, you can use the command `sed --version`. While the
GNU version explicitly identifies itself as GNU, the BSD version of sed
generally doesn't provide a straightforward --version flag and simply outputs
an "illegal option" error.
A brief explanation of this script is:
- `CREATE ROLE "postgres"`; and `ALTER ROLE "postgres"`: These statements are
removed because they require superuser access, which is not supported
by Timescale.
- `(NO)SUPERUSER` | `(NO)REPLICATION` | `(NO)BYPASSRLS`: These are permissions
that require superuser access.
- `CREATE ROLE "rds`, `ALTER ROLE “rds`, `TO "rds`, `GRANT "rds`: Any creation
or alteration of rds prefixed roles are removed because of their lack of any use
in a Tiger Cloud service. Similarly, any grants to or from "rds" prefixed roles
are ignored as well.
- `GRANTED BY role_specification`: The GRANTED BY clause can also have permissions that
require superuser access and should therefore be removed. Note: Per the
TimescaleDB documentation, the GRANTOR in the GRANTED BY clause must be the
current user, and this clause mainly serves the purpose of SQL compatibility.
Therefore, it's safe to remove it.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_set_up_align_db_extensions_timescaledb/ =====
1. Ensure that the source and target databases are running the same version of TimescaleDB.
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB](https://docs.tigerdata.com/self-hosted/latest/upgrades/).
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
===== PAGE: https://docs.tigerdata.com/_partials/_beta/ =====
This feature is in beta. Beta features are experimental, and should not be used
on production systems. If you have feedback, reach out to your customer success
manager, or [contact us](https://www.tigerdata.com/contact/).
===== PAGE: https://docs.tigerdata.com/_partials/_manage-a-data-exporter/ =====
### Attach a data exporter to a Tiger Cloud service
To send telemetry data to an external monitoring tool, you attach a data exporter to your
Tiger Cloud service. You can attach only one exporter to a service.
To attach an exporter:
1. **In [Tiger Cloud Console][console-services], choose the service**
1. **Click `Operations` > `Exporters`**
1. **Select the exporter, then click `Attach exporter`**
1. **If you are attaching a first `Logs` data type exporter, restart the service**
### Monitor Tiger Cloud service metrics
You can now monitor your service metrics. Use the following metrics to check the service is running correctly:
* `timescale.cloud.system.cpu.usage.millicores`
* `timescale.cloud.system.cpu.total.millicores`
* `timescale.cloud.system.memory.usage.bytes`
* `timescale.cloud.system.memory.total.bytes`
* `timescale.cloud.system.disk.usage.bytes`
* `timescale.cloud.system.disk.total.bytes`
Additionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|`host`|`us-east-1.timescale.cloud`| |
|`project-id`|| |
|`service-id`|| |
|`region`|`us-east-1`| AWS region |
|`role`|`replica` or `primary`| For service with replicas |
|`node-id`|| For multi-node services |
### Edit a data exporter
To update a data exporter:
1. **In Tiger Cloud Console, open [Exporters][console-integrations]**
1. **Next to the exporter you want to edit, click the menu > `Edit`**
1. **Edit the exporter fields and save your changes**
You cannot change fields such as the provider or the AWS region.
### Delete a data exporter
To remove a data exporter that you no longer need:
1. **Disconnect the data exporter from your Tiger Cloud services**
1. In [Tiger Cloud Console][console-services], choose the service.
1. Click `Operations` > `Exporters`.
1. Click the trash can icon.
1. Repeat for every service attached to the exporter you want to remove.
The data exporter is now unattached from all services. However, it still exists in your project.
1. **Delete the exporter on the project level**
1. In Tiger Cloud Console, open [Exporters][console-integrations]
1. Next to the exporter you want to edit, click menu > `Delete`
1. Confirm that you want to delete the data exporter.
### Reference
When you create the IAM OIDC provider, the URL must match the region you create the exporter in.
It must be one of the following:
| Region | Zone | Location | URL
|------------------|---------------|----------------|--------------------|
| `ap-southeast-1` | Asia Pacific | Singapore | `irsa-oidc-discovery-prod-ap-southeast-1.s3.ap-southeast-1.amazonaws.com`
| `ap-southeast-2` | Asia Pacific | Sydney | `irsa-oidc-discovery-prod-ap-southeast-2.s3.ap-southeast-2.amazonaws.com`
| `ap-northeast-1` | Asia Pacific | Tokyo | `irsa-oidc-discovery-prod-ap-northeast-1.s3.ap-northeast-1.amazonaws.com`
| `ca-central-1` | Canada | Central | `irsa-oidc-discovery-prod-ca-central-1.s3.ca-central-1.amazonaws.com`
| `eu-central-1` | Europe | Frankfurt | `irsa-oidc-discovery-prod-eu-central-1.s3.eu-central-1.amazonaws.com`
| `eu-west-1` | Europe | Ireland | `irsa-oidc-discovery-prod-eu-west-1.s3.eu-west-1.amazonaws.com`
| `eu-west-2` | Europe | London | `irsa-oidc-discovery-prod-eu-west-2.s3.eu-west-2.amazonaws.com`
| `sa-east-1` | South America | São Paulo | `irsa-oidc-discovery-prod-sa-east-1.s3.sa-east-1.amazonaws.com`
| `us-east-1` | United States | North Virginia | `irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com`
| `us-east-2` | United States | Ohio | `irsa-oidc-discovery-prod-us-east-2.s3.us-east-2.amazonaws.com`
| `us-west-2` | United States | Oregon | `irsa-oidc-discovery-prod-us-west-2.s3.us-west-2.amazonaws.com`
===== PAGE: https://docs.tigerdata.com/_partials/_early_access_2_18_0/ =====
Early access: TimescaleDB v2.18.0
===== PAGE: https://docs.tigerdata.com/_partials/_multi-node-deprecation/ =====
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_prerequisites/ =====
Best practice is to use an [Ubuntu EC2 instance][create-ec2-instance] hosted in the same region as your
Tiger Cloud service to move data. That is, the machine you run the commands on to move your
data from your source database to your target Tiger Cloud service.
Before you move your data:
- Create a target [Tiger Cloud service][created-a-database-service-in-timescale].
Each Tiger Cloud service has a single Postgres instance that supports the
[most popular extensions][all-available-extensions]. Tiger Cloud services do not support tablespaces,
and there is no superuser associated with a service.
Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance
can significantly reduce the overall migration window.
- To ensure that maintenance does not run while migration is in progress, best practice is to [adjust the maintenance window][adjust-maintenance-window].
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_open_support_request/ =====
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-debian-based-end/ =====
1. **Update your local repository list**
```bash
sudo apt update
```
1. **Install TimescaleDB**
```bash
sudo apt install timescaledb-2-postgresql-17 postgresql-client-17
```
To install a specific TimescaleDB [release][releases-page], set the version. For example:
`sudo apt-get install timescaledb-2-postgresql-14='2.6.0*' timescaledb-2-loader-postgresql-14='2.6.0*'`
Older versions of TimescaleDB may not support all the OS versions listed on this page.
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
By default, this script is included with the `timescaledb-tools` package when you install TimescaleDB. Use the prompts to tune your development or production environment. For more information on manual configuration, see [Configuration][config]. If you have an issue, run `sudo apt install timescaledb-tools`.
1. **Restart Postgres**
```bash
sudo systemctl restart postgresql
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_prereqs-cloud-and-self/ =====
To follow the procedure on this page you need to:
* Create a [target Tiger Cloud service][create-service].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_setup_environment_awsrds/ =====
## Set your connection strings
These variables hold the connection information for the source database and target Tiger Cloud service.
In Terminal on your migration machine, set the following:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Tune your source database
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
1. **Update the DB instance parameter group for your source database**
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS instance to migrate.
1. Click `Configuration`, scroll down and note the `DB instance parameter group`, then click `Parameter groups`
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/awsrds-parameter-groups.png"
alt="Create security rule to enable RDS EC2 connection"/>
1. Click `Create parameter group`, fill in the form with the following values, then click `Create`.
- **Parameter group name** - whatever suits your fancy.
- **Description** - knock yourself out with this one.
- **Engine type** - `PostgreSQL`
- **Parameter group family** - the same as `DB instance parameter group` in your `Configuration`.
1. In `Parameter groups`, select the parameter group you created, then click `Edit`.
1. Update the following parameters, then click `Save changes`.
- `rds.logical_replication` set to `1`: record the information needed for logical decoding.
- `wal_sender_timeout` set to `0`: disable the timeout for the sender process.
1. In RDS, navigate back to your [databases][databases], select the RDS instance to migrate, and click `Modify`.
1. Scroll down to `Database options`, select your new parameter group, and click `Continue`.
1. Click `Apply immediately` or choose a maintenance window, then click `Modify DB instance`.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
1. Verify that the settings are live in your database.
1. **Enable replication `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_source_target_note/ =====
In the context of migrations, your existing production database is referred to
as the SOURCE database, the Tiger Cloud service that you are migrating your data to is the TARGET.
===== PAGE: https://docs.tigerdata.com/_partials/_not-available-in-free-plan/ =====
This feature is not available under the Free pricing plan.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migration_docker_subcommand/ =====
Next, download the live-migration docker image:
sh docker run --rm -it --name live-migration
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest --help
Live migration moves your PostgreSQL/TimescaleDB to your Tiger Cloud service with minimal downtime.
options: -h, --help Show this help message and exit -v, --version Show the version of live-migration tool
Subcommands: {snapshot,clean,migrate}
Subcommand help
snapshot Create a snapshot
clean Clean up resources
migrate Start the migration
Live-migration contains 3 subcommands:
1. Snapshot
1. Clean
1. Migrate
On a high-level,
the `snapshot` subcommand creates a Postgres snapshot connection to the source
database along with a replication slot. This is pre-requisite before running
the `migrate` subcommand.
The `migrate` subcommand carries out the live-migration process by taking help
of the snapshot and replication slot created by the `snapshot` subcommand.
The `clean` subcommand is designed to remove resources related to live migration.
It should be run once the migration has successfully completed or, if you need
to restart the migration process from the very start. You should not run `clean`
if you want to resume the last interrupted live migration.
### 3.a Create a snapshot
Execute this command to establish a snapshot connection; do not interrupt the process.
For convenience, consider using a terminal multiplexer such as `tmux` or `screen`, which
enables the command to run in the background.
sh docker run --rm -it --name live-migration-snapshot
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
In addition to creating a snapshot, this process also validates prerequisites on the source and target to ensure the database instances are ready for replication.
For example, it checks if all tables on the source have either a PRIMARY KEY or REPLICA IDENTITY set. If not, it displays a warning message listing the tables without REPLICA IDENTITY and waits for user confirmation before proceeding with the snapshot creation.
sh 2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX) 2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB 2024-03-25T12:40:40.884 WARNING: - public.metrics Press 'c' and ENTER to continue
### 3.b Perform live-migration
The `migrate` subcommand supports following flags
sh docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate --help
usage: main.py migrate [-h] [--dir DIR] [--resume] [--skip-roles] [--table-jobs TABLE_JOBS] [--index-jobs INDEX_JOBS]
[--skip-extensions [SKIP_EXTENSIONS ...]] [--skip-table-data SKIP_TABLE_DATA [SKIP_TABLE_DATA ...]]
options: -h, --help Show this help message and exit --resume Resume the migration --skip-roles Skip roles migration --table-jobs TABLE_JOBS
Number of parallel jobs to copy "existing data" from source db to target db (Default: 8)
--index-jobs INDEX_JOBS
Number of parallel jobs to create indexes in target db (Default: 8)
--skip-extensions [SKIP_EXTENSIONS ...]
Skips the given extensions during migration. Empty list skips all extensions.
--skip-table-data SKIP_TABLE_DATA [SKIP_TABLE_DATA ...]
Skips data from the given table during migration. However, the table schema will be migrated. To skip data from a
Hypertable, you will need to specify a list of schema qualified chunks belonging to the Hypertable. Currently, this
flag does not skip data during live replay from the specified table. Values for this flag must be schema qualified. Eg:
--skip-table-data public.exclude_table_1 public.exclude_table_2
Next, we will start the migration process. Open a new terminal and initiate the live migration, and allow it to
run uninterrupted.
sh docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the migrate command stops for any reason during execution, you can resume
the migration from where it left off by adding a `--resume` flag. This is only
possible if the `snapshot` command is intact and if a volume mount, such
as `~/live-migration`, is utilized.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migration_step2/ =====
For the sake of convenience, connection strings to the source and target
databases are referred to as `source` and `target` throughout this guide.
This can be set in your shell, for example:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://:@:/"
Do not use a Tiger Cloud connection pooler connection for live migration. There
are a number of issues which can arise when using a connection pooler, and no
advantage. Very small instances may not have enough connections configured by
default, in which case you should modify the value of `max_connections`, in
your instance, as shown on [Configure database parameters][configure-instance-parameters].
It's important to ensure that the `old_snapshot_threshold` value is set to the
default value of `-1` in your source database. This prevents Postgres from
treating the data in a snapshot as outdated. If this value is set other than
`-1`, it might affect the existing data migration step.
To check the current value of `old_snapshot_threshold`, run the command:
sh psql -X -d source -c 'show old_snapshot_threshold'
If the query returns something other than `-1`, you must change it.
If you have a superuser on a self-hosted database, run the following command:
sh psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
Otherwise, if you are using a managed service, use your cloud provider's
configuration mechanism to set `old_snapshot_threshold` to `-1`.
Next, you should set `wal_level` to `logical` so that the write-ahead log (WAL)
records information that is needed for logical decoding.
To check the current value of `wal_level`, run the command:
sh psql -X -d source -c 'show wal_level'
If the query returns something other than `logical`, you must change it.
If you have a superuser on a self-hosted database, run the following command:
sh psql -X -d source -c 'alter system set wal_level=logical'
Otherwise, if you are using a managed service, use your cloud provider's
configuration mechanism to set `wal_level` to `logical`.
Restart your database for the changes to take effect, and verify that the
settings are reflected in your database.
===== PAGE: https://docs.tigerdata.com/_partials/_prometheus-integrate/ =====
[Prometheus][prometheus] is an open-source monitoring system with a dimensional data model, flexible query language, and a modern alerting approach.
This page shows you how to export your service telemetry to Prometheus:
- For Tiger Cloud, using a dedicated Prometheus exporter in Tiger Cloud Console.
- For self-hosted TimescaleDB, using [Postgres Exporter][postgresql-exporter].
## Prerequisites
To follow the steps on this page:
- [Download and run Prometheus][install-prometheus].
- For Tiger Cloud:
Create a target [Tiger Cloud service][create-service] with the time-series and analytics capability enabled.
- For self-hosted TimescaleDB:
- Create a target [self-hosted TimescaleDB][enable-timescaledb] instance. You need your [connection details][connection-info].
- [Install Postgres Exporter][install-exporter].
To reduce latency and potential data transfer costs, install Prometheus and Postgres Exporter on a machine in the same AWS region as your Tiger Cloud service.
## Export Tiger Cloud service telemetry to Prometheus
To export your data, do the following:
To export metrics from a Tiger Cloud service, you create a dedicated Prometheus exporter in Tiger Cloud Console, attach it to your service, then configure Prometheus to scrape metrics using the exposed URL. The Prometheus exporter exposes the metrics related to the Tiger Cloud service like CPU, memory, and storage. To scrape other metrics, use Postgres Exporter as described for self-hosted TimescaleDB. The Prometheus exporter is available for [Scale and Enterprise][pricing-plan-features] pricing plans.
1. **Create a Prometheus exporter**
1. In [Tiger Cloud Console][open-console], click `Exporters` > `+ New exporter`.
1. Select `Metrics` for data type and `Prometheus` for provider.

1. Choose the region for the exporter. Only services in the same project and region can be attached to this exporter.
1. Name your exporter.
1. Change the auto-generated Prometheus credentials, if needed. See [official documentation][prometheus-authentication] on basic authentication in Prometheus.
1. **Attach the exporter to a service**
1. Select a service, then click `Operations` > `Exporters`.
1. Select the exporter in the drop-down, then click `Attach exporter`.

The exporter is now attached to your service. To unattach it, click the trash icon in the exporter list.

1. **Configure the Prometheus scrape target**
1. Select your service, then click `Operations` > `Exporters` and click the information icon next to the exporter. You see the exporter details.

1. Copy the exporter URL.
1. In your Prometheus installation, update `prometheus.yml` to point to the exporter URL as a scrape target:
```yml
scrape_configs:
- job_name: "timescaledb-exporter"
scheme: https
static_configs:
- targets: ["my-exporter-url"]
basic_auth:
username: "user"
password: "pass"
```
See the [Prometheus documentation][scrape-targets] for details on configuring scrape targets.
You can now monitor your service metrics. Use the following metrics to check the service is running correctly:
* `timescale.cloud.system.cpu.usage.millicores`
* `timescale.cloud.system.cpu.total.millicores`
* `timescale.cloud.system.memory.usage.bytes`
* `timescale.cloud.system.memory.total.bytes`
* `timescale.cloud.system.disk.usage.bytes`
* `timescale.cloud.system.disk.total.bytes`
Additionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|`host`|`us-east-1.timescale.cloud`| |
|`project-id`|| |
|`service-id`|| |
|`region`|`us-east-1`| AWS region |
|`role`|`replica` or `primary`| For service with replicas |
To export metrics from self-hosted TimescaleDB, you import telemetry data about your database to Postgres Exporter, then configure Prometheus to scrape metrics from it. Postgres Exporter exposes metrics that you define, excluding the system metrics.
1. **Create a user to access telemetry data about your database**
1. Connect to your database in [`psql`][psql] using your [connection details][connection-info].
1. Create a user named `monitoring` with a secure password:
```sql
CREATE USER monitoring WITH PASSWORD '<password>';
```
1. Grant the `pg_read_all_stats` permission to the `monitoring` user:
```sql
GRANT pg_read_all_stats to monitoring;
```
1. **Import telemetry data about your database to Postgres Exporter**
1. Connect Postgres Exporter to your database:
Use your [connection details][connection-info] to import telemetry data about your database. You connect as
the `monitoring` user:
- Local installation:
```shell
export DATA_SOURCE_NAME="postgres://<user>:<password>@<host>:<port>/<database>?sslmode=<sslmode>"
./postgres_exporter
```
- Docker:
```shell
docker run -d \
-e DATA_SOURCE_NAME="postgres://<user>:<password>@<host>:<port>/<database>?sslmode=<sslmode>" \
-p 9187:9187 \
prometheuscommunity/postgres-exporter
```
1. Check the metrics for your database in the Prometheus format:
- Browser:
Navigate to `http://<exporter-host>:9187/metrics`.
- Command line:
```shell
curl http://<exporter-host>:9187/metrics
```
1. **Configure Prometheus to scrape metrics**
1. In your Prometheus installation, update `prometheus.yml` to point to your Postgres Exporter instance as a scrape
target. In the following example, you replace `<exporter-host>` with the hostname or IP address of the PostgreSQL
Exporter.
```yaml
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'postgresql'
static_configs:
- targets: ['<exporter-host>:9187']
```
If `prometheus.yml` has not been created during installation, create it manually. If you are using Docker, you can
find the IPAddress in `Inspect` > `Networks` for the container running Postgres Exporter.
1. Restart Prometheus.
1. Check the Prometheus UI at `http://<prometheus-host>:9090/targets` and `http://<prometheus-host>:9090/tsdb-status`.
You see the Postgres Exporter target and the metrics scraped from it.
You can further [visualize your data][grafana-prometheus] with Grafana. Use the
[Grafana Postgres dashboard][postgresql-exporter-dashboard] or [create a custom dashboard][grafana] that suits your needs.
===== PAGE: https://docs.tigerdata.com/_partials/_early_access_11_25/ =====
Early access: October 2025
===== PAGE: https://docs.tigerdata.com/_partials/_devops-cli-service-forks/ =====
To manage development forks:
1. **Install Tiger CLI**
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
1. **Set up API credentials**
1. Log Tiger CLI into your Tiger Data account:
```shell
tiger auth login
```
Tiger CLI opens Console in your browser. Log in, then click `Authorize`.
You can have a maximum of 10 active client credentials. If you get an error, open [credentials][rest-api-credentials]
and delete an unused credential.
1. Select a Tiger Cloud project:
```terminaloutput
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
```
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in `~/.config/tiger/credentials` with restricted file permissions (600).
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`.
1. **Test your authenticated connection to Tiger Cloud by listing services**
```bash
tiger service list
```
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
1. **Fork the service**
shell
tiger service fork tgrservice --now --no-wait --name bob
By default a fork matches the resource of the parent Tiger Cloud services. For paid plans specify `--cpu` and/or `--memory` for dedicated resources.
You see something like:
```terminaloutput
🍴 Forking service 'tgrservice' to create 'bob' at current state...
✅ Fork request accepted!
📋 New Service ID: <service_id>
🔐 Password saved to system keyring for automatic authentication
🎯 Set service '<service_id>' as default service.
⏳ Service is being forked. Use 'tiger service list' to check status.
┌───────────────────┬──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ PROPERTY │ VALUE │
├───────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────┤
│ Service ID │ <service_id> │
│ Name │ bob │
│ Status │ │
│ Type │ TIMESCALEDB │
│ Region │ eu-central-1 │
│ CPU │ 0.5 cores (500m) │
│ Memory │ 2 GB │
│ Direct Endpoint │ <service-id>.<project-id>.tsdb.cloud.timescale.com:<port> │
│ Created │ 2025-10-08 13:58:07 UTC │
│ Connection String │ postgresql://tsdbadmin@<service-id>.<project-id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require │
└───────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────┘
When you are done, delete your forked service
Use the CLI to request service delete:
tiger service delete <service_id>
Validate the service delete:
Are you sure you want to delete service '<service_id>'? This operation cannot be undone.
Type the service ID '<service_id>' to confirm:
<service_id>
You see something like:
```terminaloutput
🗑️ Delete request accepted for service '<service_id>'.
✅ Service '<service_id>' has been successfully deleted.
```
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-intro/ =====
Tiger Cloud is the modern Postgres data platform for all your applications. It enhances Postgres to handle time series, events, real-time analytics, and vector search—all in a single database alongside transactional workloads.
You get one system that handles live data ingestion, late and out-of-order updates, and low latency queries, with the performance, reliability, and scalability your app needs. Ideal for IoT, crypto, finance, SaaS, and a myriad other domains, Tiger Cloud allows you to build data-heavy, mission-critical apps while retaining the familiarity and reliability of Postgres.
===== PAGE: https://docs.tigerdata.com/_partials/_add-timescaledb-to-a-database/ =====
In Postgres, the default user and database are both postgres. To use a
different database, set <database-name> to the name of that database:
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>"
Add TimescaleDB to the database
CREATE EXTENSION IF NOT EXISTS timescaledb;
Check that TimescaleDB is installed
\dx
You see the list of installed extensions:
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
Press q to exit the list of extensions.
===== PAGE: https://docs.tigerdata.com/_partials/_cloudtrial_unused/ =====
===== PAGE: https://docs.tigerdata.com/_partials/_integration-debezium-self-hosted-config-database/ =====
Configure your self-hosted Postgres deployment
postgresql.conf.The Postgres configuration files are usually located in:
/home/postgres/pgdata/data//etc/postgresql/<version>/main/ or /var/lib/pgsql/<version>/data//opt/homebrew/var/postgresql@<version>/C:\Program Files\PostgreSQL\<version>\data\Modify the following settings in postgresql.conf:
wal_level = logical
max_replication_slots = 10
max_wal_senders = 10
pg_hba.conf and enable host replication.To allow replication connections, add the following:
local replication debezium trust
This permission is for the debezium Postgres user running on a local or Docker deployment. For more about replication
permissions, see Configuring Postgres to allow replication with the Debezium connector host.
Connect to your self-hosted TimescaleDB instance
Use psql.
Create a user with the LOGIN and REPLICATION permissions:
```sql
CREATE ROLE debezium WITH LOGIN REPLICATION PASSWORD '<debeziumpassword>';
```
Enable a replication spot for Debezium
Create a table for Debezium to listen to:
CREATE TABLE accounts (created_at TIMESTAMPTZ DEFAULT NOW(),
name TEXT,
city TEXT);
Turn the table into a hypertable:
SELECT create_hypertable('accounts', 'created_at');
Debezium also works with continuous aggregates.
Create a publication and enable a replication slot:
CREATE PUBLICATION dbz_publication FOR ALL TABLES WITH (publish = 'insert, update');
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_self_postgres_check_versions/ =====
To see the versions of Postgres and TimescaleDB running in a self-hosted database instance:
This variable holds the connection information for the database to upgrade:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
Retrieve the version of Postgres that you are running
psql -X -d source -c "SELECT version();"
Postgres returns something like:
-----------------------------------------------------------------------------------------------------------------------------------------
PostgreSQL 17.2 (Ubuntu 17.2-1.pgdg22.04+1) on aarch64-unknown-linux-gnu, compiled by gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0, 64-bit
(1 row)
Retrieve the version of TimescaleDB that you are running
psql -X -d source -c "\dx timescaledb;"
Postgres returns something like:
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data
(1 row)
===== PAGE: https://docs.tigerdata.com/_partials/_create-hypertable-energy/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
To create a hypertable to store the energy consumption data, call CREATE TABLE.
CREATE TABLE "metrics"(
created timestamp with time zone default now() not null,
type_id integer not null,
value double precision not null
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
===== PAGE: https://docs.tigerdata.com/_partials/_livesync-limitations/ =====
This works for Postgres databases only as source. TimescaleDB is not yet supported.
The source must be running Postgres 13 or later.
Schema changes must be co-ordinated.
Make compatible changes to the schema in your Tiger Cloud service first, then make the same changes to the source Postgres instance.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension, first create the extension on the target Tiger Cloud service before syncing the table.
There is WAL volume growth on the source Postgres instance during large table copy.
Continuous aggregate invalidation
The connector uses session_replication_role=replica during data replication,
which prevents table triggers from firing. This includes the internal
triggers that mark continuous aggregates as invalid when underlying data
changes.
If you have continuous aggregates on your target database, they do not automatically refresh for data inserted during the migration. This limitation only applies to data below the continuous aggregate's materialization watermark. For example, backfilled data. New rows synced above the continuous aggregate watermark are used correctly when refreshing.
This can lead to:
If the continuous aggregate exists in the source database, best
practice is to add it to the Postgres connector publication. If it only exists on the
target database, manually refresh the continuous aggregate using the force
option of refresh_continuous_aggregate.
===== PAGE: https://docs.tigerdata.com/_partials/_financial-industry-data-analysis/ =====
The financial industry is extremely data-heavy and relies on real-time and historical data for decision-making, risk assessment, fraud detection, and market analysis. Tiger Data simplifies management of these large volumes of data, while also providing you with meaningful analytical insights and optimizing storage costs.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_setup_environment_postgres/ =====
These variables hold the connection information for the source database and target Tiger Cloud service. In Terminal on your migration machine, set the following:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
Check the extensions on the source database:
psql source -c "SELECT * FROM pg_extension;"
For each extension, enable it on your target Tiger Cloud service:
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
You need admin rights to to update the configuration on your source database. If you are using
a managed service, follow the instructions in the From AWS RDS/Aurora tab on this page.
wal2json extension on your source databaseInstall wal2json on your source database.
Prevent Postgres from treating the data in a snapshot as outdated
psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
This is not applicable if the source database is Postgres 17 or later.
Set the write-Ahead Log (WAL) to record the information needed for logical decoding
psql -X -d source -c 'alter system set wal_level=logical'
Restart the source database
Your configuration changes are now active. However, verify that the settings are live in your database.
DELETE andUPDATE operationsReplica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_using_postgres_copy/ =====
Connect to your Tiger Cloud service:
psql "postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
Restore the data to your Tiger Cloud service:
\copy FROM '.csv' WITH (FORMAT CSV);
Repeat for each table and hypertable you want to migrate.
===== PAGE: https://docs.tigerdata.com/_partials/_services-intro/ =====
A Tiger Cloud service is a single optimised Postgres instance extended with innovations in the database engine and cloud infrastructure to deliver speed without sacrifice. A Tiger Cloud service is 10-1000x faster at scale! It is ideal for applications requiring strong data consistency, complex relationships, and advanced querying capabilities. Get ACID compliance, extensive SQL support, JSON handling, and extensibility through custom functions, data types, and extensions.
Each service is associated with a project in Tiger Cloud. Each project can have multiple services. Each user is a member of one or more projects.
You create free and standard services in Tiger Cloud Console, depending on your pricing plan. A free service comes at zero cost and gives you limited resources to get to know Tiger Cloud. Once you are ready to try out more advanced features, you can switch to a paid plan and convert your free service to a standard one.
The Free pricing plan and services are currently in beta.
To the Postgres you know and love, Tiger Cloud adds the following capabilities:
Standard services:
All standard Tiger Cloud services include the tooling you expect for production and developer environments: live migration, automatic backups and PITR, high availability, read replicas, data forking, connection pooling, tiered storage, usage-based storage, secure in-Tiger Cloud Console SQL editing, service metrics and insights, streamlined maintenance, and much more. Tiger Cloud continuously monitors your services and prevents common Postgres out-of-memory crashes.
Postgres with TimescaleDB and vector extensions
Free services offer limited resources and a basic feature scope, perfect to get to know Tiger Cloud in a development environment.
===== PAGE: https://docs.tigerdata.com/_partials/_mst-intro/ =====
Managed Service for TimescaleDB (MST) is TimescaleDB hosted on Azure and GCP. MST is offered in partnership with Aiven.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migrate_data/ =====
Pull the live-migration docker image to you migration machine
sudo docker pull timescale/live-migration:latest
To list the available commands, run:
sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run --help for that command. For example:
sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
This process checks that you have tuned your source database and target service correctly for replication, then creates a snapshot of your data on the migration machine:
docker run --rm -it --name live-migration-snapshot \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX)
2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB
2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
Synchronize data between your source database and your Tiger Cloud service
This command migrates data from the snapshot to your Tiger Cloud service, then streams transactions from the source to the target.
docker run --rm -it --name live-migration-migrate \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag -e PGVERSION=17 to the migrate command.
After migrating the schema, live-migration prompts you to create hypertables for tables that
contain time-series data in your Tiger Cloud service. Run create_hypertable() to convert these
table. For more information, see the Hypertable docs.
During this process, you see the migration process:
Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If migrate stops add --resume to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database, you see the following message:
Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until replay_lag is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
Start app downtime
Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the pg_top CLI or
pg_stat_activity to view the current transaction on the source database.
Stop Live-migration.
hit 'c' and then ENTER
Live-migration continues the remaining work. This includes copying TimescaleDB metadata, sequences, and run policies. When the migration completes, you see the following message:
Migration successfully completed
===== PAGE: https://docs.tigerdata.com/_partials/_hypershift-intro/ =====
You can use hypershift to migrate existing Postgres databases in one step, and enable compression and create hypertables instantly.
Use Hypershift to migrate your data to a Tiger Cloud service from these sources:
===== PAGE: https://docs.tigerdata.com/_partials/_import-data-nyc-taxis/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
Import time-series data into a hypertable
<local folder>.This test dataset contains historical data from New York's yellow taxi network.
To import up to 100GB of data directly from your current Postgres-based database, migrate with downtime using native Postgres tooling. To seamlessly import 100GB-10TB+ of data, use the live migration tooling supplied by Tiger Data. To add data from non-Postgres data sources, see Import and ingest data.
In Terminal, navigate to <local folder> and update the following string with your connection details
to connect to your service.
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>?sslmode=require"
Create an optimized hypertable for your time-series data:
Create a hypertable with hypercore enabled by default for your
time-series data using CREATE TABLE. For efficient queries
on data in the columnstore, remember to segmentby the column you will use most often to filter your data.
In your sql client, run the following command:
CREATE TABLE "rides"(
vendor_id TEXT,
pickup_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
dropoff_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
passenger_count NUMERIC,
trip_distance NUMERIC,
pickup_longitude NUMERIC,
pickup_latitude NUMERIC,
rate_code INTEGER,
dropoff_longitude NUMERIC,
dropoff_latitude NUMERIC,
payment_type INTEGER,
fare_amount NUMERIC,
extra NUMERIC,
mta_tax NUMERIC,
tip_amount NUMERIC,
tolls_amount NUMERIC,
improvement_surcharge NUMERIC,
total_amount NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='pickup_datetime',
tsdb.create_default_indexes=false,
tsdb.segmentby='vendor_id',
tsdb.orderby='pickup_datetime DESC'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Add another dimension to partition your hypertable more efficiently:
SELECT add_dimension('rides', by_hash('payment_type', 2));
Create an index to support efficient queries by vendor, rate code, and passenger count:
CREATE INDEX ON rides (vendor_id, pickup_datetime DESC);
CREATE INDEX ON rides (rate_code, pickup_datetime DESC);
CREATE INDEX ON rides (passenger_count, pickup_datetime DESC);
Create Postgres tables for relational data:
Add a table to store the payment types data:
CREATE TABLE IF NOT EXISTS "payment_types"(
payment_type INTEGER,
description TEXT
);
INSERT INTO payment_types(payment_type, description) VALUES
(1, 'credit card'),
(2, 'cash'),
(3, 'no charge'),
(4, 'dispute'),
(5, 'unknown'),
(6, 'voided trip');
Add a table to store the rates data:
CREATE TABLE IF NOT EXISTS "rates"(
rate_code INTEGER,
description TEXT
);
INSERT INTO rates(rate_code, description) VALUES
(1, 'standard rate'),
(2, 'JFK'),
(3, 'Newark'),
(4, 'Nassau or Westchester'),
(5, 'negotiated fare'),
(6, 'group ride');
Upload the dataset to your service
\COPY rides FROM nyc_data_rides.csv CSV;
Have a quick look at your data
You query hypertables in exactly the same way as you would a relational Postgres table. Use one of the following SQL editors to run a query and see the data you uploaded:
For example:
Display the number of rides for each fare type:
SELECT rate_code, COUNT(vendor_id) AS num_trips
FROM rides
WHERE pickup_datetime < '2016-01-08'
GROUP BY rate_code
ORDER BY rate_code;
This simple query runs in 3 seconds. You see something like:
| rate_code | num_trips | |-----------------|-----------| |1 | 2266401| |2 | 54832| |3 | 4126| |4 | 967| |5 | 7193| |6 | 17| |99 | 42|
To select all rides taken in the first week of January 2016, and return the total number of trips taken for each rate code:
SELECT rates.description, COUNT(vendor_id) AS num_trips
FROM rides
JOIN rates ON rides.rate_code = rates.rate_code
WHERE pickup_datetime < '2016-01-08'
GROUP BY rates.description
ORDER BY LOWER(rates.description);
On this large amount of data, this analytical query on data in the rowstore takes about 59 seconds. You see something like:
| description | num_trips | |-----------------|-----------| | group ride | 17 | | JFK | 54832 | | Nassau or Westchester | 967 | | negotiated fare | 7193 | | Newark | 4126 | | standard rate | 2266401 |
===== PAGE: https://docs.tigerdata.com/_partials/_create-hypertable-twelvedata-stocks/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a hypertable to store the real-time stock data
CREATE TABLE stocks_real_time (
time TIMESTAMPTZ NOT NULL,
symbol TEXT NOT NULL,
price DOUBLE PRECISION NULL,
day_volume INT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Create an index to support efficient queries
Index on the symbol and time columns:
CREATE INDEX ix_symbol_time ON stocks_real_time (symbol, time DESC);
When you have other relational data that enhances your time-series data, you can
create standard Postgres tables just as you would normally. For this dataset,
there is one other table of data called company.
Add a table to store the company data
CREATE TABLE company (
symbol TEXT NOT NULL,
name TEXT NOT NULL
);
You now have two tables in your Tiger Cloud service. One hypertable
named stocks_real_time, and one regular Postgres table named company.
===== PAGE: https://docs.tigerdata.com/_partials/_tiered-storage-billing/ =====
For low-cost storage, Tiger Data charges only for the size of your data in S3 in the Apache Parquet format, regardless of whether it was compressed in Tiger Cloud before tiering. There are no additional expenses, such as data transfer or compute.
===== PAGE: https://docs.tigerdata.com/_partials/_create-hypertable-blockchain/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
In Tiger Cloud Console open an SQL editor. The in-Console editors display the query speed. You can also connect to your service using psql.
Create a hypertable for your time-series data using CREATE TABLE.
For efficient queries on data in the columnstore, remember to segmentby the column you will
use most often to filter your data:
CREATE TABLE transactions (
time TIMESTAMPTZ NOT NULL,
block_id INT,
hash TEXT,
size INT,
weight INT,
is_coinbase BOOLEAN,
output_total BIGINT,
output_total_usd DOUBLE PRECISION,
fee BIGINT,
fee_usd DOUBLE PRECISION,
details JSONB
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='block_id',
tsdb.orderby='time DESC'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Create an index on the hash column to make queries for individual
transactions faster:
CREATE INDEX hash_idx ON public.transactions USING HASH (hash);
Create an index on the block_id column to make block-level queries faster:
When you create a hypertable, it is partitioned on the time column. TimescaleDB automatically creates an index on the time column. However, you'll often filter your time-series data on other columns as well. You use indexes to improve query performance.
```sql
CREATE INDEX block_idx ON public.transactions (block_id);
```
Create a unique index on the time and hash columns to make sure you
don't accidentally insert duplicate records:
CREATE UNIQUE INDEX time_hash_idx ON public.transactions (time, hash);
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_run_cleanup/ =====
The contents of both databases should be the same. To check this you could compare the number of rows, or an aggregate of columns. However, the best validation method depends on your app.
Once you are confident that your data is successfully replicated, configure your apps to use your Tiger Cloud service.
This command removes all resources and temporary files used in the migration process. When you run this command, you can no longer resume live-migration.
docker run --rm -it --name live-migration-clean \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
===== PAGE: https://docs.tigerdata.com/_partials/_timescale-cloud-services/ =====
Tiger Cloud services run optimized Tiger Data extensions on latest Postgres, in a highly secure cloud environment. Each service is a specialized database instance tuned for your workload. Available capabilities are:
<thead>
<tr>
<th>Capability</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Real-time analytics</strong> <p>Lightning-fast ingest and querying of time-based and event data.</p></td>
<td><ul><li>TimescaleDB</li><li>TimescaleDB Toolkit</li></ul> </td>
</tr>
<tr>
<td ><strong>AI and vector </strong><p>Seamlessly build RAG, search, and AI agents.</p></td>
<td><ul><li>TimescaleDB</li><li>pgvector</li><li>pgvectorscale</li><li>pgai</li></ul></td>
</tr>
<tr>
<td ><strong>Hybrid</strong><p>Everything for real-time analytics and AI workloads, combined.</p></td>
<td><ul><li>TimescaleDB</li><li>TimescaleDB Toolkit</li><li>pgvector</li><li>pgvectorscale</li><li>pgai</li></ul></td>
</tr>
<tr>
<td ><strong>Support</strong></td>
<td><ul><li>24/7 support no matter where you are.</li><li> Continuous incremental backup/recovery. </li><li>Point-in-time forking/branching.</li><li>Zero-downtime upgrades. </li><li>Multi-AZ high availability. </li><li>An experienced global ops and support team that can build and manage Postgres at scale.</li></ul></td>
</tr>
</tbody>
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_set_up_source_and_target/ =====
For the sake of convenience, connection strings to the source and target
databases are referred to as source and target throughout this guide.
This can be set in your shell, for example:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://<user>:<password>@<target host>:<target port>/<db_name>"
===== PAGE: https://docs.tigerdata.com/_partials/_start-coding-ruby/ =====
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Every Tiger Cloud service is a 100% Postgres database hosted in Tiger Cloud with Tiger Data extensions such as TimescaleDB. You connect to your Tiger Cloud service from a standard Rails app configured for Postgres.
Create a new Rails app configured for Postgres
Rails creates and bundles your app, then installs the standard Postgres Gems.
rails new my_app -d=postgresql
cd my_app
Install the TimescaleDB gem
Open Gemfile, add the following line, then save your changes:
gem 'timescaledb'
In Terminal, run the following command:
bundle install
Connect your app to your Tiger Cloud service
In <my_app_home>/config/database.yml update the configuration to read securely connect to your Tiger Cloud service
by adding url: <%= ENV['DATABASE_URL'] %> to the default configuration:
default: &default
adapter: postgresql
encoding: unicode
pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>
url: <%= ENV['DATABASE_URL'] %>
Set the environment variable for DATABASE_URL to the value of Service URL from
your connection details
export DATABASE_URL="value of Service URL"
Create the database:
Self-hosted TimescaleDB, create the database for the project:
rails db:create
Run migrations:
rails db:migrate
Verify the connection from your app to your Tiger Cloud service:
echo "\dx" | rails dbconsole
The result shows the list of extensions in your Tiger Cloud service
| Name | Version | Schema | Description | | -- | -- | -- | -- | | pg_buffercache | 1.5 | public | examine the shared buffer cache| | pg_stat_statements | 1.11 | public | track planning and execution statistics of all SQL statements executed| | plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language| | postgres_fdw | 1.1 | public | foreign-data wrapper for remote Postgres servers| | timescaledb | 2.18.1 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)| | timescaledb_toolkit | 1.19.0 | public | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities|
Hypertables are Postgres tables designed to simplify and accelerate data analysis. Anything you can do with regular Postgres tables, you can do with hypertables - but much faster and more conveniently.
In this section, you use the helpers in the TimescaleDB gem to create and manage a hypertable.
Generate a migration to create the page loads table
rails generate migration create_page_loads
This creates the <my_app_home>/db/migrate/<migration-datetime>_create_page_loads.rb migration file.
Replace the contents of <my_app_home>/db/migrate/<migration-datetime>_create_page_loads.rb
with the following:
```ruby
class CreatePageLoads < ActiveRecord::Migration[8.0]
def change
hypertable_options = {
time_column: 'created_at',
chunk_time_interval: '1 day',
compress_segmentby: 'path',
compress_orderby: 'created_at',
compress_after: '7 days',
drop_after: '30 days'
}
create_table :page_loads, id: false, primary_key: [:created_at, :user_agent, :path], hypertable: hypertable_options do |t|
t.timestamptz :created_at, null: false
t.string :user_agent
t.string :path
t.float :performance
end
end
end
```
The `id` column is not included in the table. This is because TimescaleDB requires that any `UNIQUE` or `PRIMARY KEY`
indexes on the table include all partitioning columns. In this case, this is the time column. A new
Rails model includes a `PRIMARY KEY` index for id by default: either remove the column or make sure that the index
includes time as part of a "composite key."
For more information, check the Roby docs around composite primary keys.
Create a PageLoad model
Create a new file called <my_app_home>/app/models/page_load.rb and add the following code:
class PageLoad < ApplicationRecord
extend Timescaledb::ActsAsHypertable
include Timescaledb::ContinuousAggregatesHelper
acts_as_hypertable time_column: "created_at",
segment_by: "path",
value_column: "performance"
scope :chrome_users, -> { where("user_agent LIKE ?", "%Chrome%") }
scope :firefox_users, -> { where("user_agent LIKE ?", "%Firefox%") }
scope :safari_users, -> { where("user_agent LIKE ?", "%Safari%") }
scope :performance_stats, -> {
select("stats_agg(#{value_column}) as stats_agg")
}
scope :slow_requests, -> { where("performance > ?", 1.0) }
scope :fast_requests, -> { where("performance < ?", 0.1) }
continuous_aggregates scopes: [:performance_stats],
timeframes: [:minute, :hour, :day],
refresh_policy: {
minute: {
start_offset: '3 minute',
end_offset: '1 minute',
schedule_interval: '1 minute'
},
hour: {
start_offset: '3 hours',
end_offset: '1 hour',
schedule_interval: '1 minute'
},
day: {
start_offset: '3 day',
end_offset: '1 day',
schedule_interval: '1 minute'
}
}
end
Run the migration
rails db:migrate
The TimescaleDB gem provides efficient ways to insert data into hypertables. This section shows you how to ingest test data into your hypertable.
Create a controller to handle page loads
Create a new file called <my_app_home>/app/controllers/application_controller.rb and add the following code:
class ApplicationController < ActionController::Base
around_action :track_page_load
private
def track_page_load
start_time = Time.current
yield
end_time = Time.current
PageLoad.create(
path: request.path,
user_agent: request.user_agent,
performance: (end_time - start_time)
)
end
end
Generate some test data
Use bin/console to join a Rails console session and run the following code
to define some random page load access data:
def generate_sample_page_loads(total: 1000)
time = 1.month.ago
paths = %w[/ /about /contact /products /blog]
browsers = [
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:89.0) Gecko/20100101 Firefox/89.0",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15"
]
total.times.map do
time = time + rand(60).seconds
{
path: paths.sample,
user_agent: browsers.sample,
performance: rand(0.1..2.0),
created_at: time,
updated_at: time
}
end
end
Insert the generated data into your Tiger Cloud service
PageLoad.insert_all(generate_sample_page_loads, returning: false)
Validate the test data in your Tiger Cloud service
PageLoad.count
PageLoad.first
This section lists the most common tasks you might perform with the TimescaleDB gem.
The TimescaleDB gem provides several convenient scopes for querying your time-series data.
Built-in time-based scopes:
PageLoad.last_hour.count
PageLoad.today.count
PageLoad.this_week.count
PageLoad.this_month.count
Browser-specific scopes:
PageLoad.chrome_users.last_hour.count
PageLoad.firefox_users.last_hour.count
PageLoad.safari_users.last_hour.count
PageLoad.slow_requests.last_hour.count
PageLoad.fast_requests.last_hour.count
Query continuous aggregates:
This query fetches the average and standard deviation from the performance stats for the /products path over the last day.
```ruby
PageLoad::PerformanceStatsPerMinute.last_hour
PageLoad::PerformanceStatsPerHour.last_day
PageLoad::PerformanceStatsPerDay.last_month
stats = PageLoad::PerformanceStatsPerHour.last_day.where(path: '/products').select("average(stats_agg) as average, stddev(stats_agg) as stddev").first
puts "Average: #{stats.average}"
puts "Standard Deviation: #{stats.stddev}"
```
The TimescaleDB gem provides utility methods to access hypertable and chunk information. Every model that uses
the acts_as_hypertable method has access to these methods.
View chunk or hypertable information:
PageLoad.chunks.count
PageLoad.hypertable.detailed_size
Compress/Decompress chunks:
PageLoad.chunks.uncompressed.first.compress! # Compress the first uncompressed chunk
PageLoad.chunks.compressed.first.decompress! # Decompress the oldest chunk
PageLoad.hypertable.compression_stats # View compression stats
You collect hypertable stats using methods that provide insights into your hypertable's structure, size, and compression status:
Get basic hypertable information:
hypertable = PageLoad.hypertable
hypertable.hypertable_name # The name of your hypertable
hypertable.schema_name # The schema where the hypertable is located
Get detailed size information:
hypertable.detailed_size # Get detailed size information for the hypertable
hypertable.compression_stats # Get compression statistics
hypertable.chunks_detailed_size # Get chunk information
hypertable.approximate_row_count # Get approximate row count
hypertable.dimensions.map(&:column_name) # Get dimension information
hypertable.continuous_aggregates.map(&:view_name) # Get continuous aggregate view names
The continuous_aggregates method generates a class for each continuous aggregate.
Get all the continuous aggregate classes:
PageLoad.descendants # Get all continuous aggregate classes
Manually refresh a continuous aggregate:
PageLoad.refresh_aggregates
Create or drop a continuous aggregate:
Create or drop all the continuous aggregates in the proper order to build them hierarchically. See more about how it works in this blog post.
PageLoad.create_continuous_aggregates
PageLoad.drop_continuous_aggregates
Now that you have integrated the ruby gem into your app:
===== PAGE: https://docs.tigerdata.com/_partials/_add-data-energy/ =====
When you have your database set up, you can load the energy consumption data
into the metrics hypertable.
This is a large dataset, so it might take a long time, depending on your network connection.
Use your file manager to decompress the downloaded dataset, and take a note
of the path to the metrics.csv file.
At the psql prompt, copy the data from the metrics.csv file into
your hypertable. Make sure you point to the correct path, if it is not in
your current working directory:
\COPY metrics FROM metrics.csv CSV;
You can check that the data has been copied successfully with this command:
SELECT * FROM metrics LIMIT 5;
You should get five records that look like this:
created | type_id | value
-------------------------------+---------+-------
2023-05-31 23:59:59.043264+00 | 13 | 1.78
2023-05-31 23:59:59.042673+00 | 2 | 126
2023-05-31 23:59:59.042667+00 | 11 | 1.79
2023-05-31 23:59:59.042623+00 | 23 | 0.408
2023-05-31 23:59:59.042603+00 | 12 | 0.96
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_dump_database_roles/ =====
pg_dumpall -d "source" \
-l database name \
--quote-all-identifiers \
--roles-only \
--file=roles.sql
Tiger Cloud services do not support roles with superuser access. If your SQL dump includes roles that have such permissions, you'll need to modify the file to be compliant with the security model.
You can use the following sed command to remove unsupported statements and
permissions from your roles.sql file:
sed -i -E \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e '/CREATE ROLE "tsdbadmin";/d' \
-e '/ALTER ROLE "tsdbadmin"/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
roles.sql
This command works only with the GNU implementation of sed (sometimes referred
to as gsed). For the BSD implementation (the default on macOS), you need to
add an extra argument to change the -i flag to -i ''.
To check the sed version, you can use the command sed --version. While the
GNU version explicitly identifies itself as GNU, the BSD version of sed
generally doesn't provide a straightforward --version flag and simply outputs
an "illegal option" error.
A brief explanation of this script is:
CREATE ROLE "postgres"; and ALTER ROLE "postgres": These statements are
removed because they require superuser access, which is not supported
by Timescale.
(NO)SUPERUSER | (NO)REPLICATION | (NO)BYPASSRLS: These are permissions
that require superuser access.
GRANTED BY role_specification: The GRANTED BY clause can also have permissions that
require superuser access and should therefore be removed. Note: according to the
TimescaleDB documentation, the GRANTOR in the GRANTED BY clause must be the
current user, and this clause mainly serves the purpose of SQL compatibility.
Therefore, it's safe to remove it.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-debian-based-start/ =====
Install the latest Postgres packages
sudo apt install gnupg postgresql-common apt-transport-https lsb-release wget
Run the Postgres package setup script
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
===== PAGE: https://docs.tigerdata.com/_partials/_free-plan-beta/ =====
The Free pricing plan and services are currently in beta.
===== PAGE: https://docs.tigerdata.com/_partials/_livesync-configure-source-database/ =====
Tune the Write Ahead Log (WAL) on the Postgres source database
psql source <<EOF
ALTER SYSTEM SET wal_level='logical';
ALTER SYSTEM SET max_wal_senders=10;
ALTER SYSTEM SET wal_sender_timeout=0;
EOF
This will require a restart of the Postgres source database.
Create a user for the connector and assign permissions
Create <pg connector username>:
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
You can use an existing user. However, you must ensure that the user has the following permissions.
Grant permissions to create a replication slot:
psql source -c "ALTER ROLE <pg connector username> REPLICATION"
Grant permissions to create a publication:
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
Assign the user permissions on the source database:
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
If the tables you are syncing are not in the public schema, grant the user permissions for each schema you are syncing:
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
On each table you want to sync, make <pg connector username> the owner:
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
You can skip this step if the replicating user is already the owner of the tables.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_datadog-data-exporter/ =====
New exporterSelect Metrics for Data type and Datadog for provider
Choose your AWS region and provide the API key
The AWS region must be the same for your Tiger Cloud exporter and the Datadog provider.
Set Site to your Datadog region, then click Create exporter
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_6e_turn_on_compression_policies/ =====
In the following command, replace <hypertable> with the fully qualified table
name of the target hypertable, for example public.metrics:
psql -d target -f -v hypertable=<hypertable> - <<'EOF'
SELECT public.alter_job(j.id, scheduled=>true)
FROM _timescaledb_config.bgw_job j
JOIN _timescaledb_catalog.hypertable h ON h.id = j.hypertable_id
WHERE j.proc_schema IN ('_timescaledb_internal', '_timescaledb_functions')
AND j.proc_name = 'policy_compression'
AND j.id >= 1000
AND format('%I.%I', h.schema_name, h.table_name)::text::regclass = :'hypertable'::text::regclass;
EOF
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-redhat-rocky/ =====
Install TimescaleDB
To avoid errors, do not install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
sudo dnf install -y postgresql16-server postgresql16-contrib timescaledb-2-postgresql-16
Initialize the Postgres instance
sudo /usr/pgsql-16/bin/postgresql-16-setup initdb
Tune your Postgres instance for TimescaleDB
sudo timescaledb-tune --pg-config=/usr/pgsql-16/bin/pg_config
This script is included with the timescaledb-tools package when you install TimescaleDB.
For more information, see configuration.
Enable and start Postgres
sudo systemctl enable postgresql-16
sudo systemctl start postgresql-16
Log in to Postgres as postgres
sudo -u postgres psql
You are now in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-mst-restart-workers/ =====
On Tiger Cloud and Managed Service for TimescaleDB, restart background workers by doing one of the following:
SELECT timescaledb_pre_restore(), followed by SELECT
timescaledb_post_restore().===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_setup_enable_replication/ =====
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_timescale-cloud-platforms/ =====
You use Tiger Data's open-source products to create your best app from the comfort of your own developer environment.
See the available services and supported systems.
Tiger Data offers the following services for your self-hosted installations:
<thead>
<tr>
<th>Service type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Self-hosted support</strong></td>
<td><ul><li>24/7 support no matter where you are.</li><li>An experienced global ops and support team that
can build and manage Postgres at scale.</li></ul>
Want to try it out? <a href="https://www.tigerdata.com/self-managed-support">See how we can help</a>.
</td>
</tr>
</tbody>
TimescaleDB and TimescaleDB Toolkit run on Postgres v10, v11, v12, v13, v14, v15, v16, and v17. Currently Postgres 15 and higher are supported.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10| |-----------------------|-|-|-|-|-|-|-|-| | 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌| | 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌| | 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌| | 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌| | 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌| | 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌| | 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌| | 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌ | 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21. These minor versions introduced a breaking binary interface change that, once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22. When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher. Users of Tiger Cloud and platform packages for Linux, Windows, MacOS, Docker, and Kubernetes are unaffected.
You can deploy TimescaleDB and TimescaleDB Toolkit on the following systems:
| Operation system | Version |
|---|---|
| Debian | 13 Trixe, 12 Bookworm, 11 Bullseye |
| Ubuntu | 24.04 Noble Numbat, 22.04 LTS Jammy Jellyfish |
| Red Hat Enterprise | Linux 9, Linux 8 |
| Fedora | Fedora 35, Fedora 34, Fedora 33 |
| Rocky Linux | Rocky Linux 9 (x86_64), Rocky Linux 8 |
| ArchLinux (community-supported) | Check the available packages |
| Operation system | Version |
|---|---|
| Microsoft Windows | 10, 11 |
| Microsoft Windows Server | 2019, 2020 |
| Operation system | Version |
|---|---|
| macOS | From 10.15 Catalina to 14 Sonoma |
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_install_psql_ec2_instance/ =====
Connect to your intermediary EC2 instance. For example:
ssh -i "<key-pair>.pem" ubuntu@<EC2 instance's Public IPv4>
On your intermediary EC2 instance, install the Postgres client.
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list'
wget -qO- https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo tee /etc/apt/trusted.gpg.d/pgdg.asc &>/dev/null
sudo apt update
sudo apt install postgresql-client-16 -y # "postgresql-client-16" if your source DB is using PG 16.
psql --version && pg_dump --version
Keep this terminal open, you need it to connect to the RDS instance for migration.
Security group rules (1) and select the EC2 Security Group - Inbound group. The
Security Groups (1) window opens. Click the Security group ID, then click Edit inbound rulesOn your intermediary EC2 instance, get your local IP address:
ec2metadata --local-ipv4
Bear with me on this one, you need this IP address to enable access to your RDS instance,
In Edit inbound rules, click Add rule, then create a PostgreSQL, TCP rule granting access
to the local IP address for your EC2 instance (told you :-)). Then click Save rules.

Endpoint, Port, Master username, and DB name
to create the postgres connectivity string to the SOURCE variable. export SOURCE="postgres://<Master username>:<Master password>@<Endpoint>:<Port>/<DB name>"
The value of Master password was supplied when this Postgres RDS instance was created.
Test your connection:
psql -d source
You are connected to your RDS instance from your intermediary EC2 instance.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_setup_connection_strings/ =====
These variables hold the connection information for the source database and target Tiger Cloud service. In Terminal on your migration machine, set the following:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
===== PAGE: https://docs.tigerdata.com/_partials/_psql-installation-windows/ =====
The psql tool is installed by default on Windows systems when you install
Postgres, and this is the most effective way to install the tool. These
instructions use the interactive installer provided by Postgres and
EnterpriseDB.
Select Components dialog, check Command Line Tools, along with
any other components you want to install, and click Next.===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_run_live_migration/ =====
Pull the live-migration docker image to you migration machine
sudo docker pull timescale/live-migration:latest
To list the available commands, run:
sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run --help for that command. For example:
sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
This process checks that you have tuned your source database and target service correctly for replication, then creates a snapshot of your data on the migration machine:
docker run --rm -it --name live-migration-snapshot \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX)
2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB
2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
Synchronize data between your source database and your Tiger Cloud service
This command migrates data from the snapshot to your Tiger Cloud service, then streams transactions from the source to the target.
docker run --rm -it --name live-migration-migrate \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag -e PGVERSION=17 to the migrate command.
After migrating the schema, live-migration prompts you to create hypertables for tables that
contain time-series data in your Tiger Cloud service. Run create_hypertable() to convert these
table. For more information, see the Hypertable docs.
During this process, you see the migration process:
Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If migrate stops add --resume to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database, you see the following message:
Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until replay_lag is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
Start app downtime
Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the pg_top CLI or
pg_stat_activity to view the current transaction on the source database.
Stop Live-migration.
hit 'c' and then ENTER
Live-migration continues the remaining work. This includes copying TimescaleDB metadata, sequences, and run policies. When the migration completes, you see the following message:
Migration successfully completed
===== PAGE: https://docs.tigerdata.com/_partials/_experimental/ =====
Experimental features could have bugs. They might not be backwards compatible, and could be removed in future releases. Use these features at your own risk, and do not use any experimental features in production.
===== PAGE: https://docs.tigerdata.com/_partials/_compression-intro/ =====
Compressing your time-series data allows you to reduce your chunk size by more than 90%. This saves on storage costs, and keeps your queries operating at lightning speed.
When you enable compression, the data in your hypertable is compressed chunk by chunk. When the chunk is compressed, multiple records are grouped into a single row. The columns of this row hold an array-like structure that stores all the data. This means that instead of using lots of rows to store the data, it stores the same data in a single row. Because a single row takes up less disk space than many rows, it decreases the amount of disk space required, and can also speed up your queries.
For example, if you had a table with data that looked a bit like this:
|Timestamp|Device ID|Device Type|CPU|Disk IO| |-|-|-|-|-| |12:00:01|A|SSD|70.11|13.4| |12:00:01|B|HDD|69.70|20.5| |12:00:02|A|SSD|70.12|13.2| |12:00:02|B|HDD|69.69|23.4| |12:00:03|A|SSD|70.14|13.0| |12:00:03|B|HDD|69.70|25.2|
You can convert this to a single row in array form, like this:
|Timestamp|Device ID|Device Type|CPU|Disk IO| |-|-|-|-|-| |[12:00:01, 12:00:01, 12:00:02, 12:00:02, 12:00:03, 12:00:03]|[A, B, A, B, A, B]|[SSD, HDD, SSD, HDD, SSD, HDD]|[70.11, 69.70, 70.12, 69.69, 70.14, 69.70]|[13.4, 20.5, 13.2, 23.4, 13.0, 25.2]|
===== PAGE: https://docs.tigerdata.com/_partials/_prereqs-cloud-only/ =====
To follow the steps on this page:
You need your connection details.
===== PAGE: https://docs.tigerdata.com/_partials/_hypercore_manual_workflow/ =====
Retrieve the list of jobs from the timescaledb_information.jobs view to find the job you need to alter_job.
SELECT alter_job(JOB_ID, scheduled => false);
Convert a chunk to update back to the rowstore
CALL convert_to_rowstore('_timescaledb_internal._hyper_2_2_chunk');
Update the data in the chunk you added to the rowstore
Best practice is to structure your INSERT statement to include appropriate partition key values, such as the timestamp. TimescaleDB adds the data to the correct chunk:
INSERT INTO metrics (time, value)
VALUES ('2025-01-01T00:00:00', 42);
Convert the updated chunks back to the columnstore
CALL convert_to_columnstore('_timescaledb_internal._hyper_1_2_chunk');
Restart the jobs that are automatically converting chunks to the columnstore
SELECT alter_job(JOB_ID, scheduled => true);
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_roles_schema_data_mst/ =====
Export your role-based security hierarchy. <db_name> has the same value as <db_name> in source.
I know, it confuses me as well.
pg_dumpall -d "source" \
-l <db_name> \
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
MST does not allow you to export passwords with roles. You assign passwords to these roles when you have uploaded them to your Tiger Cloud service.
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from roles.sql:
sed -i -E \
-e '/DROP ROLE IF EXISTS "postgres";/d' \
-e '/DROP ROLE IF EXISTS "tsdbadmin";/d' \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e '/CREATE ROLE "rds/d' \
-e '/ALTER ROLE "rds/d' \
-e '/TO "rds/d' \
-e '/GRANT "rds/d' \
-e '/GRANT "pg_read_all_stats" TO "tsdbadmin"/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
-e '/CREATE ROLE "tsdbadmin";/d' \
-e '/ALTER ROLE "tsdbadmin"/d' \
-e 's/WITH ADMIN OPTION,/WITH /g' \
-e 's/WITH ADMIN OPTION//g' \
-e 's/GRANTED BY ".*"//g' \
-e '/GRANT "pg_.*" TO/d' \
-e '/CREATE ROLE "_aiven";/d' \
-e '/ALTER ROLE "_aiven"/d' \
-e '/GRANT SET ON PARAMETER "pgaudit\.[^"]+" TO "_tsdbadmin_auditing"/d' \
-e '/GRANT SET ON PARAMETER "anon\.[^"]+" TO "tsdbadmin_group"/d' \
roles.sql
The pg_dump flags remove superuser access and tablespaces from your data. When you run
pgdump, check the run time, a long-running pg_dump can cause issues.
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information, see dumping with concurrency and restoring with concurrency.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migrate_data_timescaledb/ =====
Pull the live-migration docker image to you migration machine
sudo docker pull timescale/live-migration:latest
To list the available commands, run:
sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run --help for that command. For example:
sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
This process checks that you have tuned your source database and target service correctly for replication, then creates a snapshot of your data on the migration machine:
docker run --rm -it --name live-migration-snapshot \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX)
2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB
2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
Synchronize data between your source database and your Tiger Cloud service
This command migrates data from the snapshot to your Tiger Cloud service, then streams transactions from the source to the target.
docker run --rm -it --name live-migration-migrate \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag -e PGVERSION=17 to the migrate command.
During this process, you see the migration process:
Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If migrate stops add --resume to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database, you see the following message:
Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until replay_lag is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
Start app downtime
Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the pg_top CLI or
pg_stat_activity to view the current transaction on the source database.
Stop Live-migration.
hit 'c' and then ENTER
Live-migration continues the remaining work. This includes copying TimescaleDB metadata, sequences, and run policies. When the migration completes, you see the following message:
Migration successfully completed
===== PAGE: https://docs.tigerdata.com/_partials/_prereqs-cloud-account-only/ =====
To follow the steps on this page:
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_set_up_database_first_steps/ =====
The duration of the migration is proportional to the amount of data stored in your database. By disconnection your app from your database you avoid and possible data loss.
These variables hold the connection information for the source database and target Tiger Cloud service:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-redhat/ =====
Install the latest Postgres packages
sudo yum install https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm
Add the TimescaleDB repository
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/$(rpm -E %{rhel})/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
Update your local repository list
sudo yum update
Install TimescaleDB
To avoid errors, do not install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
sudo yum install timescaledb-2-postgresql-17 postgresql17
On Red Hat Enterprise Linux 8 and later, disable the built-in Postgres module:
sudo dnf -qy module disable postgresql
Initialize the Postgres instance
sudo /usr/pgsql-17/bin/postgresql-17-setup initdb
Tune your Postgres instance for TimescaleDB
sudo timescaledb-tune --pg-config=/usr/pgsql-17/bin/pg_config
This script is included with the timescaledb-tools package when you install TimescaleDB.
For more information, see configuration.
Enable and start Postgres
sudo systemctl enable postgresql-17
sudo systemctl start postgresql-17
Log in to Postgres as postgres
sudo -u postgres psql
You are now in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_chunk-interval/ =====
Postgres builds the index on the fly during ingestion. That means that to build a new entry on the index, a significant portion of the index needs to be traversed during every row insertion. When the index does not fit into memory, it is constantly flushed to disk and read back. This wastes IO resources which would otherwise be used for writing the heap/WAL data to disk.
The default chunk interval is 7 days. However, best practice is to set chunk_interval so that prior to processing,
the indexes for chunks currently being ingested into fit within 25% of main memory. For example, on a system with 64
GB of memory, if index growth is approximately 2 GB per day, a 1-week chunk interval is appropriate. If index growth is
around 10 GB per day, use a 1-day interval.
You set chunk_interval when you create a hypertable, or by calling
set_chunk_time_interval on an existing hypertable.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_tune_source_database_mst/ =====
DELETE andUPDATE operationsReplica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_tutorials_hypertable_intro/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
===== PAGE: https://docs.tigerdata.com/_partials/_hypertable-intro/ =====
Tiger Cloud supercharges your real-time analytics by letting you run complex queries continuously, with near-zero latency. Under the hood, this is achieved by using hypertables—Postgres tables that automatically partition your time-series data by time and optionally by other dimensions. When you run a query, Tiger Cloud identifies the correct partition, called chunk, and runs the query on it, instead of going through the entire table.
Hypertables offer the following benefits:
Efficient data management with automated partitioning by time: Tiger Cloud splits your data into chunks that hold data from a specific time range. For example, one day or one week. You can configure this range to better suit your needs.
Better performance with strategic indexing: an index on time in the descending order is automatically created when you create a hypertable. More indexes are created on the chunk level, to optimize performance. You can create additional indexes, including unique indexes, on the columns you need.
Faster queries with chunk skipping: Tiger Cloud skips the chunks that are irrelevant in the context of your query, dramatically reducing the time and resources needed to fetch results. Even more—you can enable chunk skipping on non-partitioning columns.
Advanced data analysis with hyperfunctions: Tiger Cloud enables you to efficiently process, aggregate, and analyze significant volumes of data while maintaining high performance.
To top it all, there is no added complexity—you interact with hypertables in the same way as you would with regular Postgres tables. All the optimization magic happens behind the scenes.
Inheritance is not supported for hypertables and may lead to unexpected behavior.
===== PAGE: https://docs.tigerdata.com/_partials/_kubernetes-install-self-hosted/ =====
Running TimescaleDB on Kubernetes is similar to running Postgres. This procedure outlines the steps for a non-distributed system.
To connect your Kubernetes cluster to self-hosted TimescaleDB running in the cluster:
Create a default namespace for Tiger Data components
Create the Tiger Data namespace:
kubectl create namespace timescale
Set this namespace as the default for your session:
kubectl config set-context --current --namespace=timescale
For more information, see Kubernetes Namespaces.
To manually set up a persistent volume and claim for self-hosted Kubernetes, run the following command:
kubectl apply -f - <<EOF
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: timescale-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
EOF
By default, the TimescaleDB Docker image you are installing on Kubernetes uses the default Postgres database, user and password. To deploy TimescaleDB on Kubernetes, run the following command:
```yaml
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: timescaledb
spec:
serviceName: timescaledb
replicas: 1
selector:
matchLabels:
app: timescaledb
template:
metadata:
labels:
app: timescaledb
spec:
containers:
- name: timescaledb
image: 'timescale/timescaledb:latest-pg17'
env:
- name: POSTGRES_USER
value: postgres
- name: POSTGRES_PASSWORD
value: postgres
- name: POSTGRES_DB
value: postgres
- name: PGDATA
value: /var/lib/postgresql/data/pgdata
ports:
- containerPort: 5432
volumeMounts:
- mountPath: /var/lib/postgresql/data
name: timescale-storage
volumes:
- name: timescale-storage
persistentVolumeClaim:
claimName: timescale-pvc
EOF
```
Allow applications to connect by exposing TimescaleDB within Kubernetes
kubectl apply -f - <<EOF
apiVersion: v1
kind: Service
metadata:
name: timescaledb
spec:
selector:
app: timescaledb
ports:
- protocol: TCP
port: 5432
targetPort: 5432
type: ClusterIP
EOF
Create a Kubernetes secret to store the database credentials
kubectl create secret generic timescale-secret \
--from-literal=PGHOST=timescaledb \
--from-literal=PGPORT=5432 \
--from-literal=PGDATABASE=postgres \
--from-literal=PGUSER=postgres \
--from-literal=PGPASSWORD=postgres
Deploy an application that connects to TimescaleDB
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: timescale-app
spec:
replicas: 1
selector:
matchLabels:
app: timescale-app
template:
metadata:
labels:
app: timescale-app
spec:
containers:
- name: timescale-container
image: postgres:latest
envFrom:
- secretRef:
name: timescale-secret
EOF
Test the database connection
Create and run a pod to verify database connectivity using your connection details saved in timescale-secret:
kubectl run test-pod --image=postgres --restart=Never \
--env="PGHOST=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGHOST}' | base64 --decode)" \
--env="PGPORT=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPORT}' | base64 --decode)" \
--env="PGDATABASE=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGDATABASE}' | base64 --decode)" \
--env="PGUSER=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGUSER}' | base64 --decode)" \
--env="PGPASSWORD=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPASSWORD}' | base64 --decode)" \
-- sleep infinity
Launch the Postgres interactive shell within the created test-pod:
kubectl exec -it test-pod -- bash -c "psql -h \$PGHOST -U \$PGUSER -d \$PGDATABASE"
You see the Postgres interactive terminal.
===== PAGE: https://docs.tigerdata.com/_partials/_caggs-migrate-permissions/ =====
You might get a permissions error when migrating a continuous aggregate from old
to new format using cagg_migrate. The user performing the migration must have
the following permissions:
_timescale_catalog.continuous_agg_migrate_plan and
_timescale_catalog.continuous_agg_migrate_plan_step_timescaledb_catalog.continuous_agg_migrate_plan_step_step_id_seqTo solve the problem, change to a user capable of granting permissions, and grant the following permissions to the user performing the migration:
GRANT SELECT, INSERT, UPDATE ON TABLE _timescaledb_catalog.continuous_agg_migrate_plan TO <USER>;
GRANT SELECT, INSERT, UPDATE ON TABLE _timescaledb_catalog.continuous_agg_migrate_plan_step TO <USER>;
GRANT USAGE ON SEQUENCE _timescaledb_catalog.continuous_agg_migrate_plan_step_step_id_seq TO <USER>;
===== PAGE: https://docs.tigerdata.com/_partials/_candlestick_intro/ =====
The financial sector regularly uses candlestick charts to visualize the price change of an asset. Each candlestick represents a time period, such as one minute or one hour, and shows how the asset's price changed during that time.
Candlestick charts are generated from the open, high, low, close, and volume data for each financial asset during the time period. This is often abbreviated as OHLCV:
===== PAGE: https://docs.tigerdata.com/_partials/_start-coding-java/ =====
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
All code in this quick start is for Java 16 and later. If you are working with older JDK versions, use legacy coding techniques.
In this section, you create a connection to your service using an application in
a single file. You can use any of your favorite build tools, including gradle
or maven.
Create a directory containing a text file called Main.java, with this content:
package com.timescale.java;
public class Main {
public static void main(String... args) {
System.out.println("Hello, World!");
}
}
From the command line in the current directory, run the application:
java Main.java
If the command is successful, Hello, World! line output is printed
to your console.
Import the PostgreSQL JDBC driver. If you are using a dependency manager, include the PostgreSQL JDBC Driver as a dependency.
Download the JAR artifact of the JDBC Driver and
save it with the Main.java file.
Import the JDBC Driver into the Java application and display a list of
available drivers for the check:
package com.timescale.java;
import java.sql.DriverManager;
public class Main {
public static void main(String... args) {
DriverManager.drivers().forEach(System.out::println);
}
}
Run all the examples:
java -cp *.jar Main.java
If the command is successful, a string similar to
org.postgresql.Driver@7f77e91b is printed to your console. This means that you
are ready to connect to TimescaleDB from Java.
Locate your TimescaleDB credentials and use them to compose a connection string for JDBC.
You'll need:
Compose your connection string variable, using this format:
var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
For more information about creating connection strings, see the JDBC documentation.
This method of composing a connection string is for test or development purposes only. For production, use environment variables for sensitive details like your password, hostname, and port number.
package com.timescale.java;
import java.sql.DriverManager;
import java.sql.SQLException;
public class Main {
public static void main(String... args) throws SQLException {
var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
var conn = DriverManager.getConnection(connUrl);
System.out.println(conn.getClientInfo());
}
}
Run the code:
java -cp *.jar Main.java
If the command is successful, a string similar to
{ApplicationName=PostgreSQL JDBC Driver} is printed to your console.
In this section, you create a table called sensors which holds the ID, type,
and location of your fictional sensors. Additionally, you create a hypertable
called sensor_data which holds the measurements of those sensors. The
measurements contain the time, sensor_id, temperature reading, and CPU
percentage of the sensors.
Compose a string which contains the SQL statement to create a relational
table. This example creates a table called sensors, with columns id,
type and location:
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
);
Create a statement, execute the query you created in the previous step, and check that the table was created successfully:
package com.timescale.java;
import java.sql.DriverManager;
import java.sql.SQLException;
public class Main {
public static void main(String... args) throws SQLException {
var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
var conn = DriverManager.getConnection(connUrl);
var createSensorTableQuery = """
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""";
try (var stmt = conn.createStatement()) {
stmt.execute(createSensorTableQuery);
}
var showAllTablesQuery = "SELECT tablename FROM pg_catalog.pg_tables WHERE schemaname = 'public'";
try (var stmt = conn.createStatement();
var rs = stmt.executeQuery(showAllTablesQuery)) {
System.out.println("Tables in the current database: ");
while (rs.next()) {
System.out.println(rs.getString("tablename"));
}
}
}
}
When you have created the relational table, you can create a hypertable. Creating tables and indexes, altering tables, inserting data, selecting data, and most other tasks are executed on the hypertable.
Create a CREATE TABLE SQL statement for
your hypertable. Notice how the hypertable has the compulsory time column:
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
);
Create a statement, execute the query you created in the previous step:
SELECT create_hypertable('sensor_data', by_range('time'));
The by_range and by_hash dimension builder is an addition to TimescaleDB 2.13.
Execute the two statements you created, and commit your changes to the database:
package com.timescale.java;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.List;
public class Main {
public static void main(String... args) {
final var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
try (var conn = DriverManager.getConnection(connUrl)) {
createSchema(conn);
insertData(conn);
} catch (SQLException ex) {
System.err.println(ex.getMessage());
}
}
private static void createSchema(final Connection conn) throws SQLException {
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("SELECT create_hypertable('sensor_data', by_range('time'))");
}
}
}
You can insert data into your hypertables in several different ways. In this section, you can insert single rows, or insert by batches of rows.
Open a connection to the database, use prepared statements to formulate the
INSERT SQL statement, then execute the statement:
final List<Sensor> sensors = List.of(
new Sensor("temperature", "bedroom"),
new Sensor("temperature", "living room"),
new Sensor("temperature", "outside"),
new Sensor("humidity", "kitchen"),
new Sensor("humidity", "outside"));
for (final var sensor : sensors) {
try (var stmt = conn.prepareStatement("INSERT INTO sensors (type, location) VALUES (?, ?)")) {
stmt.setString(1, sensor.type());
stmt.setString(2, sensor.location());
stmt.executeUpdate();
}
}
If you want to insert a batch of rows by using a batching mechanism. In this
example, you generate some sample time-series data to insert into the
sensor_data hypertable:
Insert batches of rows:
final var sensorDataCount = 100;
final var insertBatchSize = 10;
try (var stmt = conn.prepareStatement("""
INSERT INTO sensor_data (time, sensor_id, value)
VALUES (
generate_series(now() - INTERVAL '24 hours', now(), INTERVAL '5 minutes'),
floor(random() * 4 + 1)::INTEGER,
random()
)
""")) {
for (int i = 0; i < sensorDataCount; i++) {
stmt.addBatch();
if ((i > 0 && i % insertBatchSize == 0) || i == sensorDataCount - 1) {
stmt.executeBatch();
}
}
}
This section covers how to execute queries against your database.
Define the SQL query you'd like to run on the database. This example combines time-series and relational data. It returns the average values for every 15 minute interval for sensors with specific type and location.
SELECT time_bucket('15 minutes', time) AS bucket, avg(value)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.type = ? AND sensors.location = ?
GROUP BY bucket
ORDER BY bucket DESC;
Execute the query with the prepared statement and read out the result set for
all a-type sensors located on the floor:
try (var stmt = conn.prepareStatement("""
SELECT time_bucket('15 minutes', time) AS bucket, avg(value)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.type = ? AND sensors.location = ?
GROUP BY bucket
ORDER BY bucket DESC
""")) {
stmt.setString(1, "temperature");
stmt.setString(2, "living room");
try (var rs = stmt.executeQuery()) {
while (rs.next()) {
System.out.printf("%s: %f%n", rs.getTimestamp(1), rs.getDouble(2));
}
}
}
If the command is successful, you'll see output like this:
2021-05-12 23:30:00.0: 0,508649
2021-05-12 23:15:00.0: 0,477852
2021-05-12 23:00:00.0: 0,462298
2021-05-12 22:45:00.0: 0,457006
2021-05-12 22:30:00.0: 0,568744
...
Now that you're able to connect, read, and write to a TimescaleDB instance from your Java application, and generate the scaffolding necessary to build a new application from an existing TimescaleDB instance, be sure to check out these advanced TimescaleDB tutorials:
This section contains complete code samples.
package com.timescale.java;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.List;
public class Main {
public static void main(String... args) {
final var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
try (var conn = DriverManager.getConnection(connUrl)) {
createSchema(conn);
insertData(conn);
} catch (SQLException ex) {
System.err.println(ex.getMessage());
}
}
private static void createSchema(final Connection conn) throws SQLException {
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("SELECT create_hypertable('sensor_data', by_range('time'))");
}
}
private static void insertData(final Connection conn) throws SQLException {
final List<Sensor> sensors = List.of(
new Sensor("temperature", "bedroom"),
new Sensor("temperature", "living room"),
new Sensor("temperature", "outside"),
new Sensor("humidity", "kitchen"),
new Sensor("humidity", "outside"));
for (final var sensor : sensors) {
try (var stmt = conn.prepareStatement("INSERT INTO sensors (type, location) VALUES (?, ?)")) {
stmt.setString(1, sensor.type());
stmt.setString(2, sensor.location());
stmt.executeUpdate();
}
}
final var sensorDataCount = 100;
final var insertBatchSize = 10;
try (var stmt = conn.prepareStatement("""
INSERT INTO sensor_data (time, sensor_id, value)
VALUES (
generate_series(now() - INTERVAL '24 hours', now(), INTERVAL '5 minutes'),
floor(random() * 4 + 1)::INTEGER,
random()
)
""")) {
for (int i = 0; i < sensorDataCount; i++) {
stmt.addBatch();
if ((i > 0 && i % insertBatchSize == 0) || i == sensorDataCount - 1) {
stmt.executeBatch();
}
}
}
}
private record Sensor(String type, String location) {
}
}
package com.timescale.java;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.List;
public class Main {
public static void main(String... args) {
final var connUrl = "jdbc:postgresql://<HOSTNAME>:<PORT>/<DATABASE_NAME>?user=<USERNAME>&password=<PASSWORD>";
try (var conn = DriverManager.getConnection(connUrl)) {
createSchema(conn);
insertData(conn);
executeQueries(conn);
} catch (SQLException ex) {
System.err.println(ex.getMessage());
}
}
private static void createSchema(final Connection conn) throws SQLException {
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type TEXT NOT NULL,
location TEXT NOT NULL
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("""
CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER REFERENCES sensors (id),
value DOUBLE PRECISION
)
""");
}
try (var stmt = conn.createStatement()) {
stmt.execute("SELECT create_hypertable('sensor_data', by_range('time'))");
}
}
private static void insertData(final Connection conn) throws SQLException {
final List<Sensor> sensors = List.of(
new Sensor("temperature", "bedroom"),
new Sensor("temperature", "living room"),
new Sensor("temperature", "outside"),
new Sensor("humidity", "kitchen"),
new Sensor("humidity", "outside"));
for (final var sensor : sensors) {
try (var stmt = conn.prepareStatement("INSERT INTO sensors (type, location) VALUES (?, ?)")) {
stmt.setString(1, sensor.type());
stmt.setString(2, sensor.location());
stmt.executeUpdate();
}
}
final var sensorDataCount = 100;
final var insertBatchSize = 10;
try (var stmt = conn.prepareStatement("""
INSERT INTO sensor_data (time, sensor_id, value)
VALUES (
generate_series(now() - INTERVAL '24 hours', now(), INTERVAL '5 minutes'),
floor(random() * 4 + 1)::INTEGER,
random()
)
""")) {
for (int i = 0; i < sensorDataCount; i++) {
stmt.addBatch();
if ((i > 0 && i % insertBatchSize == 0) || i == sensorDataCount - 1) {
stmt.executeBatch();
}
}
}
}
private static void executeQueries(final Connection conn) throws SQLException {
try (var stmt = conn.prepareStatement("""
SELECT time_bucket('15 minutes', time) AS bucket, avg(value)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.type = ? AND sensors.location = ?
GROUP BY bucket
ORDER BY bucket DESC
""")) {
stmt.setString(1, "temperature");
stmt.setString(2, "living room");
try (var rs = stmt.executeQuery()) {
while (rs.next()) {
System.out.printf("%s: %f%n", rs.getTimestamp(1), rs.getDouble(2));
}
}
}
}
private record Sensor(String type, String location) {
}
}
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_self_postgres_implement_migration_path/ =====
You cannot upgrade TimescaleDB and Postgres at the same time. You upgrade each product in the following steps:
Upgrade TimescaleDB
psql -X -d source -c "ALTER EXTENSION timescaledb UPDATE TO '<version number>';"
If your migration path dictates it, upgrade Postgres
Follow the procedure in Upgrade Postgres. The version of TimescaleDB installed in your Postgres deployment must be the same before and after the Postgres upgrade.
If your migration path dictates it, upgrade TimescaleDB again
psql -X -d source -c "ALTER EXTENSION timescaledb UPDATE TO '<version number>';"
Check that you have upgraded to the correct version of TimescaleDB
psql -X -d source -c "\dx timescaledb;"
Postgres returns something like:
```shell
Name | Version | Schema | Description
-------------+---------+--------+---------------------------------------------------------------------------------------
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_validate_production_load/ =====
Now that dual-writes have been in place for a while, the target database should be holding up to production write traffic. Now would be the right time to determine if the target database can serve all production traffic (both reads and writes). How exactly this is done is application-specific and up to you to determine.
===== PAGE: https://docs.tigerdata.com/_partials/_prereqs-cloud-no-connection/ =====
To follow the steps on this page:
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_import_prerequisites/ =====
Best practice is to use an Ubuntu EC2 instance hosted in the same region as your Tiger Cloud service as a migration machine. That is, the machine you run the commands on to move your data from your source database to your target Tiger Cloud service.
Before you migrate your data:
Each Tiger Cloud service has a single database that supports the most popular extensions. Tiger Cloud services do not support tablespaces, and there is no superuser associated with a service. Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance can significantly reduce the overall migration window.
===== PAGE: https://docs.tigerdata.com/_partials/_hypercore-intro-short/ =====
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
===== PAGE: https://docs.tigerdata.com/_partials/_caggs-intro/ =====
In modern applications, data usually grows very quickly. This means that aggregating it into useful summaries can become very slow. If you are collecting data very frequently, you might want to aggregate your data into minutes or hours instead. For example, if an IoT device takes temperature readings every second, you might want to find the average temperature for each hour. Every time you run this query, the database needs to scan the entire table and recalculate the average. TimescaleDB makes aggregating data lightning fast, accurate, and easy with continuous aggregates.
Continuous aggregates in TimescaleDB are a kind of hypertable that is refreshed automatically in the background as new data is added, or old data is modified. Changes to your dataset are tracked, and the hypertable behind the continuous aggregate is automatically updated in the background.
Continuous aggregates have a much lower maintenance burden than regular Postgres materialized views, because the whole view is not created from scratch on each refresh. This means that you can get on with working your data instead of maintaining your database.
Because continuous aggregates are based on hypertables, you can query them in exactly the same way as your other tables. This includes continuous aggregates in the rowstore, compressed into the columnstore, or tiered to object storage. You can even create continuous aggregates on top of your continuous aggregates, for an even more fine-tuned aggregation.
Real-time aggregation enables you to combine pre-aggregated data from the materialized view with the most recent raw data. This gives you up-to-date results on every query. In TimescaleDB v2.13 and later, real-time aggregates are DISABLED by default. In earlier versions, real-time aggregates are ENABLED by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
===== PAGE: https://docs.tigerdata.com/_partials/_kubernetes-prereqs/ =====
===== PAGE: https://docs.tigerdata.com/_partials/_high-availability-setup/ =====
Operations, then select High availability.Choose your replication strategy, then click Change configuration.
In Change high availability configuration, click Change config.
===== PAGE: https://docs.tigerdata.com/_partials/_vpc-limitations/ =====
The number of Peering VPCs you can create in your project depends on your pricing plan. If you need another Peering VPC, either contact support@tigerdata.com or change your pricing plan in Tiger Cloud Console.
===== PAGE: https://docs.tigerdata.com/_partials/_integration-apache-kafka-install/ =====
Extract the Kafka binaries to a local folder
curl https://dlcdn.apache.org/kafka/3.9.0/kafka_2.13-3.9.0.tgz | tar -xzf -
cd kafka_2.13-3.9.0
From now on, the folder where you extracted the Kafka binaries is called <KAFKA_HOME>.
Configure and run Apache Kafka
KAFKA_CLUSTER_ID="$(bin/kafka-storage.sh random-uuid)"
./bin/kafka-storage.sh format --standalone -t $KAFKA_CLUSTER_ID -c config/kraft/reconfig-server.properties
./bin/kafka-server-start.sh config/kraft/reconfig-server.properties
Use the -daemon flag to run this process in the background.
In another Terminal window, navigate to , then call kafka-topics.sh and create the following topics:
accounts: publishes JSON messages that are consumed by the timescale-sink connector and inserted into your Tiger Cloud service.deadletter: stores messages that cause errors and that Kafka Connect workers cannot process.
./bin/kafka-topics.sh \
--create \
--topic accounts \
--bootstrap-server localhost:9092 \
--partitions 10
./bin/kafka-topics.sh \
--create \
--topic deadletter \
--bootstrap-server localhost:9092 \
--partitions 10
Test that your topics are working correctly
Run kafka-console-producer to send messages to the accounts topic:
bin/kafka-console-producer.sh --topic accounts --bootstrap-server localhost:9092
Send some events. For example, type the following:
>Tiger
>How Cool
In another Terminal window, navigate to , then run kafka-console-consumer to consume the events you just sent:
bin/kafka-console-consumer.sh --topic accounts --from-beginning --bootstrap-server localhost:9092
You see
Tiger
How Cool
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_tune_source_database_awsrds/ =====
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
Update the DB instance parameter group for your source database
In https://console.aws.amazon.com/rds/home#databases:, select the RDS instance to migrate.
Click Configuration, scroll down and note the DB instance parameter group, then click Parameter groups

Create parameter group, fill in the form with the following values, then click Create.
PostgreSQLDB instance parameter group in your Configuration.Parameter groups, select the parameter group you created, then click Edit.Update the following parameters, then click Save changes.
rds.logical_replication set to 1: record the information needed for logical decoding.wal_sender_timeout set to 0: disable the timeout for the sender process.In RDS, navigate back to your databases, select the RDS instance to migrate, and click Modify.
Scroll down to Database options, select your new parameter group, and click Continue.
Click Apply immediately or choose a maintenance window, then click Modify DB instance.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_foreign-data-wrappers/ =====
You use Postgres foreign data wrappers (FDWs) to query external data sources from a Tiger Cloud service. These external data sources can be one of the following:
If you are using VPC peering, you can create FDWs in your Customer VPC to query a service in your Tiger Cloud project. However, you can't create FDWs in your Tiger Cloud services to query a data source in your Customer VPC. This is because Tiger Cloud VPC peering uses AWS PrivateLink for increased security. See VPC peering documentation for additional details.
Postgres FDWs are particularly useful if you manage multiple Tiger Cloud services with different capabilities, and need to seamlessly access and merge regular and time-series data.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
To query another data source:
You create Postgres FDWs with the postgres_fdw extension, which is enabled by default in Tiger Cloud.
See how to connect.
Run the following command using your connection details:
CREATE SERVER myserver
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host '<host>', dbname 'tsdb', port '<port>');
Run the following command using your connection details:
CREATE USER MAPPING FOR tsdbadmin
SERVER myserver
OPTIONS (user 'tsdbadmin', password '<password>');
Import a foreign schema (recommended) or create a foreign table
Import the whole schema:
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
FROM SERVER myserver
INTO foreign_stuff ;
Alternatively, import a limited number of tables:
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
LIMIT TO (table1, table2)
FROM SERVER myserver
INTO foreign_stuff;
Create a foreign table. Skip if you are importing a schema:
CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
)
SERVER film_server;
A user with the tsdbadmin role assigned already has the required USAGE permission to create Postgres FDWs. You can enable another user, without the tsdbadmin role assigned, to query foreign data. To do so, explicitly grant the permission. For example, for a new grafana user:
CREATE USER grafana;
GRANT grafana TO tsdbadmin;
CREATE SCHEMA fdw AUTHORIZATION grafana;
CREATE SERVER db1 FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host '<host>', dbname 'tsdb', port '<port>');
CREATE USER MAPPING FOR grafana SERVER db1
OPTIONS (user 'tsdbadmin', password '<password>');
GRANT USAGE ON FOREIGN SERVER db1 TO grafana;
SET ROLE grafana;
IMPORT FOREIGN SCHEMA public
FROM SERVER db1
INTO fdw;
You create Postgres FDWs with the postgres_fdw extension. See documenation on how to enable it.
Use psql to connect to your database.
Run the following command using your connection details:
CREATE SERVER myserver
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host '<host>', dbname '<database_name>', port '<port>');
Run the following command using your connection details:
CREATE USER MAPPING FOR postgres
SERVER myserver
OPTIONS (user 'postgres', password '<password>');
Import a foreign schema (recommended) or create a foreign table
Import the whole schema:
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
FROM SERVER myserver
INTO foreign_stuff ;
Alternatively, import a limited number of tables:
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
LIMIT TO (table1, table2)
FROM SERVER myserver
INTO foreign_stuff;
Create a foreign table. Skip if you are importing a schema:
CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
)
SERVER film_server;
===== PAGE: https://docs.tigerdata.com/_partials/_cookbook-iot/ =====
This section contains recipes for IoT issues:
Narrow and medium width tables are a great way to store IoT data. A lot of reasons are outlined in Designing Your Database Schema: Wide vs. Narrow Postgres Tables.
One of the key advantages of narrow tables is that the schema does not have to change when you add new sensors. Another big advantage is that each sensor can sample at different rates and times. This helps support things like hysteresis, where new values are written infrequently unless the value changes by a certain amount.
Working with narrow table data structures presents a few challenges. In the IoT world one concern is that many data analysis approaches - including machine learning as well as more traditional data analysis - require that your data is resampled and synchronized to a common time basis. Fortunately, TimescaleDB provides you with hyperfunctions and other tools to help you work with this data.
An example of a narrow table format is:
| ts | sensor_id | value |
|---|---|---|
| 2024-10-31 11:17:30.000 | 1007 | 23.45 |
Typically you would couple this with a sensor table:
| sensor_id | sensor_name | units |
|---|---|---|
| 1007 | temperature | degreesC |
| 1012 | heat_mode | on/off |
| 1013 | cooling_mode | on/off |
| 1041 | occupancy | number of people in room |
A medium table retains the generic structure but adds columns of various types so that you can use the same table to store float, int, bool, or even JSON (jsonb) data:
| ts | sensor_id | d | i | b | t | j |
|---|---|---|---|---|---|---|
| 2024-10-31 11:17:30.000 | 1007 | 23.45 | null | null | null | null |
| 2024-10-31 11:17:47.000 | 1012 | null | null | TRUE | null | null |
| 2024-10-31 11:18:01.000 | 1041 | null | 4 | null | null | null |
To remove all-null entries, use an optional constraint such as:
CONSTRAINT at_least_one_not_null
CHECK ((d IS NOT NULL) OR (i IS NOT NULL) OR (b IS NOT NULL) OR (j IS NOT NULL) OR (t IS NOT NULL))
There are several ways to get the latest value of every sensor. The following examples use the structure defined in Narrow table format example as a reference:
If you have a list of sensors, the easy way to get the latest value of every sensor is to use
SELECT DISTINCT ON:
WITH latest_data AS (
SELECT DISTINCT ON (sensor_id) ts, sensor_id, d
FROM iot_data
WHERE d is not null
AND ts > CURRENT_TIMESTAMP - INTERVAL '1 week' -- important
ORDER BY sensor_id, ts DESC
)
SELECT
sensor_id, sensors.name, ts, d
FROM latest_data
LEFT OUTER JOIN sensors ON latest_data.sensor_id = sensors.id
WHERE latest_data.d is not null
ORDER BY sensor_id, ts; -- Optional, for displaying results ordered by sensor_id
The common table expression (CTE) used above is not strictly necessary. However, it is an elegant way to join to the sensor list to get a sensor name in the output. If this is not something you care about, you can leave it out:
SELECT DISTINCT ON (sensor_id) ts, sensor_id, d
FROM iot_data
WHERE d is not null
AND ts > CURRENT_TIMESTAMP - INTERVAL '1 week' -- important
ORDER BY sensor_id, ts DESC
It is important to take care when down-selecting this data. In the previous examples, the time that the query would scan back was limited. However, if there any sensors that have either not reported in a long time or in the worst case, never reported, this query devolves to a full table scan. In a database with 1000+ sensors and 41 million rows, an unconstrained query takes over an hour.
An alternative to SELECT DISTINCT ON is to use a JOIN LATERAL. By selecting your entire
sensor list from the sensors table rather than pulling the IDs out using SELECT DISTINCT, JOIN LATERAL can offer
some improvements in performance:
SELECT sensor_list.id, latest_data.ts, latest_data.d
FROM sensors sensor_list
-- Add a WHERE clause here to downselect the sensor list, if you wish
LEFT JOIN LATERAL (
SELECT ts, d
FROM iot_data raw_data
WHERE sensor_id = sensor_list.id
ORDER BY ts DESC
LIMIT 1
) latest_data ON true
WHERE latest_data.d is not null -- only pulling out float values ("d" column) in this example
AND latest_data.ts > CURRENT_TIMESTAMP - interval '1 week' -- important
ORDER BY sensor_list.id, latest_data.ts;
Limiting the time range is important, especially if you have a lot of data. Best practice is to use these kinds of queries for dashboards and quick status checks. To query over a much larger time range, encapsulate the previous example into a materialized query that refreshes infrequently, perhaps once a day.
Shoutout to Christopher Piggott for this recipe.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_from_timescaledb_version/ =====
It is very important that the version of the TimescaleDB extension is the same in the source and target databases. This requires upgrading the TimescaleDB extension in the source database before migrating.
You can determine the version of TimescaleDB in the target database with the following command:
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
To update the TimescaleDB extension in your source database, first ensure that the desired version is installed from your package repository. Then you can upgrade the extension with the following query:
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
For more information and guidance, consult the Upgrade TimescaleDB page.
===== PAGE: https://docs.tigerdata.com/_partials/_since_2_18_0/ =====
Since TimescaleDB v2.18.0
===== PAGE: https://docs.tigerdata.com/_partials/_add-data-nyctaxis/ =====
When you have your database set up, you can load the taxi trip data into the
rides hypertable.
This is a large dataset, so it might take a long time, depending on your network connection.
Use your file manager to decompress the downloaded dataset, and take a note
of the path to the nyc_data_rides.csv file.
At the psql prompt, copy the data from the nyc_data_rides.csv file into
your hypertable. Make sure you point to the correct path, if it is not in
your current working directory:
\COPY rides FROM nyc_data_rides.csv CSV;
You can check that the data has been copied successfully with this command:
SELECT * FROM rides LIMIT 5;
You should get five records that look like this:
-[ RECORD 1 ]---------+--------------------
vendor_id | 1
pickup_datetime | 2016-01-01 00:00:01
dropoff_datetime | 2016-01-01 00:11:55
passenger_count | 1
trip_distance | 1.20
pickup_longitude | -73.979423522949219
pickup_latitude | 40.744613647460938
rate_code | 1
dropoff_longitude | -73.992034912109375
dropoff_latitude | 40.753944396972656
payment_type | 2
fare_amount | 9
extra | 0.5
mta_tax | 0.5
tip_amount | 0
tolls_amount | 0
improvement_surcharge | 0.3
total_amount | 10.3
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-create-service/ =====
Sign in to the{" "}
Tiger Cloud Console and click Create service.
Choose if you want a Time-series or Dynamic Postgres service.
Click Get started to create your service with demo data, and
launch the Allmilk Factory interactive demo. You can exit
the demo at any time, and revisit it from the same point later on. You
can also re-run the demo after you have completed it.
Click Download the cheatsheet to download an SQL file that
contains the login details for your new service. You can also copy the
details directly from this page. When you have copied your password,
click I stored my password, go to service overview
at the bottom of the page.
When your service is ready to use, is shows a green Running
label in the Service Overview. You also receive an email confirming that
your service is ready to use.
===== PAGE: https://docs.tigerdata.com/_partials/_caggs-real-time-historical-data-refreshes/ =====
Real-time aggregates automatically add the most recent data when you query your continuous aggregate. In other words, they include data more recent than your last materialized bucket.
If you add new historical data to an already-materialized bucket, it won't be
reflected in a real-time aggregate. You should wait for the next scheduled
refresh, or manually refresh by calling refresh_continuous_aggregate. You can
think of real-time aggregates as being eventually consistent for historical
data.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_awsrds_connect_intermediary/ =====
Actions > Set up EC2 connection.
Press Create EC2 instance and use the following settings:
Lauch instance. AWS creates your EC2 instance, then click Connect to instance > SSH client.
Follow the instructions to create the connection to your intermediary EC2 instance.Connect to your intermediary EC2 instance. For example:
ssh -i "<key-pair>.pem" ubuntu@<EC2 instance's Public IPv4>
On your intermediary EC2 instance, install the Postgres client.
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list'
wget -qO- https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo tee /etc/apt/trusted.gpg.d/pgdg.asc &>/dev/null
sudo apt update
sudo apt install postgresql-client-16 -y # "postgresql-client-16" if your source DB is using PG 16.
psql --version && pg_dump --version
Keep this terminal open, you need it to connect to the RDS/Aurora Postgres instance for migration.
Security group rules (1) and select the EC2 Security Group - Inbound group. The
Security Groups (1) window opens. Click the Security group ID, then click Edit inbound rulesOn your intermediary EC2 instance, get your local IP address:
ec2metadata --local-ipv4
Bear with me on this one, you need this IP address to enable access to your RDS/Aurora Postgres instance.
In Edit inbound rules, click Add rule, then create a PostgreSQL, TCP rule granting access
to the local IP address for your EC2 instance (told you :-)). Then click Save rules.

Endpoint, Port, Master username, and DB name
to create the postgres connectivity string to the SOURCE variable. export SOURCE="postgres://<Master username>:<Master password>@<Endpoint>:<Port>/<DB name>"
The value of Master password was supplied when this RDS/Aurora Postgres instance was created.
Test your connection:
psql -d source
You are connected to your RDS/Aurora Postgres instance from your intermediary EC2 instance.
===== PAGE: https://docs.tigerdata.com/_partials/_transit-gateway/ =====
Create a Peering VPC in Tiger Cloud Console
Security > VPC, click Create a VPC:Create VPC:Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your pricing plan. If you need another Peering VPC, either contact support@tigerdata.com or change your plan in Tiger Cloud Console.
Accept and configure peering connection in your AWS account
Once your peering connection appears as Processing, you can accept and configure it in AWS:
Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as Connected in Tiger Cloud Console.
Configure at least the following in your AWS account networking:
Attach a Tiger Cloud service to the Peering VPC In Tiger Cloud Console
Operations > Security > VPC.Attach VPC.You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-intro-short/ =====
A Tiger Cloud service is a single optimised Postgres instance extended with innovations in the database engine such as TimescaleDB, in a cloud infrastructure that delivers speed without sacrifice.
A Tiger Cloud service is a radically faster Postgres database for transactional, analytical, and agentic workloads at scale.
It’s not a fork. It’s not a wrapper. It is Postgres—extended with innovations in the database engine and cloud infrastructure to deliver speed (10-1000x faster at scale) without sacrifice. A Tiger Cloud service brings together the familiarity and reliability of Postgres with the performance of purpose-built engines.
Tiger Cloud is the fastest Postgres cloud. It includes everything you need to run Postgres in a production-reliable, scalable, observable environment.
===== PAGE: https://docs.tigerdata.com/_partials/_since_2_22_0/ =====
Since TimescaleDB v2.22.0
===== PAGE: https://docs.tigerdata.com/_partials/_integration-prereqs/ =====
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
===== PAGE: https://docs.tigerdata.com/_partials/_cloud_self_configuration/ =====
Please refer to the Grand Unified Configuration (GUC) parameters for a complete list.
timescaledb.max_background_workers (int)Max background worker processes allocated to TimescaleDB. Set to at least 1 + the number of databases loaded with the TimescaleDB extension in a Postgres instance. Default value is 16.
timescaledb.disable_load (bool)Disable the loading of the actual extension
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_step2/ =====
How exactly to do this is dependent on the language that your application is written in, and on how exactly your ingestion and application function. In the simplest case, you simply execute two inserts in parallel. In the general case, you must think about how to handle the failure to write to either the source or target database, and what mechanism you want to or can build to recover from such a failure.
Should your time-series data have foreign-key references into a plain table,
you must ensure that your application correctly maintains the foreign key
relations. If the referenced column is a *SERIAL type, the same row inserted
into the source and target may not obtain the same autogenerated id. If this
happens, the data backfilled from the source to the target is internally
inconsistent. In the best case it causes a foreign key violation, in the worst
case, the foreign key constraint is maintained, but the data references the
wrong foreign key. To avoid these issues, best practice is to follow
live migration.
You may also want to execute the same read queries on the source and target database to evaluate the correctness and performance of the results which the queries deliver. Bear in mind that the target database spends a certain amount of time without all data being present, so you should expect that the results are not the same for some period (potentially a number of days).
===== PAGE: https://docs.tigerdata.com/_partials/_timescaledb_supported_linux/ =====
| Operation system | Version |
|---|---|
| Debian | 13 Trixe, 12 Bookworm, 11 Bullseye |
| Ubuntu | 24.04 Noble Numbat, 22.04 LTS Jammy Jellyfish |
| Red Hat Enterprise | Linux 9, Linux 8 |
| Fedora | Fedora 35, Fedora 34, Fedora 33 |
| Rocky Linux | Rocky Linux 9 (x86_64), Rocky Linux 8 |
| ArchLinux (community-supported) | Check the available packages |
===== PAGE: https://docs.tigerdata.com/_partials/_add-data-twelvedata-stocks/ =====
This tutorial uses real-time stock trade data, also known as tick data, from Twelve Data. A direct download link is provided below.
To ingest data into the tables that you created, you need to download the dataset and copy the data to your database.
Download the real_time_stock_data.zip file. The file contains two .csv
files; one with company information, and one with real-time stock trades for
the past month. Download:
In a new terminal window, run this command to unzip the .csv files:
unzip real_time_stock_data.zip
At the psql prompt, use the COPY command to transfer data into your
Tiger Cloud service. If the .csv files aren't in your current directory,
specify the file paths in these commands:
\COPY stocks_real_time from './tutorial_sample_tick.csv' DELIMITER ',' CSV HEADER;
\COPY company from './tutorial_sample_company.csv' DELIMITER ',' CSV HEADER;
Because there are millions of rows of data, the COPY process could take a
few minutes depending on your internet connection and local client
resources.
===== PAGE: https://docs.tigerdata.com/_partials/_hypercore_policy_workflow/ =====
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a hypertable for your time-series data using CREATE TABLE.
For efficient queries on data in the columnstore, remember to segmentby the column you will
use most often to filter your data. For example:
Use CREATE TABLE for a hypertable
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Use ALTER MATERIALIZED VIEW for a continuous aggregate
ALTER MATERIALIZED VIEW assets_candlestick_daily set (
timescaledb.enable_columnstore = true,
timescaledb.segmentby = 'symbol' );
Before you say huh, a continuous aggregate is a specialized hypertable.
Create a columnstore_policy that automatically converts chunks in a hypertable to the columnstore at a specific time interval. For example, convert yesterday's crypto trading data to the columnstore:
CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '1d');
TimescaleDB is optimized for fast updates on compressed data in the columnstore. To modify data in the columnstore, use standard SQL.
Check the columnstore policy
When you convert data to the columnstore, as well as being optimized for analytics, it is compressed by more than 90%. This helps you save on storage costs and keeps your queries operating at lightning speed. To see the amount of space saved:
SELECT
pg_size_pretty(before_compression_total_bytes) as before,
pg_size_pretty(after_compression_total_bytes) as after
FROM hypertable_columnstore_stats('crypto_ticks');
You see something like:
| before | after | |---------|--------| | 194 MB | 24 MB |
View the policies that you set or the policies that already exist:
SELECT * FROM timescaledb_information.jobs
WHERE proc_name='policy_compression';
Pause a columnstore policy
SELECT * FROM timescaledb_information.jobs where
proc_name = 'policy_compression' AND relname = 'crypto_ticks'
-- Select the JOB_ID from the results
SELECT alter_job(JOB_ID, scheduled => false);
See alter_job.
Restart a columnstore policy
SELECT alter_job(JOB_ID, scheduled => true);
See alter_job.
Remove a columnstore policy
CALL remove_columnstore_policy('crypto_ticks');
See remove_columnstore_policy.
If your table has chunks in the columnstore, you have to convert the chunks back to the rowstore before you disable the columnstore.
ALTER TABLE crypto_ticks SET (timescaledb.enable_columnstore = false);
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_switch_production_workload/ =====
Once you've validated that all the data is present, and that the target database can handle the production workload, the final step is to switch to the target database as your primary. You may want to continue writing to the source database for a period, until you are certain that the target database is holding up to all production traffic.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_roles_schema_data_multi_node/ =====
Export your role-based security hierarchy. If you only use the default postgres role, this step is not
necessary.
pg_dumpall -d "source" \
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
MST does not allow you to export passwords with roles. You assign passwords to these roles when you have uploaded them to your Tiger Cloud service.
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from roles.sql:
sed -i -E \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
roles.sql
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-create-connect-tutorials/ =====
A service in Tiger Cloud is a cloud instance which contains your database.
Each service contains a single database, named tsdb.
You can connect to a service from your local system using the psql
command-line utility. If you've used Postgres before, you might already have
psql installed. If not, check out the installing psql section.
Create service.Click Download the cheatsheet to download an SQL file that contains the
login details for your new service. You can also copy the details directly
from this page. When you have copied your password,
click I stored my password, go to service overview at the bottom of the page.
When your service is ready to use, is shows a green Running label in the
Service Overview. You also receive an email confirming that your service
is ready to use.
On your local system, at the command prompt, connect to the service using
the Service URL from the SQL file that you downloaded. When you are
prompted, enter the password:
psql -x "<SERVICE_URL>"
Password for user tsdbadmin:
If your connection is successful, you'll see a message like this, followed
by the psql prompt:
psql (13.3, server 12.8 (Ubuntu 12.8-1.pgdg21.04+1))
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.
tsdb=>
===== PAGE: https://docs.tigerdata.com/_partials/_integration-prereqs-cloud-only/ =====
To follow the steps on this page:
You need your connection details.
===== PAGE: https://docs.tigerdata.com/_partials/_grafana-connect/ =====
To visualize the results of your queries, enable Grafana to read the data in your service:
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
Add your service as a data source
Connections > Data sources, then click Add new data source.PostgreSQL from the list.Configure the connection:
Host URL, Database name, Username, and PasswordConfigure using your connection details. Host URL is in the format <host>:<port>.
TLS/SSL Mode: select require.PostgreSQL options: enable TimescaleDB.Click Save & test.
Grafana checks that your details are set correctly.
===== PAGE: https://docs.tigerdata.com/_partials/_prereqs-cloud-project-and-self/ =====
To follow the procedure on this page you need to:
This procedure also works for self-hosted TimescaleDB.
===== PAGE: https://docs.tigerdata.com/_partials/_caggs-function-support/ =====
The following table summarizes the aggregate functions supported in continuous aggregates:
| Function, clause, or feature |TimescaleDB 2.6 and earlier|TimescaleDB 2.7, 2.8, and 2.9|TimescaleDB 2.10 and later|
|------------------------------------------------------------|-|-|-|
| Parallelizable aggregate functions |✅|✅|✅|
| Non-parallelizable SQL aggregates |❌|✅|✅|
| ORDER BY |❌|✅|✅|
| Ordered-set aggregates |❌|✅|✅|
| Hypothetical-set aggregates |❌|✅|✅|
| DISTINCT in aggregate functions |❌|✅|✅|
| FILTER in aggregate functions |❌|✅|✅|
| FROM clause supports JOINS |❌|❌|✅|
DISTINCT works in aggregate functions, not in the query definition. For example, for the table:
CREATE TABLE public.candle(
symbol_id uuid NOT NULL,
symbol text NOT NULL,
"time" timestamp with time zone NOT NULL,
open double precision NOT NULL,
high double precision NOT NULL,
low double precision NOT NULL,
close double precision NOT NULL,
volume double precision NOT NULL
);
The following works:
CREATE MATERIALIZED VIEW candles_start_end
WITH (timescaledb.continuous) AS
SELECT time_bucket('1 hour', "time"), COUNT(DISTINCT symbol), first(time, time) as first_candle, last(time, time) as last_candle
FROM candle
GROUP BY 1;
This does not:
CREATE MATERIALIZED VIEW candles_start_end
WITH (timescaledb.continuous) AS
SELECT DISTINCT ON (symbol)
symbol,symbol_id, first(time, time) as first_candle, last(time, time) as last_candle
FROM candle
GROUP BY symbol_id;
===== PAGE: https://docs.tigerdata.com/_partials/_psql-installation-macports/ =====
Install the latest version of libpqxx:
sudo port install libpqxx
[](#)View the files that were installed by libpqxx:
port contents libpqxx
===== PAGE: https://docs.tigerdata.com/_partials/_toolkit-install-update-redhat-base/ =====
To follow this procedure:
yum repo.d directory.These instructions use the yum package manager.
Set up the repository:
curl -s https://packagecloud.io/install/repositories/timescale/timescaledb/script.deb.sh | sudo bash
Update your local repository list:
yum update
Install TimescaleDB Toolkit:
yum install timescaledb-toolkit-postgresql-17
Connect to the database where you want to use Toolkit.
Create the Toolkit extension in the database:
CREATE EXTENSION timescaledb_toolkit;
Update Toolkit by installing the latest version and running ALTER EXTENSION.
Update your local repository list:
yum update
Install the latest version of TimescaleDB Toolkit:
yum install timescaledb-toolkit-postgresql-17
Connect to the database where you want to use the new version of Toolkit.
Update the Toolkit extension in the database:
ALTER EXTENSION timescaledb_toolkit UPDATE;
For some Toolkit versions, you might need to disconnect and reconnect active sessions.
===== PAGE: https://docs.tigerdata.com/_partials/_cookbook-hypertables/ =====
This section contains recipes about hypertables.
Looking to remove duplicates from an existing hypertable? One method is to run a PARTITION BY query to get
ROW_NUMBER() and then the ctid of rows where row_number>1. You then delete these rows. However,
you need to check tableoid and ctid. This is because ctid is not unique and might be duplicated in
different chunks. The following code example took 17 hours to process a table with 40 million rows:
CREATE OR REPLACE FUNCTION deduplicate_chunks(ht_name TEXT, partition_columns TEXT, bot_id INT DEFAULT NULL)
RETURNS TABLE
(
chunk_schema name,
chunk_name name,
deleted_count INT
)
AS
$$
DECLARE
chunk RECORD;
where_clause TEXT := '';
deleted_count INT;
BEGIN
IF bot_id IS NOT NULL THEN
where_clause := FORMAT('WHERE bot_id = %s', bot_id);
END IF;
FOR chunk IN
SELECT c.chunk_schema, c.chunk_name
FROM timescaledb_information.chunks c
WHERE c.hypertable_name = ht_name
LOOP
EXECUTE FORMAT('
WITH cte AS (
SELECT ctid,
ROW_NUMBER() OVER (PARTITION BY %s ORDER BY %s ASC) AS row_num,
*
FROM %I.%I
%s
)
DELETE FROM %I.%I
WHERE ctid IN (
SELECT ctid
FROM cte
WHERE row_num > 1
)
RETURNING 1;
', partition_columns, partition_columns, chunk.chunk_schema, chunk.chunk_name, where_clause, chunk.chunk_schema,
chunk.chunk_name)
INTO deleted_count;
RETURN QUERY SELECT chunk.chunk_schema, chunk.chunk_name, COALESCE(deleted_count, 0);
END LOOP;
END
$$ LANGUAGE plpgsql;
SELECT *
FROM deduplicate_chunks('nudge_events', 'bot_id, session_id, nudge_id, time', 2540);
Shoutout to Mathias Ose and Christopher Piggott for this recipe.
Imagine there is a query that joins a hypertable to another table on a shared key:
SELECT timestamp,
FROM hypertable as h
JOIN related_table as rt
ON rt.id = h.related_table_id
WHERE h.timestamp BETWEEN '2024-10-10 00:00:00' AND '2024-10-17 00:00:00'
If you run EXPLAIN on this query, you see that the query planner performs a NestedJoin between these two tables, which means querying the hypertable multiple times. Even if the hypertable is well indexed, if it is also large, the query will be slow. How do you force a once-only lookup? Use materialized Common Table Expressions (CTEs).
If you split the query into two parts using CTEs, you can materialize the hypertable lookup and force Postgres to perform it only once.
WITH cached_query AS materialized (
SELECT *
FROM hypertable
WHERE BETWEEN '2024-10-10 00:00:00' AND '2024-10-17 00:00:00'
)
SELECT *
FROM cached_query as c
JOIN related_table as rt
ON rt.id = h.related_table_id
Now if you run EXPLAIN once again, you see that this query performs only one lookup. Depending on the size of your hypertable, this could result in a multi-hour query taking mere seconds.
Shoutout to Rowan Molony for this recipe.
===== PAGE: https://docs.tigerdata.com/_partials/_experimental-private-beta/ =====
This feature is experimental and offered as part of a private beta. Do not use this feature in production.
===== PAGE: https://docs.tigerdata.com/_partials/_hypershift-alternatively/ =====
Alternatively, if you have data in an existing database, you can migrate it directly into your new Tiger Cloud service using hypershift. For more information about hypershift, including instructions for how to migrate your data, see the Migrate and sync data to Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/_partials/_timescaledb_supported_windows/ =====
| Operation system | Version |
|---|---|
| Microsoft Windows | 10, 11 |
| Microsoft Windows Server | 2019, 2020 |
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_post_data_dump_source_schema/ =====
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--section=post-data \
--file=post-data-dump.sql \
--snapshot=$(cat /tmp/pgcopydb/snapshot)
--section=post-data is used to dump post-data items include definitions of
indexes, triggers, rules, and constraints other than validated check
constraints.
--snapshot is used to specified the synchronized snapshot when
making a dump of the database.
--no-tablespaces is required because Tiger Cloud does not support
tablespaces other than the default. This is a known limitation.
--no-owner is required because Tiger Cloud's tsdbadmin user is not a
superuser and cannot assign ownership in all cases. This flag means that
everything is owned by the user used to connect to the target, regardless of
ownership in the source. This is a known limitation.
--no-privileges is required because the tsdbadmin user for your Tiger Cloud service is not a
superuser and cannot assign privileges in all cases. This flag means that
privileges assigned to other users must be reassigned in the target database
as a manual clean-up task. This is a known limitation.
===== PAGE: https://docs.tigerdata.com/_partials/_create-hypertable/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
To create a hypertable:
Connect to your service
In Tiger Cloud Console, click Data, then select a service.
Create a Postgres table
Copy the following into your query, then click Run:
CREATE TABLE stocks_real_time (
time TIMESTAMPTZ NOT NULL,
symbol TEXT NOT NULL,
price DOUBLE PRECISION NULL,
day_volume INT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
You see the result immediately:
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_pre_data_dump_source_schema/ =====
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--section=pre-data \
--file=pre-data-dump.sql \
--snapshot=$(cat /tmp/pgcopydb/snapshot)
--section=pre-data is used to dump only the definition of tables,
sequences, check constraints and inheritance hierarchy. It excludes
indexes, foreign key constraints, triggers and rules.
--snapshot is used to specified the synchronized snapshot when
making a dump of the database.
--no-tablespaces is required because Tiger Cloud does not support
tablespaces other than the default. This is a known limitation.
--no-owner is required because Tiger Cloud's tsdbadmin user is not a
superuser and cannot assign ownership in all cases. This flag means that
everything is owned by the user used to connect to the target, regardless of
ownership in the source. This is a known limitation.
--no-privileges is required because the tsdbadmin user for your Tiger Cloud service is not a
superuser and cannot assign privileges in all cases. This flag means that
privileges assigned to other users must be reassigned in the target database
as a manual clean-up task. This is a known limitation.
===== PAGE: https://docs.tigerdata.com/_partials/_hypertable-detailed-size-api/ =====
Get detailed information about disk space used by a hypertable or continuous aggregate, returning size information for the table itself, any indexes on the table, any toast tables, and the total size of all. All sizes are reported in bytes. If the function is executed on a distributed hypertable, it returns size information as a separate row per node, including the access node.
When a continuous aggregate name is provided, the function transparently looks up the backing hypertable and returns its statistics instead.
For more information about using hypertables, including chunk size partitioning, see the hypertable section.
Get the size information for a hypertable.
-- disttable is a distributed hypertable --
SELECT * FROM hypertable_detailed_size('disttable') ORDER BY node_name;
table_bytes | index_bytes | toast_bytes | total_bytes | node_name
-------------+-------------+-------------+-------------+-------------
16384 | 40960 | 0 | 57344 | data_node_1
8192 | 24576 | 0 | 32768 | data_node_2
0 | 8192 | 0 | 8192 |
The access node is listed without a user-given node name. Normally, the access node holds no data, but still maintains, for example, index information that occupies a small amount of disk space.
| Name | Type | Description |
|---|---|---|
hypertable |
REGCLASS | Hypertable or continuous aggregate to show detailed size of. |
|Column|Type|Description|
|-|-|-|
|table_bytes|BIGINT|Disk space used by main_table (like pg_relation_size(main_table))|
|index_bytes|BIGINT|Disk space used by indexes|
|toast_bytes|BIGINT|Disk space of toast tables|
|total_bytes|BIGINT|Total disk space used by the specified table, including all indexes and TOAST data|
|node_name|TEXT|For distributed hypertables, this is the user-given name of the node for which the size is reported. NULL is returned for the access node and non-distributed hypertables.|
If executed on a relation that is not a hypertable, the function
returns NULL.
===== PAGE: https://docs.tigerdata.com/_partials/_billing-for-inactive-services/ =====
You are charged for all active services in your account, even if you are not actively using them. To reduce costs, pause or delete your unused services.
===== PAGE: https://docs.tigerdata.com/_partials/_devops-cli-install/ =====
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
Set up API credentials
Log Tiger CLI into your Tiger Data account:
tiger auth login
Tiger CLI opens Console in your browser. Log in, then click Authorize.
You can have a maximum of 10 active client credentials. If you get an error, open credentials and delete an unused credential.
Select a Tiger Cloud project:
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in ~/.config/tiger/credentials with restricted file permissions (600).
By default, Tiger CLI stores your configuration in ~/.config/tiger/config.yaml.
Test your authenticated connection to Tiger Cloud by listing services
tiger service list
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
===== PAGE: https://docs.tigerdata.com/_partials/_graphing-ohlcv-data/ =====
When you have extracted the raw OHLCV data, you can use it to graph the result in a candlestick chart, using Grafana. To do this, you need to have Grafana set up to connect to your self-hosted TimescaleDB instance.
Dashboards menu, click New Dashboard. In the
New Dashboard page, click Add a new panel.Visualizations menu in the top right corner, select Candlestick
from the list. Ensure you have set the Twelve Data dataset as
your data source.Edit SQL and paste in the query you used to get the OHLCV values.Format as section, select Table.Adjust elements of the table as required, and click Apply to save your
graph to the dashboard.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/Grafana_candlestick_1day.webp"
alt="Creating a candlestick graph in Grafana using 1-day OHLCV tick data"
/>
===== PAGE: https://docs.tigerdata.com/_partials/_create-hypertable-nyctaxis/ =====
Time-series data represents how a system, process, or behavior changes over time. Hypertables are Postgres tables that help you improve insert and query performance by automatically partitioning your data by time. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range.
Hypertables exist alongside regular Postgres tables. You interact with hypertables and regular Postgres tables in the same way. You use regular Postgres tables for relational data.
Create a hypertable to store the taxi trip data
CREATE TABLE "rides"(
vendor_id TEXT,
pickup_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
dropoff_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
passenger_count NUMERIC,
trip_distance NUMERIC,
pickup_longitude NUMERIC,
pickup_latitude NUMERIC,
rate_code INTEGER,
dropoff_longitude NUMERIC,
dropoff_latitude NUMERIC,
payment_type INTEGER,
fare_amount NUMERIC,
extra NUMERIC,
mta_tax NUMERIC,
tip_amount NUMERIC,
tolls_amount NUMERIC,
improvement_surcharge NUMERIC,
total_amount NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='pickup_datetime',
tsdb.create_default_indexes=false
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Add another dimension to partition your hypertable more efficiently
SELECT add_dimension('rides', by_hash('payment_type', 2));
Create an index to support efficient queries
Index by vendor, rate code, and passenger count:
CREATE INDEX ON rides (vendor_id, pickup_datetime DESC);
CREATE INDEX ON rides (rate_code, pickup_datetime DESC);
CREATE INDEX ON rides (passenger_count, pickup_datetime DESC);
When you have other relational data that enhances your time-series data, you can
create standard Postgres tables just as you would normally. For this dataset,
there are two other tables of data, called payment_types and rates.
Add a relational table to store the payment types data
CREATE TABLE IF NOT EXISTS "payment_types"(
payment_type INTEGER,
description TEXT
);
INSERT INTO payment_types(payment_type, description) VALUES
(1, 'credit card'),
(2, 'cash'),
(3, 'no charge'),
(4, 'dispute'),
(5, 'unknown'),
(6, 'voided trip');
Add a relational table to store the rates data
CREATE TABLE IF NOT EXISTS "rates"(
rate_code INTEGER,
description TEXT
);
INSERT INTO rates(rate_code, description) VALUES
(1, 'standard rate'),
(2, 'JFK'),
(3, 'Newark'),
(4, 'Nassau or Westchester'),
(5, 'negotiated fare'),
(6, 'group ride');
You can confirm that the scripts were successful by running the \dt command in
the psql command line. You should see this:
List of relations
Schema | Name | Type | Owner
--------+---------------+-------+----------
public | payment_types | table | tsdbadmin
public | rates | table | tsdbadmin
public | rides | table | tsdbadmin
(3 rows)
===== PAGE: https://docs.tigerdata.com/_partials/_integration-debezium-docker/ =====
In another Terminal window, run the following command:
docker run -it --rm --name zookeeper -p 2181:2181 -p 2888:2888 -p 3888:3888 quay.io/debezium/zookeeper:3.0
Check the output log to see that zookeeper is running.
In another Terminal window, run the following command:
docker run -it --rm --name kafka -p 9092:9092 --link zookeeper:zookeeper quay.io/debezium/kafka:3.0
Check the output log to see that Kafka is running.
In another Terminal window, run the following command:
docker run -it --rm --name connect \
-p 8083:8083 \
-e GROUP_ID=1 \
-e CONFIG_STORAGE_TOPIC=accounts \
-e OFFSET_STORAGE_TOPIC=offsets \
-e STATUS_STORAGE_TOPIC=storage \
--link kafka:kafka \
--link timescaledb:timescaledb \
quay.io/debezium/connect:3.0
Check the output log to see that Kafka Connect is running.
Update the <properties> for the <debezium-user> you created in your self-hosted TimescaleDB instance in the following command.
Then run the command in another Terminal window:
curl -X POST http://localhost:8083/connectors \
-H "Content-Type: application/json" \
-d '{
"name": "timescaledb-connector",
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": "timescaledb",
"database.port": "5432",
"database.user": "<debezium-user>",
"database.password": "<debezium-password>",
"database.dbname" : "postgres",
"topic.prefix": "accounts",
"plugin.name": "pgoutput",
"schema.include.list": "public,_timescaledb_internal",
"transforms": "timescaledb",
"transforms.timescaledb.type": "io.debezium.connector.postgresql.transforms.timescaledb.TimescaleDb",
"transforms.timescaledb.database.hostname": "timescaledb",
"transforms.timescaledb.database.port": "5432",
"transforms.timescaledb.database.user": "<debezium-user>",
"transforms.timescaledb.database.password": "<debezium-password>",
"transforms.timescaledb.database.dbname": "postgres"
}
}'
Verify timescaledb-source-connector is included in the connector list
Check the tasks associated with timescaledb-connector:
curl -i -X GET -H "Accept:application/json" localhost:8083/connectors/timescaledb-connector
You see something like:
{"name":"timescaledb-connector","config":
{ "connector.class":"io.debezium.connector.postgresql.PostgresConnector",
"transforms.timescaledb.database.hostname":"timescaledb",
"transforms.timescaledb.database.password":"debeziumpassword","database.user":"debezium",
"database.dbname":"postgres","transforms.timescaledb.database.dbname":"postgres",
"transforms.timescaledb.database.user":"debezium",
"transforms.timescaledb.type":"io.debezium.connector.postgresql.transforms.timescaledb.TimescaleDb",
"transforms.timescaledb.database.port":"5432","transforms":"timescaledb",
"schema.include.list":"public,_timescaledb_internal","database.port":"5432","plugin.name":"pgoutput",
"topic.prefix":"accounts","database.hostname":"timescaledb","database.password":"debeziumpassword",
"name":"timescaledb-connector"},"tasks":[{"connector":"timescaledb-connector","task":0}],"type":"source"}
Verify timescaledb-connector is running
Open the Terminal window running Kafka Connect. When the connector is active, you see something like the following:
2025-04-30 10:40:15,168 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal._hyper_1_1_chunk' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,168 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_job_stat' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,175 INFO Postgres|accounts|streaming SignalProcessor started. Scheduling it every 5000ms [io.debezium.pipeline.signal.SignalProcessor]
2025-04-30 10:40:15,175 INFO Postgres|accounts|streaming Creating thread debezium-postgresconnector-accounts-SignalProcessor [io.debezium.util.Threads]
2025-04-30 10:40:15,175 INFO Postgres|accounts|streaming Starting streaming [io.debezium.pipeline.ChangeEventSourceCoordinator]
2025-04-30 10:40:15,176 INFO Postgres|accounts|streaming Retrieved latest position from stored offset 'LSN{0/1FCE570}' [io.debezium.connector.postgresql.PostgresStreamingChangeEventSource]
2025-04-30 10:40:15,176 INFO Postgres|accounts|streaming Looking for WAL restart position for last commit LSN 'null' and last change LSN 'LSN{0/1FCE570}' [io.debezium.connector.postgresql.connection.WalPositionLocator]
2025-04-30 10:40:15,176 INFO Postgres|accounts|streaming Initializing PgOutput logical decoder publication [io.debezium.connector.postgresql.connection.PostgresReplicationConnection]
2025-04-30 10:40:15,189 INFO Postgres|accounts|streaming Obtained valid replication slot ReplicationSlot [active=false, latestFlushedLsn=LSN{0/1FCCFF0}, catalogXmin=884] [io.debezium.connector.postgresql.connection.PostgresConnection]
2025-04-30 10:40:15,189 INFO Postgres|accounts|streaming Connection gracefully closed [io.debezium.jdbc.JdbcConnection]
2025-04-30 10:40:15,204 INFO Postgres|accounts|streaming Requested thread factory for component PostgresConnector, id = accounts named = keep-alive [io.debezium.util.Threads]
2025-04-30 10:40:15,204 INFO Postgres|accounts|streaming Creating thread debezium-postgresconnector-accounts-keep-alive [io.debezium.util.Threads]
2025-04-30 10:40:15,216 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_policy_chunk_stats' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,216 INFO Postgres|accounts|streaming REPLICA IDENTITY for 'public.accounts' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,217 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_job_stat_history' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,217 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal._hyper_1_1_chunk' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,217 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_job_stat' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,219 INFO Postgres|accounts|streaming Processing messages [io.debezium.connector.postgresql.PostgresStreamingChangeEventSource]
Watch the events in the accounts topic on your self-hosted TimescaleDB instance.
In another Terminal instance, run the following command:
docker run -it --rm --name watcher --link zookeeper:zookeeper --link kafka:kafka quay.io/debezium/kafka:3.0 watch-topic -a -k accounts
You see the topics being streamed. For example:
status-task-timescaledb-connector-0 {"state":"RUNNING","trace":null,"worker_id":"172.17.0.5:8083","generation":31}
status-topic-timescaledb.public.accounts:connector-timescaledb-connector {"topic":{"name":"timescaledb.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009337985}}
status-topic-accounts._timescaledb_internal.bgw_job_stat:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338118}}
status-topic-accounts._timescaledb_internal.bgw_job_stat:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338120}}
status-topic-accounts._timescaledb_internal.bgw_job_stat_history:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat_history","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338243}}
status-topic-accounts._timescaledb_internal.bgw_job_stat_history:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat_history","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338245}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338250}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
["timescaledb-connector",{"server":"accounts"}] {"last_snapshot_record":true,"lsn":33351024,"txId":893,"ts_usec":1746009337290783,"snapshot":"INITIAL","snapshot_completed":true}
status-connector-timescaledb-connector {"state":"UNASSIGNED","trace":null,"worker_id":"172.17.0.5:8083","generation":31}
status-task-timescaledb-connector-0 {"state":"UNASSIGNED","trace":null,"worker_id":"172.17.0.5:8083","generation":31}
status-connector-timescaledb-connector {"state":"RUNNING","trace":null,"worker_id":"172.17.0.5:8083","generation":33}
status-task-timescaledb-connector-0 {"state":"RUNNING","trace":null,"worker_id":"172.17.0.5:8083","generation":33}
===== PAGE: https://docs.tigerdata.com/_partials/_integration-debezium-cloud-config-service/ =====
For Tiger Cloud, open an SQL editor in Tiger Cloud Console. For self-hosted, use psql.
Enable logical replication for your Tiger Cloud service
Run the following command to enable logical replication:
ALTER SYSTEM SET wal_level = logical;
SELECT pg_reload_conf();
Restart your service.
Create a table
Create a table to test the integration. For example:
```sql
CREATE TABLE sensor_data (
id SERIAL PRIMARY KEY,
device_id TEXT NOT NULL,
temperature FLOAT NOT NULL,
recorded_at TIMESTAMPTZ DEFAULT now()
);
```
===== PAGE: https://docs.tigerdata.com/_partials/_hypercore-direct-compress/ =====
When you set timescaledb.enable_direct_compress_copy your data gets compressed in memory during ingestion with COPY statements.
By writing the compressed batches immediately in the columnstore, the IO footprint is significantly lower.
Also, the columnstore policy you set is less important, INSERT already produces compressed chunks.
Please note that this feature is a tech preview and not production-ready. Using this feature could lead to regressed query performance and/or storage ratio, if the ingested batches are not correctly ordered or are of too high cardinality.
To enable in-memory data compression during ingestion:
SET timescaledb.enable_direct_compress_copy=on;
Important facts
COPY is support, INSERT will eventually follow.===== PAGE: https://docs.tigerdata.com/_partials/_hypertable-size-api/ =====
Get the total disk space used by a hypertable or continuous aggregate,
that is, the sum of the size for the table itself including chunks,
any indexes on the table, and any toast tables. The size is reported
in bytes. This is equivalent to computing the sum of total_bytes
column from the output of hypertable_detailed_size function.
When a continuous aggregate name is provided, the function transparently looks up the backing hypertable and returns its statistics instead.
For more information about using hypertables, including chunk size partitioning, see the hypertable section.
Get the size information for a hypertable.
SELECT hypertable_size('devices');
hypertable_size
-----------------
73728
Get the size information for all hypertables.
SELECT hypertable_name, hypertable_size(format('%I.%I', hypertable_schema, hypertable_name)::regclass)
FROM timescaledb_information.hypertables;
Get the size information for a continuous aggregate.
SELECT hypertable_size('device_stats_15m');
hypertable_size
-----------------
73728
|Name|Type|Description|
|-|-|-|
|hypertable|REGCLASS|Hypertable or continuous aggregate to show size of.|
|Name|Type|Description| |-|-|-| |hypertable_size|BIGINT|Total disk space used by the specified hypertable, including all indexes and TOAST data|
NULL is returned if the function is executed on a non-hypertable relation.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_explain_pg_dump_flags/ =====
--no-tablespaces is required because Tiger Cloud does not support
tablespaces other than the default. This is a known limitation.
--no-owner is required because Tiger Cloud's tsdbadmin user is not a
superuser and cannot assign ownership in all cases. This flag means that
everything is owned by the user used to connect to the target, regardless of
ownership in the source. This is a known limitation.
--no-privileges is required because the tsdbadmin user for your Tiger Cloud service is not a
superuser and cannot assign privileges in all cases. This flag means that
privileges assigned to other users must be reassigned in the target database
as a manual clean-up task. This is a known limitation.
===== PAGE: https://docs.tigerdata.com/_partials/_livesync-configure-source-database-awsrds/ =====
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
Tune the Write Ahead Log (WAL) on the RDS/Aurora Postgres source database
In https://console.aws.amazon.com/rds/home#databases:, select the RDS instance to migrate.
Click Configuration, scroll down and note the DB instance parameter group, then click Parameter Groups

Create parameter group, fill in the form with the following values, then click Create.
PostgreSQLDB instance parameter group in your Configuration.Parameter groups, select the parameter group you created, then click Edit.Update the following parameters, then click Save changes.
rds.logical_replication set to 1: record the information needed for logical decoding.wal_sender_timeout set to 0: disable the timeout for the sender process.In RDS, navigate back to your databases, select the RDS instance to migrate, and click Modify.
Scroll down to Database options, select your new parameter group, and click Continue.
Click Apply immediately or choose a maintenance window, then click Modify DB instance.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
Create a user for the source Postgres connector and assign permissions
Create <pg connector username>:
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
You can use an existing user. However, you must ensure that the user has the following permissions.
Grant permissions to create a replication slot:
psql source -c "GRANT rds_replication TO <pg connector username>"
Grant permissions to create a publication:
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
Assign the user permissions on the source database:
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
If the tables you are syncing are not in the public schema, grant the user permissions for each schema you are syncing:
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
On each table you want to sync, make <pg connector username> the owner:
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
You can skip this step if the replicating user is already the owner of the tables.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_step1/ =====
If you intend on migrating more than 400 GB, open a support request to ensure that enough disk is pre-provisioned on your Tiger Cloud service.
You can open a support request directly from Tiger Cloud Console, or by email to support@tigerdata.com.
===== PAGE: https://docs.tigerdata.com/_partials/_quickstart-intro/ =====
Easily integrate your app with Tiger Cloud. Use your favorite programming language to connect to your Tiger Cloud service, create and manage hypertables, then ingest and query data.
===== PAGE: https://docs.tigerdata.com/_partials/_start-coding-node/ =====
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
In this section, you create a connection to TimescaleDB with a common Node.js ORM (object relational mapper) called Sequelize.
At the command prompt, initialize a new Node.js app:
npm init -y
This creates a package.json file in your directory, which contains all
of the dependencies for your project. It looks something like this:
{
"name": "node-sample",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"
}
Install Express.js:
npm install express
Create a simple web page to check the connection. Create a new file called
index.js, with this content:
const express = require('express')
const app = express()
const port = 3000;
app.use(express.json());
app.get('/', (req, res) => res.send('Hello World!'))
app.listen(port, () => console.log(`Example app listening at http://localhost:${port}`))
Test your connection by starting the application:
node index.js
In your web browser, navigate to http://localhost:3000. If the connection
is successful, it shows "Hello World!"
Add Sequelize to your project:
npm install sequelize sequelize-cli pg pg-hstore
Locate your TimescaleDB credentials and use them to compose a connection string for Sequelize.
You'll need:
Compose your connection string variable, using this format:
'postgres://<user>:<password>@<host>:<port>/<dbname>'
Open the index.js file you created. Require Sequelize in the application,
and declare the connection string:
const Sequelize = require('sequelize')
const sequelize = new Sequelize('postgres://<user>:<password>@<host>:<port>/<dbname>',
{
dialect: 'postgres',
protocol: 'postgres',
dialectOptions: {
ssl: {
require: true,
rejectUnauthorized: false
}
}
})
Make sure you add the SSL settings in the dialectOptions sections. You
can't connect to TimescaleDB using SSL without them.
You can test the connection by adding these lines to index.js after the
app.get statement:
sequelize.authenticate().then(() => {
console.log('Connection has been established successfully.');
}).catch(err => {
console.error('Unable to connect to the database:', err);
});
Start the application on the command line:
node index.js
If the connection is successful, you'll get output like this:
Example app listening at http://localhost:3000
Executing (default): SELECT 1+1 AS result
Connection has been established successfully.
In this section, you create a relational table called page_loads.
Use the Sequelize command line tool to create a table and model called page_loads:
npx sequelize model:generate --name page_loads \
--attributes userAgent:string,time:date
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
New model was created at <PATH>.
New migration was created at <PATH>.
Edit the migration file so that it sets up a migration key:
'use strict';
module.exports = {
up: async (queryInterface, Sequelize) => {
await queryInterface.createTable('page_loads', {
userAgent: {
primaryKey: true,
type: Sequelize.STRING
},
time: {
primaryKey: true,
type: Sequelize.DATE
}
});
},
down: async (queryInterface, Sequelize) => {
await queryInterface.dropTable('page_loads');
}
};
Migrate the change and make sure that it is reflected in the database:
npx sequelize db:migrate
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
Loaded configuration file "config/config.json".
Using environment "development".
== 20200528195725-create-page-loads: migrating =======
== 20200528195725-create-page-loads: migrated (0.443s)
Create the PageLoads model in your code. In the index.js file, above the
app.use statement, add these lines:
let PageLoads = sequelize.define('page_loads', {
userAgent: {type: Sequelize.STRING, primaryKey: true },
time: {type: Sequelize.DATE, primaryKey: true }
}, { timestamps: false });
Instantiate a PageLoads object and save it to the database.
When you have created the relational table, you can create a hypertable. Creating tables and indexes, altering tables, inserting data, selecting data, and most other tasks are executed on the hypertable.
Create a migration to modify the page_loads relational table, and change
it to a hypertable by first running the following command:
npx sequelize migration:generate --name add_hypertable
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
migrations folder at <PATH> already exists.
New migration was created at <PATH>/20200601202912-add_hypertable.js .
In the migrations folder, there is now a new file. Open the
file, and add this content:
'use strict';
module.exports = {
up: (queryInterface, Sequelize) => {
return queryInterface.sequelize.query("SELECT create_hypertable('page_loads', by_range('time'));");
},
down: (queryInterface, Sequelize) => {
}
};
The by_range dimension builder is an addition to TimescaleDB 2.13.
At the command prompt, run the migration command:
npx sequelize db:migrate
The output looks similar to this:
Sequelize CLI [Node: 12.16.2, CLI: 5.5.1, ORM: 5.21.11]
Loaded configuration file "config/config.json".
Using environment "development".
== 20200601202912-add_hypertable: migrating =======
== 20200601202912-add_hypertable: migrated (0.426s)
This section covers how to insert data into your hypertables.
In the index.js file, modify the / route to get the user-agent from
the request object (req) and the current timestamp. Then, call the
create method on PageLoads model, supplying the user agent and timestamp
parameters. The create call executes an INSERT on the database:
app.get('/', async (req, res) => {
// get the user agent and current time
const userAgent = req.get('user-agent');
const time = new Date().getTime();
try {
// insert the record
await PageLoads.create({
userAgent, time
});
// send response
res.send('Inserted!');
} catch (e) {
console.log('Error inserting data', e)
}
})
This section covers how to execute queries against your database. In this example, every time the page is reloaded, all information currently in the table is displayed.
Modify the / route in the index.js file to call the Sequelize findAll
function and retrieve all data from the page_loads table using the
PageLoads model:
app.get('/', async (req, res) => {
// get the user agent and current time
const userAgent = req.get('user-agent');
const time = new Date().getTime();
try {
// insert the record
await PageLoads.create({
userAgent, time
});
// now display everything in the table
const messages = await PageLoads.findAll();
res.send(messages);
} catch (e) {
console.log('Error inserting data', e)
}
})
Now, when you reload the page, you should see all of the rows currently in the
page_loads table.
===== PAGE: https://docs.tigerdata.com/_partials/_release_notification/ =====
To be notified about the latest releases, in Github
click Watch > Custom, then enable Releases.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_set_up_align_db_extensions_postgres_based/ =====
Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
Check the extensions on the source database:
psql source -c "SELECT * FROM pg_extension;"
For each extension, enable it on your target Tiger Cloud service:
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
===== PAGE: https://docs.tigerdata.com/_partials/_selfhosted_cta/ =====
Deploy a Tiger Cloud service. We tune your database for performance and handle scalability, high availability, backups and management so you can relax.
===== PAGE: https://docs.tigerdata.com/_partials/_preloaded-data/ =====
If you have been provided with a pre-loaded dataset on your Tiger Cloud service, go directly to the queries section.
===== PAGE: https://docs.tigerdata.com/_partials/_cloudtrial/ =====
Your Tiger Cloud trial is completely free for you to use for the first thirty days. This gives you enough time to complete all the tutorials and run a few test projects of your own.
===== PAGE: https://docs.tigerdata.com/_partials/_data_model_metadata/ =====
You might also notice that the metadata fields are missing. Because this is a
relational database, metadata can be stored in a secondary table and JOINed at
query time. Learn more about TimescaleDB's support for JOINs.
===== PAGE: https://docs.tigerdata.com/_partials/_usage-based-storage-intro/ =====
Tiger Cloud charges are based on the amount of storage you use. You don't pay for fixed storage size, and you don't need to worry about scaling disk size as your data grows—we handle it all for you. To reduce your data costs further, combine hypercore, a data retention policy, and tiered storage.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_using_parallel_copy/ =====
At the command prompt, install timescaledb-parallel-copy:
go get github.com/timescale/timescaledb-parallel-copy/cmd/timescaledb-parallel-copy
Use timescaledb-parallel-copy to import data into
your Tiger Cloud service. Set <NUM_WORKERS> to twice the number of CPUs in your
database. For example, if you have 4 CPUs, <NUM_WORKERS> should be 8.
timescaledb-parallel-copy \
--connection "host=<HOST> \
user=tsdbadmin password=<PASSWORD> \
port=<PORT> \
dbname=tsdb \
sslmode=require
" \
--table \
--file <FILE_NAME>.csv \
--workers <NUM_WORKERS> \
--reporting-period 30s
Repeat for each table and hypertable you want to migrate.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_step5/ =====
TAfter dual-writes have been executing for a while, the target hypertable contains data in three time ranges: missing writes, late-arriving data, and the "consistency" range

If the application is made up of multiple writers, and these writers did not all simultaneously start writing into the target hypertable, there is a period of time in which not all writes have made it into the target hypertable. This period starts when the first writer begins dual-writing, and ends when the last writer begins dual-writing.
Some applications have late-arriving data: measurements which have a timestamp in the past, but which weren't written yet (for example from devices which had intermittent connectivity issues). The window of late-arriving data is between the present moment, and the maximum lateness.
The consistency range is the range in which there are no missing writes, and in which all data has arrived, that is between the end of the missing writes range and the beginning of the late-arriving data range.
The length of these ranges is defined by the properties of the application, there is no one-size-fits-all way to determine what they are.
The completion point T is an arbitrarily chosen time in the consistency range.
It is the point in time to which data can safely be backfilled, ensuring that
there is no data loss.
The completion point should be expressed as the type of the time column of
the hypertables to be backfilled. For instance, if you're using a TIMESTAMPTZ
time column, then the completion point may be 2023-08-10T12:00:00.00Z. If
you're using a BIGINT column it may be 1695036737000.
If you are using a mix of types for the time columns of your hypertables, you
must determine the completion point for each type individually, and backfill
each set of hypertables with the same type independently from those of other
types.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-archlinux-based/ =====
ArchLinux packages are built by the community.
Install the latest Postgres and TimescaleDB packages
sudo pacman -Syu timescaledb timescaledb-tune postgresql-libs
Initalize your Postgres instance
sudo -u postgres initdb --locale=en_US.UTF-8 --encoding=UTF8 -D /var/lib/postgres/data --data-checksums
Tune your Postgres instance for TimescaleDB
sudo timescaledb-tune
This script is included with the timescaledb-tools package when you install TimescaleDB. For more information, see configuration.
Enable and start Postgres
sudo systemctl enable postgresql.service
sudo systemctl start postgresql.service
Log in to Postgres as postgres
sudo -u postgres psql
You are in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_since_2_20_0/ =====
Since TimescaleDB v2.20.0
===== PAGE: https://docs.tigerdata.com/_partials/_consider-cloud/ =====
Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_roles_schema_data_postgres/ =====
Export your role-based security hierarchy. <db_name> has the same value as <db_name> in source.
I know, it confuses me as well.
pg_dumpall -d "source" \
-l <db_name>
--quote-all-identifiers \
--roles-only \
--file=roles.sql
If you only use the default postgres role, this step is not necessary.
Tiger Cloud service do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from roles.sql:
sed -i -E \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e '/CREATE ROLE "tsdbadmin";/d' \
-e '/ALTER ROLE "tsdbadmin"/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
roles.sql
The pg_dump flags remove superuser access and tablespaces from your data. When you run
pgdump, check the run time, a long-running pg_dump can cause issues.
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information, see dumping with concurrency and restoring with concurrency.
===== PAGE: https://docs.tigerdata.com/_partials/_timeseries-intro/ =====
Time-series data represents how a system, process, or behavior changes over time. For example, if you are taking measurements from a temperature gauge every five minutes, you are collecting time-series data. Another common example is stock price changes, or even the battery life of your smart phone. As these measurements change over time, each data point is recorded alongside its timestamp, allowing it to be measured, analyzed, and visualized.
Time-series data can be collected very frequently, such as financial data, or infrequently, such as weather or system measurements. It can also be collected regularly, such as every millisecond or every hour, or irregularly, such as only when a change occurs.
Databases have always had time fields, but using a special database for handling time-series data can make your database work much more effectively. Specialized time-series databases, like Timescale, are designed to handle large amounts of database writes, so they work much faster. They are also optimized to handle schema changes, and use more flexible indexing, so you don't need to spend time migrating your data whenever you make a change.
Time-series data is everywhere, but there are some environments where it is especially important to use a specialized time-series database, like Timescale:
===== PAGE: https://docs.tigerdata.com/_partials/_timescaledb_supported_macos/ =====
| Operation system | Version |
|---|---|
| macOS | From 10.15 Catalina to 14 Sonoma |
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_setup_environment/ =====
These variables hold the connection information for the source database and target Tiger Cloud service. In Terminal on your migration machine, set the following:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
Ensure that the source and target databases are running the same version of TimescaleDB.
Check the version of TimescaleDB running on your Tiger Cloud service:
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service, you do not need to do this.
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
For more information and guidance, see Upgrade TimescaleDB.
Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
Check the extensions on the source database:
psql source -c "SELECT * FROM pg_extension;"
For each extension, enable it on your target Tiger Cloud service:
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
You need admin rights to to update the configuration on your source database. If you are using
a managed service, follow the instructions in the From MST tab on this page.
wal2json extension on your source databaseInstall wal2json on your source database.
Prevent Postgres from treating the data in a snapshot as outdated
psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
This is not applicable if the source database is Postgres 17 or later.
Set the write-Ahead Log (WAL) to record the information needed for logical decoding
psql -X -d source -c 'alter system set wal_level=logical'
Restart the source database
Your configuration changes are now active. However, verify that the settings are live in your database.
DELETE andUPDATE operationsReplica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
===== PAGE: https://docs.tigerdata.com/_partials/_integration-prereqs-self-only/ =====
To follow the steps on this page:
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_run_cleanup_postgres/ =====
The contents of both databases should be the same. To check this you could compare the number of rows, or an aggregate of columns. However, the best validation method depends on your app.
Once you are confident that your data is successfully replicated, configure your apps to use your Tiger Cloud service.
This command removes all resources and temporary files used in the migration process. When you run this command, you can no longer resume live-migration.
docker run --rm -it --name live-migration-clean \
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest1 clean --prune
===== PAGE: https://docs.tigerdata.com/_partials/_create-hypertable-twelvedata-crypto/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a hypertable for your time-series data using CREATE TABLE.
For efficient queries on data in the columnstore, remember to segmentby the column you will
use most often to filter your data:
```sql
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
When you have relational data that enhances your time-series data, store that data in standard Postgres relational tables.
Add a table to store the asset symbol and name in a relational table
CREATE TABLE crypto_assets (
symbol TEXT UNIQUE,
"name" TEXT
);
You now have two tables within your Tiger Cloud service. A hypertable named crypto_ticks, and a normal
Postgres table named crypto_assets.
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-installation/ =====
You create a Tiger Data account to manage your services and data in a centralized and efficient manner in Tiger Cloud Console. From there, you can create and delete services, run queries, manage access and billing, integrate other services, contact support, and more.
You create a standalone account to manage Tiger Cloud as a separate unit in your infrastructure, which includes separate billing and invoicing.
To set up Tiger Cloud:
Open Sign up for Tiger Cloud and add your details, then click Start your free trial. You receive a confirmation email in your inbox.
Confirm your email address
In the confirmation email, click the link supplied.
Select the pricing plan
You are now logged into Tiger Cloud Console. You can change the pricing plan to better accommodate your growing needs on the Billing page.
To have Tiger Cloud as a part of your AWS infrastructure, you create a Tiger Data account through AWS Marketplace. In this case, Tiger Cloud is a line item in your AWS invoice.
To set up Tiger Cloud via AWS:
Tiger CloudYou see two pricing options, pay-as-you-go and annual commit.
Select the pricing option that suits you and click View purchase options
Review and configure the purchase details, then click Subscribe
Click Set up your account at the top of the page
You are redirected to Tiger Cloud Console.
Add your details, then click Start your free trial. If you want to link an existing Tiger Data account to AWS, log in with your existing credentials.
You are now logged into Tiger Cloud Console. You can change the pricing plan later to better accommodate your growing needs on the Billing page.
In Confirm AWS Marketplace connection, click Connect
Your Tiger Cloud and AWS accounts are now connected.
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-connect-service/ =====
In Tiger Cloud Console, check that your service is marked as Running.
Connect using data mode or SQL editor in Tiger Cloud Console, or psql in the command line:
This feature is not available under the Free pricing plan.
In Tiger Cloud Console, toggle Data.
Select your service in the connection drop-down in the top right.
Run a test query:
SELECT CURRENT_DATE;
This query gives you the current date, you have successfully connected to your service.
And that is it, you are up and running. Enjoy developing with Tiger Data.
In Tiger Cloud Console, select your service.
Click SQL editor.
Run a test query:
SELECT CURRENT_DATE;
This query gives you the current date, you have successfully connected to your service.
And that is it, you are up and running. Enjoy developing with Tiger Data.
Install psql.
Run the following command in the terminal using the service URL from the config file you have saved during service creation:
psql "<your-service-url>"
Run a test query:
SELECT CURRENT_DATE;
This query returns the current date. You have successfully connected to your service.
And that is it, you are up and running. Enjoy developing with Tiger Data.
Quick recap. You:
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_step4/ =====
With the target database set up, your application can now be started in dual-write mode.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_post_schema_caggs_etal/ =====
When you have migrated your table and hypertable data, migrate your Postgres schema post-data. This includes information about constraints.
At the command prompt, dump the schema post-data from your source database
into a dump_post_data.dump file, using your source database connection details. Exclude
Timescale-specific schemas. If you are prompted for a password, use your
source database credentials:
pg_dump -U <SOURCE_DB_USERNAME> -W \
-h <SOURCE_DB_HOST> -p <SOURCE_DB_PORT> -Fc -v \
--section=post-data --exclude-schema="_timescaledb*" \
-f dump_post_data.dump <DATABASE_NAME>
Restore the dumped schema post-data from the dump_post_data.dump file into
your Tiger Cloud service, using your connection details. To avoid permissions
errors, include the --no-owner flag:
pg_restore -U tsdbadmin -W \
-h <HOST> -p <PORT> --no-owner -Fc \
-v -d tsdb dump_post_data.dump
If you see these errors during the migration process, you can safely ignore them. The migration still occurs successfully.
pg_restore: error: could not execute query: ERROR: relation "<relation_name>" already exists
pg_restore: error: could not execute query: ERROR: trigger "ts_insert_blocker" for relation "<relation_name>" already exists
Continuous aggregates aren't migrated by default when you transfer your schema and data separately. You can restore them by recreating the continuous aggregate definitions and recomputing the results on your Tiger Cloud service. The recomputed continuous aggregates only aggregate existing data in your Tiger Cloud service. They don't include deleted raw data.
Connect to your source database:
psql "postgres://<SOURCE_DB_USERNAME>:<SOURCE_DB_PASSWORD>@<SOURCE_DB_HOST>:<SOURCE_DB_PORT>/<SOURCE_DB_NAME>?sslmode=require"
Get a list of your existing continuous aggregate definitions:
SELECT view_name, view_definition FROM timescaledb_information.continuous_aggregates;
This query returns the names and definitions for all your continuous aggregates. For example:
view_name | view_definition
----------------+--------------------------------------------------------------------------------------------------------
avg_fill_levels | SELECT round(avg(fill_measurements.fill_level), 2) AS avg_fill_level, +
| time_bucket('01:00:00'::interval, fill_measurements."time") AS bucket, +
| fill_measurements.sensor_id +
| FROM fill_measurements +
| GROUP BY (time_bucket('01:00:00'::interval, fill_measurements."time")), fill_measurements.sensor_id;
(1 row)
Connect to your Tiger Cloud service:
psql "postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
Recreate each continuous aggregate definition:
CREATE MATERIALIZED VIEW <VIEW_NAME>
WITH (timescaledb.continuous) AS
<VIEW_DEFINITION>
By default, policies aren't migrated when you transfer your schema and data separately. Recreate them on your Tiger Cloud service.
Connect to your source database:
psql "postgres://<SOURCE_DB_USERNAME>:<SOURCE_DB_PASSWORD>@<SOURCE_DB_HOST>:<SOURCE_DB_PORT>/<SOURCE_DB_NAME>?sslmode=require"
Get a list of your existing policies. This query returns a list of all your policies, including continuous aggregate refresh policies, retention policies, compression policies, and reorder policies:
SELECT application_name, schedule_interval, retry_period,
config, hypertable_name
FROM timescaledb_information.jobs WHERE owner = '<SOURCE_DB_USERNAME>';
Connect to your Tiger Cloud service:
psql "postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
Recreate each policy. For more information about recreating policies, see the sections on continuous-aggregate refresh policies, retention policies, Hypercore policies, and reorder policies.
Update your table statistics by running ANALYZE on your entire
dataset. Note that this might take some time depending on the size of your
database:
ANALYZE;
If you see errors of the following form when you run ANALYZE, you can safely
ignore them:
WARNING: skipping "" --- only superuser can analyze it
The skipped tables and indexes correspond to system catalogs that can't be accessed. Skipping them does not affect statistics on your data.
===== PAGE: https://docs.tigerdata.com/_partials/_tutorials-hypercore-intro/ =====
Over time you end up with a lot of data. Since this data is mostly immutable, you can compress it to save space and avoid incurring additional cost.
TimescaleDB is built for handling event-oriented data such as time-series and fast analytical queries, it comes with support of hypercore featuring the columnstore.
Hypercore enables you to store the data in a vastly more efficient format allowing up to 90x compression ratio compared to a normal Postgres table. However, this is highly dependent on the data and configuration.
Hypercore is implemented natively in Postgres and does not require special storage formats. When you convert your data from the rowstore to the columnstore, TimescaleDB uses Postgres features to transform the data into columnar format. The use of a columnar format allows a better compression ratio since similar data is stored adjacently. For more details on the columnar format, see hypercore.
A beneficial side effect of compressing data is that certain queries are significantly faster, since less data has to be read into memory.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_awsrds_migrate_data_downtime/ =====
The duration of the migration is proportional to the amount of data stored in your database. By disconnection your app from your database you avoid and possible data loss. You should also ensure that your source RDS instance is not receiving any DML queries.
For example:
ssh -i "<key-pair>.pem" ubuntu@<EC2 instance's Public IPv4>
These variables hold the connection information for the RDS instance and target Tiger Cloud service:
export SOURCE="postgres://<Master username>:<Master password>@<Endpoint>:<Port>/<DB name>"
export TARGET=postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require
You find the connection information for SOURCE in your RDS configuration. For TARGET in the configuration file you
downloaded when you created the Tiger Cloud service.
Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
Check the extensions on the source database:
psql source -c "SELECT * FROM pg_extension;"
For each extension, enable it on your target Tiger Cloud service:
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
Export your role-based security hierarchy. If you only use the default postgres role, this
step is not necessary.
pg_dumpall -d "source" \
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
AWS RDS does not allow you to export passwords with roles. You assign passwords to these roles when you have uploaded them to your Tiger Cloud service.
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from roles.sql:
sed -i -E \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e '/CREATE ROLE "rds/d' \
-e '/ALTER ROLE "rds/d' \
-e '/TO "rds/d' \
-e '/GRANT "rds/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
roles.sql
Upload the roles to your Tiger Cloud service
psql -X -d "target" \
-v ON_ERROR_STOP=1 \
--echo-errors \
-f roles.sql
Manually assign passwords to the roles
AWS RDS did not allow you to export passwords with roles. For each role, use the following command to manually assign a password to a role:
psql target -c "ALTER ROLE <role name> WITH PASSWORD '<highly secure password>';"
```
## Migrate data from your RDS instance to your Tiger Cloud service
1. **Dump the data from your RDS instance to your intermediary EC2 instance**
The `pg_dump` flags remove superuser access and tablespaces from your data. When you run
`pgdump`, check the run time, [a long-running `pg_dump` can cause issues][long-running-pgdump].
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --file=dump.sql
To dramatically reduce the time taken to dump the RDS instance, using multiple connections. For more information,
see [dumping with concurrency][dumping-with-concurrency] and [restoring with concurrency][restoring-with-concurrency].
1. **Upload your data to your Tiger Cloud service**
bash psql -d target -v ON_ERROR_STOP=1 --echo-errors
-f dump.sql
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_validate_data/ =====
## Validate your data, then restart your app
1. **Validate the migrated data**
The contents of both databases should be the same. To check this you could compare
the number of rows, or an aggregate of columns. However, the best validation method
depends on your app.
1. **Stop app downtime**
Once you are confident that your data is successfully replicated, configure your apps
to use your Tiger Cloud service.
1. **Cleanup resources associated with live-migration from your migration machine**
This command removes all resources and temporary files used in the migration process.
When you run this command, you can no longer resume live-migration.
shell docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-integrations-exporter-region/ =====
Your exporter must be in the same AWS region as the Tiger Cloud service it is attached to.
If you have Tiger Cloud services running in multiple regions, create an exporter for each region.
===== PAGE: https://docs.tigerdata.com/_partials/_devops-cli-reference/ =====
## Commands
You can use the following commands with Tiger CLI. For more information on each command, use the `-h` flag. For example:
`tiger auth login -h`
| Command | Subcommand | Description |
|---------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| auth | | Manage authentication and credentials for your Tiger Data account |
| | login | Create an authenticated connection to your Tiger Data account |
| | logout | Remove the credentials used to create authenticated connections to Tiger Cloud |
| | status | Show your current authentication status and project ID |
| version | | Show information about the currently installed version of Tiger CLI |
| config | | Manage your Tiger CLI configuration |
| | show | Show the current configuration |
| | set `<key>` `<value>` | Set a specific value in your configuration. For example, `tiger config set debug true` |
| | unset `<key>` | Clear the value of a configuration parameter. For example, `tiger config unset debug` |
| | reset | Reset the configuration to the defaults. This also logs you out from the current Tiger Cloud project |
| service | | Manage the Tiger Cloud services in this project |
| | create | Create a new service in this project. Possible flags are: <ul><li>`--name`: service name (auto-generated if not provided)</li><li>`--addons`: addons to enable (time-series, ai, or none for PostgreSQL-only)</li><li>`--region`: region code where the service will be deployed</li><li>`--cpu-memory`: CPU/memory allocation combination</li><li>`--replicas`: number of high-availability replicas</li><li>`--no-wait`: don't wait for the operation to complete</li><li>`--wait-timeout`: wait timeout duration (for example, 30m, 1h30m, 90s)</li><li>`--no-set-default`: don't set this service as the default service</li><li>`--with-password`: include password in output</li><li>`--output, -o`: output format (`json`, `yaml`, table)</li></ul> <br/> Possible `cpu-memory` combinations are: <ul><li>shared/shared</li><li>0.5 CPU/2 GB</li><li>1 CPU/4 GB</li><li>2 CPU/8 GB</li><li>4 CPU/16 GB</li><li>8 CPU/32 GB</li><li>16 CPU/64 GB</li><li>32 CPU/128 GB</li></ul> |
| | delete `<service-id>` | Delete a service from this project. This operation is irreversible and requires confirmation by typing the service ID |
| | fork `<service-id>` | Fork an existing service to create a new independent copy. Key features are: <ul><li><strong>Timing options</strong>: `--now`, `--last-snapshot`, `--to-timestamp`</li><li><strong>Resource configuration</strong>: `--cpu-memory`</li><li><strong>Naming</strong>: `--name <name>`. Defaults to `{source-service-name}-fork`</li><li><strong>Wait behavior</strong>: `--no-wait`, `--wait-timeout`</li><li><strong>Default service</strong>: `--no-set-default`</li></ul> |
| | get `<service-id>` (aliases: describe, show) | Show detailed information about a specific service in this project |
| | list | List all the services in this project |
| | update-password `<service-id>` | Update the master password for a service |
| db | | Database operations and management |
| | connect `<service-id>` | Connect to a service |
| | connection-string `<service-id>` | Retrieve the connection string for a service |
| | save-password `<service-id>` | Save the password for a service |
| | test-connection `<service-id>` | Test the connectivity to a service |
| mcp | | Manage the Tiger Model Context Protocol Server for AI Assistant integration |
| | install `[client]` | Install and configure Tiger Model Context Protocol Server for a specific client (`claude-code`, `cursor`, `windsurf`, or other). If no client is specified, you'll be prompted to select one interactively |
| | start | Start the Tiger Model Context Protocol Server. This is the same as `tiger mcp start stdio` |
| | start stdio | Start the Tiger Model Context Protocol Server with stdio transport (default) |
| | start http | Start the Tiger Model Context Protocol Server with HTTP transport. Includes flags: `--port` (default: `8080`), `--host` (default: `localhost`) |
## Global flags
You can use the following global flags with Tiger CLI:
| Flag | Default | Description |
|-------------------------------|-------------------|-----------------------------------------------------------------------------|
| `--analytics` | `true` | Set to `false` to disable usage analytics |
| `--color ` | `true` | Set to `false` to disable colored output |
| `--config-dir` string | `.config/tiger` | Set the directory that holds `config.yaml` |
| `--debug` | No debugging | Enable debug logging |
| `--help` | - | Print help about the current command. For example, `tiger service --help` |
| `--password-storage` string | keyring | Set the password storage method. Options are `keyring`, `pgpass`, or `none` |
| `--service-id` string | - | Set the Tiger Cloud service to manage |
| ` --skip-update-check ` | - | Do not check if a new version of Tiger CLI is available|
## Configuration parameters
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`. The name of these
variables matches the flags you use to update them. However, you can override them using the following
environmental variables:
- **Configuration parameters**
- `TIGER_CONFIG_DIR`: path to configuration directory (default: `~/.config/tiger`)
- `TIGER_API_URL`: Tiger REST API base endpoint (default: https://console.cloud.timescale.com/public/api/v1)
- `TIGER_CONSOLE_URL`: URL to Tiger Cloud Console (default: https://console.cloud.timescale.com)
- `TIGER_GATEWAY_URL`: URL to the Tiger Cloud Console gateway (default: https://console.cloud.timescale.com/api)
- `TIGER_DOCS_MCP`: enable/disable docs MCP proxy (default: `true`)
- `TIGER_DOCS_MCP_URL`: URL to the Tiger MCP Server for Tiger Data docs (default: https://mcp.tigerdata.com/docs)
- `TIGER_SERVICE_ID`: ID for the service updated when you call CLI commands
- `TIGER_ANALYTICS`: enable or disable analytics (default: `true`)
- `TIGER_PASSWORD_STORAGE`: password storage method (keyring, pgpass, or none)
- `TIGER_DEBUG`: enable/disable debug logging (default: `false`)
- `TIGER_COLOR`: set to `false` to disable colored output (default: `true`)
- **Authentication parameters**
To authenticate without using the interactive login, either:
- Set the following parameters with your [client credentials][rest-api-credentials], then `login`:
```shell
TIGER_PUBLIC_KEY=<public_key> TIGER_SECRET_KEY=<secret_key> TIGER_PROJECT_ID=<project_id>\
tiger auth login
```
- Add your [client credentials][rest-api-credentials] to the `login` command:
```shell
tiger auth login --public-key=<public_key> --secret-key=<secret-key> --project-id=<project_id>
```
===== PAGE: https://docs.tigerdata.com/_partials/_psql-installation-linux/ =====
### Install psql on Linux
You can use the `apt` on Debian-based systems, `yum` on Red Hat-based systems,
and `pacman` package manager to install the `psql` tool.
### Installing psql using the apt package manager
1. Make sure your `apt` repository is up to date:
```bash
apt-get update
```
1. Install the `postgresql-client` package:
```bash
apt-get install postgresql-client
```
### Installing psql using the yum package manager
1. Make sure your `yum` repository is up to date:
```bash
yum update
```
1. Install the `postgresql-client` package:
```bash
dnf install postgresql14
```
### Installing psql using the pacman package manager
1. Make sure your `pacman` repository is up to date:
```bash
pacman -Syu
```
1. Install the `postgresql-client` package:
```bash
pacman -S postgresql-libs
```
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_setup_environment_mst/ =====
## Set your connection strings
These variables hold the connection information for the source database and target Tiger Cloud service.
In Terminal on your migration machine, set the following:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
## Align the version of TimescaleDB on the source and target
1. Ensure that the source and target databases are running the same version of TimescaleDB.
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB](https://docs.tigerdata.com/self-hosted/latest/upgrades/).
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Tune your source database
1. **Enable live-migration to replicate `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-debian/ =====
1. **Install the latest Postgres packages**
```bash
sudo apt install gnupg postgresql-common apt-transport-https lsb-release wget
```
1. **Run the Postgres package setup script**
```bash
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
```
1. **Add the TimescaleDB package**
```bash
echo "deb https://packagecloud.io/timescale/timescaledb/debian/ $(lsb_release -c -s) main" | sudo tee /etc/apt/sources.list.d/timescaledb.list
```
1. **Install the TimescaleDB GPG key**
```bash
wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/timescaledb.gpg
```
1. **Update your local repository list**
```bash
sudo apt update
```
1. **Install TimescaleDB**
```bash
sudo apt install timescaledb-2-postgresql-17 postgresql-client-17
```
To install a specific TimescaleDB [release][releases-page], set the version. For example:
`sudo apt-get install timescaledb-2-postgresql-14='2.6.0*' timescaledb-2-loader-postgresql-14='2.6.0*'`
Older versions of TimescaleDB may not support all the OS versions listed on this page.
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
By default, this script is included with the `timescaledb-tools` package when you install TimescaleDB. Use the prompts to tune your development or production environment. For more information on manual configuration, see [Configuration][config]. If you have an issue, run `sudo apt install timescaledb-tools`.
1. **Restart Postgres**
```bash
sudo systemctl restart postgresql
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_since_2_21_0/ =====
Since [TimescaleDB v2.21.0](https://github.com/timescale/timescaledb/releases/tag/2.21.0)
===== PAGE: https://docs.tigerdata.com/_partials/_where-to-next/ =====
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_backfill_getting_help/ =====
If you get stuck, you can get help by either opening a support request, or take
your issue to the `#migration` channel in the [community slack](https://slack.timescale.com/),
where the developers of this migration method are there to help.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
===== PAGE: https://docs.tigerdata.com/_partials/_timescaledb/ =====
TimescaleDB is an extension for Postgres that enables time-series workloads,
increasing ingest, query, storage and analytics performance.
Best practice is to run TimescaleDB in a [Tiger Cloud service](https://console.cloud.timescale.com/signup), but if you want to
self-host you can run TimescaleDB yourself.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_tune_source_database_postgres/ =====
You need admin rights to to update the configuration on your source database. If you are using
a managed service, follow the instructions in the `From AWS RDS/Aurora` tab on this page.
1. **Install the `wal2json` extension on your source database**
[Install wal2json][install-wal2json] on your source database.
1. **Prevent Postgres from treating the data in a snapshot as outdated**
shell psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
This is not applicable if the source database is Postgres 17 or later.
1. **Set the write-Ahead Log (WAL) to record the information needed for logical decoding**
shell psql -X -d source -c 'alter system set wal_level=logical'
1. **Restart the source database**
Your configuration changes are now active. However, verify that the
settings are live in your database.
1. **Enable live-migration to replicate `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_tune_source_database/ =====
You need admin rights to to update the configuration on your source database. If you are using
a managed service, follow the instructions in the `From MST` tab on this page.
1. **Install the `wal2json` extension on your source database**
[Install wal2json][install-wal2json] on your source database.
1. **Prevent Postgres from treating the data in a snapshot as outdated**
shell psql -X -d source -c 'alter system set old_snapshot_threshold=-1'
This is not applicable if the source database is Postgres 17 or later.
1. **Set the write-Ahead Log (WAL) to record the information needed for logical decoding**
shell psql -X -d source -c 'alter system set wal_level=logical'
1. **Restart the source database**
Your configuration changes are now active. However, verify that the
settings are live in your database.
1. **Enable live-migration to replicate `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
===== PAGE: https://docs.tigerdata.com/_partials/_timescaledb-config/ =====
Just as you can tune settings in Postgres, TimescaleDB provides a number of configuration
settings that may be useful to your specific installation and performance needs. These can
also be set within the `postgresql.conf` file or as command-line parameters
when starting Postgres.
## Query Planning and Execution
### `timescaledb.enable_chunkwise_aggregation (bool)`
If enabled, aggregations are converted into partial aggregations during query
planning. The first part of the aggregation is executed on a per-chunk basis.
Then, these partial results are combined and finalized. Splitting aggregations
decreases the size of the created hash tables and increases data locality, which
speeds up queries.
### `timescaledb.vectorized_aggregation (bool)`
Enables or disables the vectorized optimizations in the query executor. For
example, the `sum()` aggregation function on compressed chunks can be optimized
in this way.
### `timescaledb.enable_merge_on_cagg_refresh (bool)`
Set to `ON` to dramatically decrease the amount of data written on a continuous aggregate
in the presence of a small number of changes, reduce the i/o cost of refreshing a
[continuous aggregate][continuous-aggregates], and generate fewer Write-Ahead Logs (WAL). Only works for continuous aggregates that don't have compression enabled.
Please refer to the [Grand Unified Configuration (GUC) parameters][gucs] for a complete list.
## Policies
### `timescaledb.max_background_workers (int)`
Max background worker processes allocated to TimescaleDB. Set to at least 1 +
the number of databases loaded with the TimescaleDB extension in a Postgres instance. Default value is 16.
## Tiger Cloud service tuning
### `timescaledb.disable_load (bool)`
Disable the loading of the actual extension
## Administration
### `timescaledb.restoring (bool)`
Set TimescaleDB in restoring mode. It is disabled by default.
### `timescaledb.license (string)`
Change access to features based on the TimescaleDB license in use. For example,
setting `timescaledb.license` to `apache` limits TimescaleDB to features that
are implemented under the Apache 2 license. The default value is `timescale`,
which allows access to all features.
### `timescaledb.telemetry_level (enum)`
Telemetry settings level. Level used to determine which telemetry to
send. Can be set to `off` or `basic`. Defaults to `basic`.
### `timescaledb.last_tuned (string)`
Records last time `timescaledb-tune` ran.
### `timescaledb.last_tuned_version (string)`
Version of `timescaledb-tune` used to tune when it runs.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_self_postgres_timescaledb_compatibility/ =====
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10|
|-----------------------|-|-|-|-|-|-|-|-|
| 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌|
| 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌|
| 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌|
| 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌|
| 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌|
| 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌|
| 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌|
| 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌
| 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21.
These minor versions [introduced a breaking binary interface change][postgres-breaking-change] that,
once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22.
When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher.
Users of [Tiger Cloud](https://console.cloud.timescale.com/) and platform packages for Linux, Windows, MacOS,
Docker, and Kubernetes are unaffected.
===== PAGE: https://docs.tigerdata.com/_partials/_devops-mcp-commands-cli/ =====
You can use the following Tiger CLI commands to run Tiger MCP Server:
Usage: `tiger mcp [subcommand] --<flags>`
| Command | Subcommand | Description |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mcp | | Manage the Tiger Model Context Protocol Server |
| | install `[client]` | Install and configure Tiger MCP Server for a specific client installed on your developer device. <br/>Supported clients are: `claude-code`, `cursor`, `windsurf`, `codex`, `gemini/gemini-cli`, `vscode/code/vs-code`. <br/> Flags: <ul><li>`--no-backup`: do not back up the existing configuration</li><li>`--config-path`: open the configuration file at a specific location</li></ul> |
| | start | Start the Tiger MCP Server. This is the same as `tiger mcp start stdio` |
| | start stdio | Start the Tiger MCP Server with stdio transport |
| | start http | Start the Tiger MCP Server with HTTP transport. This option is for users who wish to access Tiger Model Context Protocol Server without using stdio. For example, your AI Assistant does not support stdio, or you do not want to run CLI on your device. <br/> Flags are: <ul><li>`--port <port number>`: the default is `8000`</li><li>`--host <hostname>`: the default is `localhost`</li></ul> |
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_to_upload_to_target/ =====
1. **Take the applications that connect to the source database offline**
The duration of the migration is proportional to the amount of data stored in your database. By
disconnection your app from your database you avoid and possible data loss.
1. **Set your connection strings**
These variables hold the connection information for the source database and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
1. **Ensure that the source and target databases are running the same version of TimescaleDB**
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target source:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB].
1. **Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database**
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
1. **Dump the roles from your source database**
Export your role-based security hierarchy. If you only use the default `postgres` role, this step is not
necessary.
bash pg_dumpall -d "source"
--quote-all-identifiers \
--roles-only \
--file=roles.sql
1. **Remove roles with superuser access**
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Dump the source database schema and data**
The `pg_dump` flags remove superuser access and tablespaces from your data. When you run
`pgdump`, check the run time, [a long-running `pg_dump` can cause issues][long-running-pgdump].
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information,
see [dumping with concurrency][dumping-with-concurrency] and [restoring with concurrency][restoring-with-concurrency].
===== PAGE: https://docs.tigerdata.com/_partials/_devops-cli-global-flags/ =====
| Flag | Default | Description |
|-------------------------------|-------------------|-----------------------------------------------------------------------------|
| `--analytics` | `true` | Set to `false` to disable usage analytics |
| `--color ` | `true` | Set to `false` to disable colored output |
| `--config-dir` string | `.config/tiger` | Set the directory that holds `config.yaml` |
| `--debug` | No debugging | Enable debug logging |
| `--help` | - | Print help about the current command. For example, `tiger service --help` |
| `--password-storage` string | keyring | Set the password storage method. Options are `keyring`, `pgpass`, or `none` |
| `--service-id` string | - | Set the Tiger Cloud service to manage |
| ` --skip-update-check ` | - | Do not check if a new version of Tiger CLI is available|
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_awsrds/ =====
## Create an intermediary EC2 Ubuntu instance
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. Click `Actions` > `Set up EC2 connection`.
Press `Create EC2 instance` and use the following settings:
- **AMI**: Ubuntu Server.
- **Key pair**: use an existing pair or create a new one that you will use to access the intermediary machine.
- **VPC**: by default, this is the same as the database instance.
- **Configure Storage**: adjust the volume to at least the size of RDS/Aurora Postgres instance you are migrating from.
You can reduce the space used by your data on Tiger Cloud using [Hypercore][hypercore].
1. Click `Lauch instance`. AWS creates your EC2 instance, then click `Connect to instance` > `SSH client`.
Follow the instructions to create the connection to your intermediary EC2 instance.
## Install the psql client tools on the intermediary instance
1. Connect to your intermediary EC2 instance. For example:
sh ssh -i ".pem" ubuntu@
1. On your intermediary EC2 instance, install the Postgres client.
sh sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list' wget -qO- https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo tee /etc/apt/trusted.gpg.d/pgdg.asc &>/dev/null sudo apt update sudo apt install postgresql-client-16 -y # "postgresql-client-16" if your source DB is using PG 16. psql --version && pg_dump --version
Keep this terminal open, you need it to connect to the RDS/Aurora Postgres instance for migration.
## Set up secure connectivity between your RDS/Aurora Postgres and EC2 instances
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. Scroll down to `Security group rules (1)` and select the `EC2 Security Group - Inbound` group. The
`Security Groups (1)` window opens. Click the `Security group ID`, then click `Edit inbound rules`
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/rds-add-security-rule-to-ec2-instance.svg"
alt="Create security group rule to enable RDS/Aurora Postgres EC2 connection"/>
1. On your intermediary EC2 instance, get your local IP address:
sh ec2metadata --local-ipv4
Bear with me on this one, you need this IP address to enable access to your RDS/Aurora Postgres instance.
1. In `Edit inbound rules`, click `Add rule`, then create a `PostgreSQL`, `TCP` rule granting access
to the local IP address for your EC2 instance (told you :-)). Then click `Save rules`.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/rds-add-inbound-rule-for-ec2-instance.png"
alt="Create security rule to enable RDS/Aurora Postgres EC2 connection"/>
## Test the connection between your RDS/Aurora Postgres and EC2 instances
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS/Aurora Postgres instance to migrate.
1. On your intermediary EC2 instance, use the values of `Endpoint`, `Port`, `Master username`, and `DB name`
to create the postgres connectivity string to the `SOURCE` variable.
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/migrate-source-rds-instance.svg"
alt="Record endpoint, port, VPC details"/>
sh export SOURCE="postgres://:@:/"
The value of `Master password` was supplied when this RDS/Aurora Postgres instance was created.
1. Test your connection:
sh psql -d source
You are connected to your RDS/Aurora Postgres instance from your intermediary EC2 instance.
## Migrate your data to your Tiger Cloud service
To securely migrate data from your RDS instance:
## Prepare to migrate
1. **Take the applications that connect to the RDS instance offline**
The duration of the migration is proportional to the amount of data stored in your database.
By disconnection your app from your database you avoid and possible data loss. You should also ensure that your
source RDS instance is not receiving any DML queries.
1. **Connect to your intermediary EC2 instance**
For example:
sh ssh -i ".pem" ubuntu@
1. **Set your connection strings**
These variables hold the connection information for the RDS instance and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET=postgres://tsdbadmin:@:/tsdb?sslmode=require
You find the connection information for `SOURCE` in your RDS configuration. For `TARGET` in the configuration file you
downloaded when you created the Tiger Cloud service.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Migrate roles from RDS to your Tiger Cloud service
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
1. **Dump the roles from your RDS instance**
Export your role-based security hierarchy. If you only use the default `postgres` role, this
step is not necessary.
bash pg_dumpall -d "source"
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
AWS RDS does not allow you to export passwords with roles. You assign passwords to these roles
when you have uploaded them to your Tiger Cloud service.
1. **Remove roles with superuser access**
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "rds/d' \ -e '/ALTER ROLE "rds/d' \ -e '/TO "rds/d' \ -e '/GRANT "rds/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Upload the roles to your Tiger Cloud service**
bash psql -X -d "target"
-v ON_ERROR_STOP=1 \
--echo-errors \
-f roles.sql
1. **Manually assign passwords to the roles**
AWS RDS did not allow you to export passwords with roles. For each role, use the following command to manually
assign a password to a role:
bash
psql target -c "ALTER ROLE <role name> WITH PASSWORD '<highly secure password>';"
```
The pg_dump flags remove superuser access and tablespaces from your data. When you run
pgdump, check the run time, a long-running pg_dump can cause issues.
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--file=dump.sql
To dramatically reduce the time taken to dump the RDS instance, using multiple connections. For more information, see dumping with concurrency and restoring with concurrency.
Upload your data to your Tiger Cloud service
psql -d target -v ON_ERROR_STOP=1 --echo-errors \
-f dump.sql
Update the table statistics.
psql target -c "ANALYZE;"
Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like hypertables, hypercore or data retention while your database is offline.
===== PAGE: https://docs.tigerdata.com/_partials/_service-overview/ =====
You manage your Tiger Cloud services and interact with your data in Tiger Cloud Console using the following modes:
===== PAGE: https://docs.tigerdata.com/_partials/_livesync-terminal/ =====
Best practice is to use an Ubuntu EC2 instance hosted in the same region as your Tiger Cloud service to move data. That is, the machine you run the commands on to move your data from your source database to your target Tiger Cloud service.
Before you move your data:
Each Tiger Cloud service has a single Postgres instance that supports the most popular extensions. Tiger Cloud services do not support tablespaces, and there is no superuser associated with a service. Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance can significantly reduce the overall migration window.
To ensure that maintenance does not run while migration is in progress, best practice is to adjust the maintenance window.
Ensure that the source Postgres instance and the target Tiger Cloud service have the same extensions installed.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension, first create the extension on the target Tiger Cloud service before syncing the table.
For a better experience, use a 4 CPU/16GB EC2 instance or greater to run the source Postgres connector.
This includes psql, pg_dump, pg_dumpall, and vacuumdb commands.
The schema is not migrated by the source Postgres connector, you use pg_dump/pg_restore to migrate it.
This works for Postgres databases only as source. TimescaleDB is not yet supported.
The source must be running Postgres 13 or later.
Schema changes must be co-ordinated.
Make compatible changes to the schema in your Tiger Cloud service first, then make the same changes to the source Postgres instance.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension, first create the extension on the target Tiger Cloud service before syncing the table.
There is WAL volume growth on the source Postgres instance during large table copy.
Continuous aggregate invalidation
The connector uses session_replication_role=replica during data replication,
which prevents table triggers from firing. This includes the internal
triggers that mark continuous aggregates as invalid when underlying data
changes.
If you have continuous aggregates on your target database, they do not automatically refresh for data inserted during the migration. This limitation only applies to data below the continuous aggregate's materialization watermark. For example, backfilled data. New rows synced above the continuous aggregate watermark are used correctly when refreshing.
This can lead to:
If the continuous aggregate exists in the source database, best
practice is to add it to the Postgres connector publication. If it only exists on the
target database, manually refresh the continuous aggregate using the force
option of refresh_continuous_aggregate.
The <user> in the SOURCE connection must have the replication role granted in order to create a replication slot.
These variables hold the connection information for the source database and target Tiger Cloud service. In Terminal on your migration machine, set the following:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool requires a direct connection to the database to function properly.
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
Update the DB instance parameter group for your source database
In https://console.aws.amazon.com/rds/home#databases:, select the RDS instance to migrate.
Click Configuration, scroll down and note the DB instance parameter group, then click Parameter groups

Create parameter group, fill in the form with the following values, then click Create.
PostgreSQLDB instance parameter group in your Configuration.Parameter groups, select the parameter group you created, then click Edit.Update the following parameters, then click Save changes.
rds.logical_replication set to 1: record the information needed for logical decoding.wal_sender_timeout set to 0: disable the timeout for the sender process.In RDS, navigate back to your databases, select the RDS instance to migrate, and click Modify.
Scroll down to Database options, select your new parameter group, and click Continue.
Click Apply immediately or choose a maintenance window, then click Modify DB instance.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
Tune the Write Ahead Log (WAL) on the Postgres source database
psql source <<EOF
ALTER SYSTEM SET wal_level='logical';
ALTER SYSTEM SET max_wal_senders=10;
ALTER SYSTEM SET wal_sender_timeout=0;
EOF
This will require a restart of the Postgres source database.
Create a user for the connector and assign permissions
Create <pg connector username>:
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
You can use an existing user. However, you must ensure that the user has the following permissions.
Grant permissions to create a replication slot:
psql source -c "ALTER ROLE <pg connector username> REPLICATION"
Grant permissions to create a publication:
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
Assign the user permissions on the source database:
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
If the tables you are syncing are not in the public schema, grant the user permissions for each schema you are syncing:
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
On each table you want to sync, make <pg connector username> the owner:
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
You can skip this step if the replicating user is already the owner of the tables.
Enable replication DELETE andUPDATE operations
Replica identity assists data replication by identifying the rows being modified. Your options are that each table and hypertable in the source database should either have:
NOT NULL. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.For each table, set REPLICA IDENTITY to the viable unique index:
psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
For each table, set REPLICA IDENTITY to FULL:
psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each UPDATE or DELETE statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of UPDATE or DELETE operations on the table,
best practice is to not use FULL.
Use pg_dump to:
Download the schema from the source database
pg_dump source \
--no-privileges \
--no-owner \
--no-publications \
--no-subscriptions \
--no-table-access-method \
--no-tablespaces \
--schema-only \
--file=schema.sql
Apply the schema on the target service
psql target -f schema.sql
For efficient querying and analysis, you can convert tables which contain time-series or events data, and tables that are already partitioned using Postgres declarative partition into hypertables.
Run the following on each table in the target Tiger Cloud service to convert it to a hypertable:
psql -X -d target -c "SELECT public.create_hypertable('', by_range('<partition column>', '<chunk interval>'::interval));"
For example, to convert the metrics table into a hypertable with time as a partition column and 1 day as a partition interval:
psql -X -d target -c "SELECT public.create_hypertable('public.metrics', by_range('time', '1 day'::interval));"
Rename the partition and create a new regular table with the same name as the partitioned table, then convert to a hypertable:
psql target -f - <<'EOF'
BEGIN;
ALTER TABLE public.events RENAME TO events_part;
CREATE TABLE public.events(LIKE public.events_part INCLUDING ALL);
SELECT create_hypertable('public.events', by_range('time', '1 day'::interval));
COMMIT;
EOF
After the schema is migrated, you CREATE PUBLICATION on the source database that
specifies the tables to synchronize.
A PUBLICATION enables you to synchronize some or all the tables in the schema or database.
CREATE PUBLICATION <publication_name> FOR TABLE , ;
To add tables after to an existing publication, use [ALTER PUBLICATION][alter-publication]**
ALTER PUBLICATION <publication_name> ADD TABLE ;
Publish the Postgres declarative partitioned table
ALTER PUBLICATION <publication_name> SET(publish_via_partition_root=true);
To convert partitioned table to hypertable, follow Convert partitions and tables with time-series data into hypertables.
Stop syncing a table in the PUBLICATION, use DROP TABLE
ALTER PUBLICATION <publication_name> DROP TABLE ;
You use the source Postgres connector docker image to synchronize changes in real time from a Postgres database instance to a Tiger Cloud service:
As you run the source Postgres connector continuously, best practice is to run it as a Docker daemon.
docker run -d --rm --name livesync timescale/live-sync:v0.1.25 run \
--publication <publication_name> --subscription <subscription_name> \
--source source --target target --table-map
--publication: The name of the publication as you created in the previous step. To use multiple publications, repeat the --publication flag.
--subscription: The name that identifies the subscription on the target Tiger Cloud service.
--source: The connection string to the source Postgres database.
--target: The connection string to the target Tiger Cloud service.
--table-map: (Optional) A JSON string that maps source tables to target tables. If not provided, the source and target table names are assumed to be the same.
For example, to map the source table metrics to the target table metrics_data:
--table-map '{"source": {"schema": "public", "table": "metrics"}, "target": {"schema": "public", "table": "metrics_data"}}'
To map only the schema, use:
--table-map '{"source": {"schema": "public"}, "target": {"schema": "analytics"}}'
This flag can be repeated for multiple table mappings.
Once the source Postgres connector is running as a docker daemon, you can also capture the logs:
docker logs -f livesync
List the tables being synchronized by the source Postgres connector using the _ts_live_sync.subscription_rel table in the target Tiger Cloud service:
psql target -c "SELECT * FROM _ts_live_sync.subscription_rel"
You see something like the following:
| subname | pubname | schemaname | tablename | rrelid | state | lsn | updated_at | last_error | created_at | rows_copied | approximate_rows | bytes_copied | approximate_size | target_schema | target_table | |----------|---------|-------------|-----------|--------|-------|------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------|-------------|------------------|--------------|------------------|---------------|-------------| |livesync | analytics | public | metrics | 20856 | r | 6/1A8CBA48 | 2025-06-24 06:16:21.434898+00 | | 2025-06-24 06:03:58.172946+00 | 18225440 | 18225440 | 1387359359 | 1387359359 | public | metrics |
The state column indicates the current state of the table synchronization.
Possible values for state are:
| state | description | |-------|-------------| | d | initial table data sync | | f | initial table data sync completed | | s | catching up with the latest changes | | r | table is ready, syncing live changes |
To see the replication lag, run the following against the SOURCE database:
psql source -f - <<'EOF'
SELECT
slot_name,
pg_size_pretty(pg_current_wal_flush_lsn() - confirmed_flush_lsn) AS lag
FROM pg_replication_slots
WHERE slot_name LIKE 'live_sync_%' AND slot_type = 'logical'
EOF
To add tables, use ALTER PUBLICATION .. ADD TABLE**
ALTER PUBLICATION <publication_name> ADD TABLE ;
To remove tables, use ALTER PUBLICATION .. DROP TABLE**
ALTER PUBLICATION <publication_name> DROP TABLE ;
If you have a large table, you can run ANALYZE on the target Tiger Cloud service
to update the table statistics after the initial sync is complete.
This helps the query planner make better decisions for query execution plans.
vacuumdb --analyze --verbose --dbname=target
Stop the source Postgres connector
docker stop live-sync
(Optional) Reset sequence nextval on the target Tiger Cloud service
The source Postgres connector does not automatically reset the sequence nextval on the target Tiger Cloud service.
Run the following script to reset the sequence for all tables that have a serial or identity column in the target Tiger Cloud service:
psql target -f - <<'EOF'
DO $$
DECLARE
rec RECORD;
BEGIN
FOR rec IN (
SELECT
sr.target_schema AS table_schema,
sr.target_table AS table_name,
col.column_name,
pg_get_serial_sequence(
sr.target_schema || '.' || sr.target_table,
col.column_name
) AS seqname
FROM _ts_live_sync.subscription_rel AS sr
JOIN information_schema.columns AS col
ON col.table_schema = sr.target_schema
AND col.table_name = sr.target_table
WHERE col.column_default LIKE 'nextval(%' -- only serial/identity columns
) LOOP
EXECUTE format(
'SELECT setval(%L,
COALESCE((SELECT MAX(%I) FROM %I.%I), 0) + 1,
false
);',
rec.seqname, -- the sequence identifier
rec.column_name, -- the column to MAX()
rec.table_schema, -- schema for MAX()
rec.table_name -- table for MAX()
);
END LOOP;
END;
$$ LANGUAGE plpgsql;
EOF
Use the --drop flag to remove the replication slots created by the source Postgres connector on the source database.
docker run -it --rm --name livesync timescale/live-sync:v0.1.25 run \
--publication <publication_name> --subscription <subscription_name> \
--source source --target target \
--drop
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_mst/ =====
The duration of the migration is proportional to the amount of data stored in your database. By disconnection your app from your database you avoid and possible data loss.
These variables hold the connection information for the source database and target Tiger Cloud service:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
export TARGET="postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you downloaded when you created the service.
Ensure that the source and target databases are running the same version of TimescaleDB.
Check the version of TimescaleDB running on your Tiger Cloud service:
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service, you do not need to do this.
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
For more information and guidance, see Upgrade TimescaleDB.
Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
Check the extensions on the source database:
psql source -c "SELECT * FROM pg_extension;"
For each extension, enable it on your target Tiger Cloud service:
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
Export your role-based security hierarchy. <db_name> has the same value as <db_name> in source.
I know, it confuses me as well.
pg_dumpall -d "source" \
-l <db_name> \
--quote-all-identifiers \
--roles-only \
--no-role-passwords \
--file=roles.sql
MST does not allow you to export passwords with roles. You assign passwords to these roles when you have uploaded them to your Tiger Cloud service.
Tiger Cloud services do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from roles.sql:
sed -i -E \
-e '/DROP ROLE IF EXISTS "postgres";/d' \
-e '/DROP ROLE IF EXISTS "tsdbadmin";/d' \
-e '/CREATE ROLE "postgres";/d' \
-e '/ALTER ROLE "postgres"/d' \
-e '/CREATE ROLE "rds/d' \
-e '/ALTER ROLE "rds/d' \
-e '/TO "rds/d' \
-e '/GRANT "rds/d' \
-e '/GRANT "pg_read_all_stats" TO "tsdbadmin"/d' \
-e 's/(NO)*SUPERUSER//g' \
-e 's/(NO)*REPLICATION//g' \
-e 's/(NO)*BYPASSRLS//g' \
-e 's/GRANTED BY "[^"]*"//g' \
-e '/CREATE ROLE "tsdbadmin";/d' \
-e '/ALTER ROLE "tsdbadmin"/d' \
-e 's/WITH ADMIN OPTION,/WITH /g' \
-e 's/WITH ADMIN OPTION//g' \
-e 's/GRANTED BY ".*"//g' \
-e '/GRANT "pg_.*" TO/d' \
-e '/CREATE ROLE "_aiven";/d' \
-e '/ALTER ROLE "_aiven"/d' \
-e '/GRANT SET ON PARAMETER "pgaudit\.[^"]+" TO "_tsdbadmin_auditing"/d' \
-e '/GRANT SET ON PARAMETER "anon\.[^"]+" TO "tsdbadmin_group"/d' \
roles.sql
The pg_dump flags remove superuser access and tablespaces from your data. When you run
pgdump, check the run time, a long-running pg_dump can cause issues.
pg_dump -d "source" \
--format=plain \
--quote-all-identifiers \
--no-tablespaces \
--no-owner \
--no-privileges \
--file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information, see dumping with concurrency and restoring with concurrency.
This command uses the timescaledb_pre_restore and timescaledb_post_restore functions to put your database in the correct state.
Upload your data
psql target -v ON_ERROR_STOP=1 --echo-errors \
-f roles.sql \
-c "SELECT timescaledb_pre_restore();" \
-f dump.sql \
-c "SELECT timescaledb_post_restore();"
Manually assign passwords to the roles
MST did not allow you to export passwords with roles. For each role, use the following command to manually assign a password to a role:
psql target -c "ALTER ROLE <role name> WITH PASSWORD '<highly secure password>';"
```
## Validate your Tiger Cloud service and restart your app
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-rocky/ =====
Tiger Data supports Rocky Linux 8 and 9 on amd64 only.
1. **Update your local repository list**
```bash
sudo dnf update -y
sudo dnf install -y epel-release
```
1. **Install the latest Postgres packages**
```bash
sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-9-x86_64/pgdg-redhat-repo-latest.noarch.rpm
```
1. **Add the TimescaleDB repository**
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/9/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
1. **Disable the built-in PostgreSQL module**
This is for Rocky Linux 9 only.
```bash
sudo dnf module disable postgresql -y
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo dnf install -y postgresql16-server postgresql16-contrib timescaledb-2-postgresql-16
```
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-16/bin/postgresql-16-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-16/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-16
sudo systemctl start postgresql-16
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_validate_and_restart_app/ =====
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-redhat-based/ =====
1. **Install the latest Postgres packages**
<Terminal persistKey="os-redhat">
```bash
sudo yum install https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm
```
```bash
sudo yum install https://download.postgresql.org/pub/repos/yum/reporpms/F-$(rpm -E %{fedora})-x86_64/pgdg-fedora-repo-latest.noarch.rpm
```
</Terminal>
1. **Add the TimescaleDB repository**
<Terminal persistKey="os-redhat">
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/$(rpm -E %{rhel})/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/9/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
</Terminal>
1. **Update your local repository list**
```bash
sudo yum update
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo yum install timescaledb-2-postgresql-17 postgresql17
```
<!-- hack until we have bandwidth to rewrite this linting rule -->
<!-- markdownlint-disable TS007 -->
On Red Hat Enterprise Linux 8 and later, disable the built-in Postgres module:
`sudo dnf -qy module disable postgresql`
<!-- markdownlint-enable TS007 -->
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-17/bin/postgresql-17-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-17/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-17
sudo systemctl start postgresql-17
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_sunsetted_2_14_0/ =====
Sunsetted since TimescaleDB v2.14.0
===== PAGE: https://docs.tigerdata.com/_partials/_real-time-aggregates/ =====
In TimescaleDB v2.13 and later, real-time aggregates are **DISABLED** by default. In earlier versions, real-time aggregates are **ENABLED** by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-ubuntu/ =====
1. **Install the latest Postgres packages**
```bash
sudo apt install gnupg postgresql-common apt-transport-https lsb-release wget
```
1. **Run the Postgres package setup script**
```bash
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
```
```bash
echo "deb https://packagecloud.io/timescale/timescaledb/ubuntu/ $(lsb_release -c -s) main" | sudo tee /etc/apt/sources.list.d/timescaledb.list
```
1. **Install the TimescaleDB GPG key**
```bash
wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/timescaledb.gpg
```
For Ubuntu 21.10 and earlier use the following command:
`wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo apt-key add -`
1. **Update your local repository list**
```bash
sudo apt update
```
1. **Install TimescaleDB**
```bash
sudo apt install timescaledb-2-postgresql-17 postgresql-client-17
```
To install a specific TimescaleDB [release][releases-page], set the version. For example:
`sudo apt-get install timescaledb-2-postgresql-14='2.6.0*' timescaledb-2-loader-postgresql-14='2.6.0*'`
Older versions of TimescaleDB may not support all the OS versions listed on this page.
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
By default, this script is included with the `timescaledb-tools` package when you install TimescaleDB. Use the prompts to tune your development or production environment. For more information on manual configuration, see [Configuration][config]. If you have an issue, run `sudo apt install timescaledb-tools`.
1. **Restart Postgres**
```bash
sudo systemctl restart postgresql
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_caggs-one-step-policy/ =====
<h2>
Use a one-step policy definition to set a {props.policyType} policy on a
continuous aggregate
</h2>
In TimescaleDB 2.8 and above, policy management on continuous aggregates is
simplified. You can add, change, or remove the refresh, compression, and data
retention policies on a continuous aggregate using a one-step API. For more
information, see the APIs for [adding policies][add-policies], [altering
policies][alter-policies], and [removing policies][remove-policies]. Note that
this feature is experimental.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
When you change policies with this API, the changes apply to the continuous
aggregate, not to the original hypertable. For example, if you use this API to
set a retention policy of 20 days, chunks older than 20 days are dropped from
the continuous aggregate. The retention policy of the original hypertable
remains unchanged.
===== PAGE: https://docs.tigerdata.com/_partials/_start-coding-golang/ =====
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
- Install [Go][golang-install].
- Install the [PGX driver for Go][pgx-driver-github].
## Connect to your Tiger Cloud service
In this section, you create a connection to Tiger Cloud using the PGX driver.
PGX is a toolkit designed to help Go developers work directly with Postgres.
You can use it to help your Go application interact directly with TimescaleDB.
1. Locate your TimescaleDB credentials and use them to compose a connection
string for PGX.
You'll need:
* password
* username
* host URL
* port number
* database name
1. Compose your connection string variable as a
[libpq connection string][libpq-docs], using this format:
```go
connStr := "postgres://username:password@host:port/dbname"
```
If you're using a hosted version of TimescaleDB, or if you need an SSL
connection, use this format instead:
```go
connStr := "postgres://username:password@host:port/dbname?sslmode=require"
```
1. [](#)You can check that you're connected to your database with this
hello world program:
```go
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5"
)
//connect to database using a single connection
func main() {
/***********************************************/
/* Single Connection to TimescaleDB/ PostgreSQL */
/***********************************************/
ctx := context.Background()
connStr := "yourConnectionStringHere"
conn, err := pgx.Connect(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer conn.Close(ctx)
//run a simple query to check our connection
var greeting string
err = conn.QueryRow(ctx, "select 'Hello, Timescale!'").Scan(&greeting)
if err != nil {
fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)
os.Exit(1)
}
fmt.Println(greeting)
}
```
If you'd like to specify your connection string as an environment variable,
you can use this syntax to access it in place of the `connStr` variable:
```go
os.Getenv("DATABASE_CONNECTION_STRING")
```
Alternatively, you can connect to TimescaleDB using a connection pool.
Connection pooling is useful to conserve computing resources, and can also
result in faster database queries:
1. To create a connection pool that can be used for concurrent connections to
your database, use the `pgxpool.New()` function instead of
`pgx.Connect()`. Also note that this script imports
`github.com/jackc/pgx/v5/pgxpool`, instead of `pgx/v5` which was used to
create a single connection:
```go
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
//run a simple query to check our connection
var greeting string
err = dbpool.QueryRow(ctx, "select 'Hello, Tiger Data (but concurrently)'").Scan(&greeting)
if err != nil {
fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)
os.Exit(1)
}
fmt.Println(greeting)
}
```
## Create a relational table
In this section, you create a table called `sensors` which holds the ID, type,
and location of your fictional sensors. Additionally, you create a hypertable
called `sensor_data` which holds the measurements of those sensors. The
measurements contain the time, sensor_id, temperature reading, and CPU
percentage of the sensors.
1. Compose a string that contains the SQL statement to create a relational
table. This example creates a table called `sensors`, with columns for ID,
type, and location:
```go
queryCreateTable := `CREATE TABLE sensors (id SERIAL PRIMARY KEY, type VARCHAR(50), location VARCHAR(50));`
```
1. Execute the `CREATE TABLE` statement with the `Exec()` function on the
`dbpool` object, using the arguments of the current context and the
statement string you created:
```go
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Create relational table */
/********************************************/
//Create relational table called sensors
queryCreateTable := `CREATE TABLE sensors (id SERIAL PRIMARY KEY, type VARCHAR(50), location VARCHAR(50));`
_, err = dbpool.Exec(ctx, queryCreateTable)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to create SENSORS table: %v\n", err)
os.Exit(1)
}
fmt.Println("Successfully created relational table SENSORS")
}
```
## Generate a hypertable
When you have created the relational table, you can create a hypertable.
Creating tables and indexes, altering tables, inserting data, selecting data,
and most other tasks are executed on the hypertable.
1. Create a variable for the `CREATE TABLE SQL` statement for your hypertable.
Notice how the hypertable has the compulsory time column:
```go
queryCreateTable := `CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id));
`
```
1. Formulate the `SELECT` statement to convert the table into a hypertable. You
must specify the table name to convert to a hypertable, and its time column
name as the second argument. For more information, see the
[`create_hypertable` docs][create-hypertable-docs]:
```go
queryCreateHypertable := `SELECT create_hypertable('sensor_data', by_range('time'));`
```
The `by_range` dimension builder is an addition to TimescaleDB 2.13.
1. Execute the `CREATE TABLE` statement and `SELECT` statement which converts
the table into a hypertable. You can do this by calling the `Exec()`
function on the `dbpool` object, using the arguments of the current context,
and the `queryCreateTable` and `queryCreateHypertable` statement strings:
```go
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Create Hypertable */
/********************************************/
// Create hypertable of time-series data called sensor_data
queryCreateTable := `CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id));
`
queryCreateHypertable := `SELECT create_hypertable('sensor_data', by_range('time'));`
//execute statement
_, err = dbpool.Exec(ctx, queryCreateTable+queryCreateHypertable)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to create the `sensor_data` hypertable: %v\n", err)
os.Exit(1)
}
fmt.Println("Successfully created hypertable `sensor_data`")
}
```
## Insert rows of data
You can insert rows into your database in a couple of different
ways. Each of these example inserts the data from the two arrays, `sensorTypes` and
`sensorLocations`, into the relational table named `sensors`.
The first example inserts a single row of data at a time. The second example
inserts multiple rows of data. The third example uses batch inserts to speed up
the process.
1. Open a connection pool to the database, then use the prepared statements to
formulate an `INSERT` SQL statement, and execute it:
```go
package main
import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* INSERT into relational table */
/********************************************/
//Insert data into relational table
// Slices of sample data to insert
// observation i has type sensorTypes[i] and location sensorLocations[i]
sensorTypes := []string{"a", "a", "b", "b"}
sensorLocations := []string{"floor", "ceiling", "floor", "ceiling"}
for i := range sensorTypes {
//INSERT statement in SQL
queryInsertMetadata := `INSERT INTO sensors (type, location) VALUES ($1, $2);`
//Execute INSERT command
_, err := dbpool.Exec(ctx, queryInsertMetadata, sensorTypes[i], sensorLocations[i])
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to insert data into database: %v\n", err)
os.Exit(1)
}
fmt.Printf("Inserted sensor (%s, %s) into database \n", sensorTypes[i], sensorLocations[i])
}
fmt.Println("Successfully inserted all sensors into database")
}
```
Instead of inserting a single row of data at a time, you can use this procedure
to insert multiple rows of data, instead:
1. This example uses Postgres to generate some sample time-series to insert
into the `sensor_data` hypertable. Define the SQL statement to generate the
data, called `queryDataGeneration`. Then use the `.Query()` function to
execute the statement and return the sample data. The data returned by the
query is stored in `results`, a slice of structs, which is then used as a
source to insert data into the hypertable:
```go
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
// Generate data to insert
//SQL query to generate sample data
queryDataGeneration := `
SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
floor(random() * (3) + 1)::int as sensor_id,
random()*100 AS temperature,
random() AS cpu
`
//Execute query to generate samples for sensor_data hypertable
rows, err := dbpool.Query(ctx, queryDataGeneration)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to generate sensor data: %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully generated sensor data")
//Store data generated in slice results
type result struct {
Time time.Time
SensorId int
Temperature float64
CPU float64
}
var results []result
for rows.Next() {
var r result
err = rows.Scan(&r.Time, &r.SensorId, &r.Temperature, &r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// Check contents of results slice
fmt.Println("Contents of RESULTS slice")
for i := range results {
var r result
r = results[i]
fmt.Printf("Time: %s | ID: %d | Temperature: %f | CPU: %f |\n", &r.Time, r.SensorId, r.Temperature, r.CPU)
}
}
```
1. Formulate an SQL insert statement for the `sensor_data` hypertable:
```go
//SQL query to generate sample data
queryInsertTimeseriesData := `
INSERT INTO sensor_data (time, sensor_id, temperature, cpu) VALUES ($1, $2, $3, $4);
`
```
1. Execute the SQL statement for each sample in the results slice:
```go
//Insert contents of results slice into TimescaleDB
for i := range results {
var r result
r = results[i]
_, err := dbpool.Exec(ctx, queryInsertTimeseriesData, r.Time, r.SensorId, r.Temperature, r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to insert sample into TimescaleDB %v\n", err)
os.Exit(1)
}
defer rows.Close()
}
fmt.Println("Successfully inserted samples into sensor_data hypertable")
```
1. [](#)This example `main.go` generates sample data and inserts it into
the `sensor_data` hypertable:
```go
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
/********************************************/
/* Connect using Connection Pool */
/********************************************/
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Insert data into hypertable */
/********************************************/
// Generate data to insert
//SQL query to generate sample data
queryDataGeneration := `
SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
floor(random() * (3) + 1)::int as sensor_id,
random()*100 AS temperature,
random() AS cpu
`
//Execute query to generate samples for sensor_data hypertable
rows, err := dbpool.Query(ctx, queryDataGeneration)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to generate sensor data: %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully generated sensor data")
//Store data generated in slice results
type result struct {
Time time.Time
SensorId int
Temperature float64
CPU float64
}
var results []result
for rows.Next() {
var r result
err = rows.Scan(&r.Time, &r.SensorId, &r.Temperature, &r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// Check contents of results slice
fmt.Println("Contents of RESULTS slice")
for i := range results {
var r result
r = results[i]
fmt.Printf("Time: %s | ID: %d | Temperature: %f | CPU: %f |\n", &r.Time, r.SensorId, r.Temperature, r.CPU)
}
//Insert contents of results slice into TimescaleDB
//SQL query to generate sample data
queryInsertTimeseriesData := `
INSERT INTO sensor_data (time, sensor_id, temperature, cpu) VALUES ($1, $2, $3, $4);
`
//Insert contents of results slice into TimescaleDB
for i := range results {
var r result
r = results[i]
_, err := dbpool.Exec(ctx, queryInsertTimeseriesData, r.Time, r.SensorId, r.Temperature, r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to insert sample into TimescaleDB %v\n", err)
os.Exit(1)
}
defer rows.Close()
}
fmt.Println("Successfully inserted samples into sensor_data hypertable")
}
```
Inserting multiple rows of data using this method executes as many `insert`
statements as there are samples to be inserted. This can make ingestion of data
slow. To speed up ingestion, you can batch insert data instead.
Here's a sample pattern for how to do so, using the sample data you generated in
the previous procedure. It uses the pgx `Batch` object:
1. This example batch inserts data into the database:
```go
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
/********************************************/
/* Connect using Connection Pool */
/********************************************/
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
// Generate data to insert
//SQL query to generate sample data
queryDataGeneration := `
SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
floor(random() * (3) + 1)::int as sensor_id,
random()*100 AS temperature,
random() AS cpu
`
//Execute query to generate samples for sensor_data hypertable
rows, err := dbpool.Query(ctx, queryDataGeneration)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to generate sensor data: %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully generated sensor data")
//Store data generated in slice results
type result struct {
Time time.Time
SensorId int
Temperature float64
CPU float64
}
var results []result
for rows.Next() {
var r result
err = rows.Scan(&r.Time, &r.SensorId, &r.Temperature, &r.CPU)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// Check contents of results slice
/*fmt.Println("Contents of RESULTS slice")
for i := range results {
var r result
r = results[i]
fmt.Printf("Time: %s | ID: %d | Temperature: %f | CPU: %f |\n", &r.Time, r.SensorId, r.Temperature, r.CPU)
}*/
//Insert contents of results slice into TimescaleDB
//SQL query to generate sample data
queryInsertTimeseriesData := `
INSERT INTO sensor_data (time, sensor_id, temperature, cpu) VALUES ($1, $2, $3, $4);
`
/********************************************/
/* Batch Insert into TimescaleDB */
/********************************************/
//create batch
batch := &pgx.Batch{}
//load insert statements into batch queue
for i := range results {
var r result
r = results[i]
batch.Queue(queryInsertTimeseriesData, r.Time, r.SensorId, r.Temperature, r.CPU)
}
batch.Queue("select count(*) from sensor_data")
//send batch to connection pool
br := dbpool.SendBatch(ctx, batch)
//execute statements in batch queue
_, err = br.Exec()
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to execute statement in batch queue %v\n", err)
os.Exit(1)
}
fmt.Println("Successfully batch inserted data")
//Compare length of results slice to size of table
fmt.Printf("size of results: %d\n", len(results))
//check size of table for number of rows inserted
// result of last SELECT statement
var rowsInserted int
err = br.QueryRow().Scan(&rowsInserted)
fmt.Printf("size of table: %d\n", rowsInserted)
err = br.Close()
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to closer batch %v\n", err)
os.Exit(1)
}
}
```
## Execute a query
This section covers how to execute queries against your database.
1. Define the SQL query you'd like to run on the database. This example uses a
SQL query that combines time-series and relational data. It returns the
average CPU values for every 5 minute interval, for sensors located on
location `ceiling` and of type `a`:
```go
// Formulate query in SQL
// Note the use of prepared statement placeholders $1 and $2
queryTimebucketFiveMin := `
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.location = $1 AND sensors.type = $2
GROUP BY five_min
ORDER BY five_min DESC;
`
```
1. Use the `.Query()` function to execute the query string. Make sure you
specify the relevant placeholders:
```go
//Execute query on TimescaleDB
rows, err := dbpool.Query(ctx, queryTimebucketFiveMin, "ceiling", "a")
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to execute query %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully executed query")
```
1. Access the rows returned by `.Query()`. Create a struct with fields
representing the columns that you expect to be returned, then use the
`rows.Next()` function to iterate through the rows returned and fill
`results` with the array of structs. This uses the `rows.Scan()` function,
passing in pointers to the fields that you want to scan for results.
This example prints out the results returned from the query, but you might
want to use those results for some other purpose. Once you've scanned
through all the rows returned you can then use the results array however you
like.
```go
//Do something with the results of query
// Struct for results
type result2 struct {
Bucket time.Time
Avg float64
}
// Print rows returned and fill up results slice for later use
var results []result2
for rows.Next() {
var r result2
err = rows.Scan(&r.Bucket, &r.Avg)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
fmt.Printf("Time bucket: %s | Avg: %f\n", &r.Bucket, r.Avg)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
// use results here…
```
1. [](#)This example program runs a query, and accesses the results of
that query:
```go
package main
import (
"context"
"fmt"
"os"
"time"
"github.com/jackc/pgx/v5/pgxpool"
)
func main() {
ctx := context.Background()
connStr := "yourConnectionStringHere"
dbpool, err := pgxpool.New(ctx, connStr)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
os.Exit(1)
}
defer dbpool.Close()
/********************************************/
/* Execute a query */
/********************************************/
// Formulate query in SQL
// Note the use of prepared statement placeholders $1 and $2
queryTimebucketFiveMin := `
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.location = $1 AND sensors.type = $2
GROUP BY five_min
ORDER BY five_min DESC;
`
//Execute query on TimescaleDB
rows, err := dbpool.Query(ctx, queryTimebucketFiveMin, "ceiling", "a")
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to execute query %v\n", err)
os.Exit(1)
}
defer rows.Close()
fmt.Println("Successfully executed query")
//Do something with the results of query
// Struct for results
type result2 struct {
Bucket time.Time
Avg float64
}
// Print rows returned and fill up results slice for later use
var results []result2
for rows.Next() {
var r result2
err = rows.Scan(&r.Bucket, &r.Avg)
if err != nil {
fmt.Fprintf(os.Stderr, "Unable to scan %v\n", err)
os.Exit(1)
}
results = append(results, r)
fmt.Printf("Time bucket: %s | Avg: %f\n", &r.Bucket, r.Avg)
}
// Any errors encountered by rows.Next or rows.Scan are returned here
if rows.Err() != nil {
fmt.Fprintf(os.Stderr, "rows Error: %v\n", rows.Err())
os.Exit(1)
}
}
```
## Next steps
Now that you're able to connect, read, and write to a TimescaleDB instance from
your Go application, be sure to check out these advanced TimescaleDB tutorials:
* Refer to the [pgx documentation][pgx-docs] for more information about pgx.
* Get up and running with TimescaleDB with the [Getting Started][getting-started]
tutorial.
* Want fast inserts on CSV data? Check out
[TimescaleDB parallel copy][parallel-copy-tool], a tool for fast inserts,
written in Go.
===== PAGE: https://docs.tigerdata.com/_partials/_start-coding-python/ =====
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
* Install the `psycopg2` library.
For more information, see the [psycopg2 documentation][psycopg2-docs].
* Create a [Python virtual environment][virtual-env]. [](#)
## Connect to TimescaleDB
In this section, you create a connection to TimescaleDB using the `psycopg2`
library. This library is one of the most popular Postgres libraries for
Python. It allows you to execute raw SQL queries efficiently and safely, and
prevents common attacks such as SQL injection.
1. Import the psycogpg2 library:
```python
import psycopg2
```
1. Locate your TimescaleDB credentials and use them to compose a connection
string for `psycopg2`.
You'll need:
* password
* username
* host URL
* port
* database name
1. Compose your connection string variable as a
[libpq connection string][pg-libpq-string], using this format:
```python
CONNECTION = "postgres://username:password@host:port/dbname"
```
If you're using a hosted version of TimescaleDB, or generally require an SSL
connection, use this version instead:
```python
CONNECTION = "postgres://username:password@host:port/dbname?sslmode=require"
```
Alternatively you can specify each parameter in the connection string as follows
```python
CONNECTION = "dbname=tsdb user=tsdbadmin password=secret host=host.com port=5432 sslmode=require"
```
This method of composing a connection string is for test or development
purposes only. For production, use environment variables for sensitive
details like your password, hostname, and port number.
1. Use the `psycopg2` [connect function][psycopg2-connect] to create a new
database session and create a new [cursor object][psycopg2-cursor] to
interact with the database.
In your `main` function, add these lines:
```python
CONNECTION = "postgres://username:password@host:port/dbname"
with psycopg2.connect(CONNECTION) as conn:
cursor = conn.cursor()
# use the cursor to interact with your database
# cursor.execute("SELECT * FROM table")
```
Alternatively, you can create a connection object and pass the object
around as needed, like opening a cursor to perform database operations:
```python
CONNECTION = "postgres://username:password@host:port/dbname"
conn = psycopg2.connect(CONNECTION)
cursor = conn.cursor()
# use the cursor to interact with your database
cursor.execute("SELECT 'hello world'")
print(cursor.fetchone())
```
## Create a relational table
In this section, you create a table called `sensors` which holds the ID, type,
and location of your fictional sensors. Additionally, you create a hypertable
called `sensor_data` which holds the measurements of those sensors. The
measurements contain the time, sensor_id, temperature reading, and CPU
percentage of the sensors.
1. Compose a string which contains the SQL statement to create a relational
table. This example creates a table called `sensors`, with columns `id`,
`type` and `location`:
```python
query_create_sensors_table = """CREATE TABLE sensors (
id SERIAL PRIMARY KEY,
type VARCHAR(50),
location VARCHAR(50)
);
"""
```
1. Open a cursor, execute the query you created in the previous step, and
commit the query to make the changes persistent. Afterward, close the cursor
to clean up:
```python
cursor = conn.cursor()
# see definition in Step 1
cursor.execute(query_create_sensors_table)
conn.commit()
cursor.close()
```
## Create a hypertable
When you have created the relational table, you can create a hypertable.
Creating tables and indexes, altering tables, inserting data, selecting data,
and most other tasks are executed on the hypertable.
1. Create a string variable that contains the `CREATE TABLE` SQL statement for
your hypertable. Notice how the hypertable has the compulsory time column:
```python
# create sensor data hypertable
query_create_sensordata_table = """CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id INTEGER,
temperature DOUBLE PRECISION,
cpu DOUBLE PRECISION,
FOREIGN KEY (sensor_id) REFERENCES sensors (id)
);
"""
```
2. Formulate a `SELECT` statement that converts the `sensor_data` table to a
hypertable. You must specify the table name to convert to a hypertable, and
the name of the time column as the two arguments. For more information, see
the [`create_hypertable` docs][create-hypertable-docs]:
```python
query_create_sensordata_hypertable = "SELECT create_hypertable('sensor_data', by_range('time'));"
```
The `by_range` dimension builder is an addition to TimescaleDB 2.13.
3. Open a cursor with the connection, execute the statements from the previous
steps, commit your changes, and close the cursor:
```python
cursor = conn.cursor()
cursor.execute(query_create_sensordata_table)
cursor.execute(query_create_sensordata_hypertable)
# commit changes to the database to make changes persistent
conn.commit()
cursor.close()
```
## Insert rows of data
You can insert data into your hypertables in several different ways. In this
section, you can use `psycopg2` with prepared statements, or you can use
`pgcopy` for a faster insert.
1. This example inserts a list of tuples, or relational data, called `sensors`,
into the relational table named `sensors`. Open a cursor with a connection
to the database, use prepared statements to formulate the `INSERT` SQL
statement, and then execute that statement:
```python
sensors = [('a', 'floor'), ('a', 'ceiling'), ('b', 'floor'), ('b', 'ceiling')]
cursor = conn.cursor()
for sensor in sensors:
try:
cursor.execute("INSERT INTO sensors (type, location) VALUES (%s, %s);",
(sensor[0], sensor[1]))
except (Exception, psycopg2.Error) as error:
print(error.pgerror)
conn.commit()
```
1. [](#)Alternatively, you can pass variables to the `cursor.execute`
function and separate the formulation of the SQL statement, `SQL`, from the
data being passed with it into the prepared statement, `data`:
```python
SQL = "INSERT INTO sensors (type, location) VALUES (%s, %s);"
sensors = [('a', 'floor'), ('a', 'ceiling'), ('b', 'floor'), ('b', 'ceiling')]
cursor = conn.cursor()
for sensor in sensors:
try:
data = (sensor[0], sensor[1])
cursor.execute(SQL, data)
except (Exception, psycopg2.Error) as error:
print(error.pgerror)
conn.commit()
```
If you choose to use `pgcopy` instead, install the `pgcopy` package
[using pip][pgcopy-install], and then add this line to your list of
`import` statements:
python from pgcopy import CopyManager
1. Generate some random sensor data using the `generate_series` function
provided by Postgres. This example inserts a total of 480 rows of data (4
readings, every 5 minutes, for 24 hours). In your application, this would be
the query that saves your time-series data into the hypertable:
```python
# for sensors with ids 1-4
for id in range(1, 4, 1):
data = (id,)
# create random data
simulate_query = """SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
%s as sensor_id,
random()*100 AS temperature,
random() AS cpu;
"""
cursor.execute(simulate_query, data)
values = cursor.fetchall()
```
1. Define the column names of the table you want to insert data into. This
example uses the `sensor_data` hypertable created earlier. This hypertable
consists of columns named `time`, `sensor_id`, `temperature` and `cpu`. The
column names are defined in a list of strings called `cols`:
```python
cols = ['time', 'sensor_id', 'temperature', 'cpu']
```
1. Create an instance of the `pgcopy` CopyManager, `mgr`, and pass the
connection variable, hypertable name, and list of column names. Then use the
`copy` function of the CopyManager to insert the data into the database
quickly using `pgcopy`.
```python
mgr = CopyManager(conn, 'sensor_data', cols)
mgr.copy(values)
```
1. Commit to persist changes:
```python
conn.commit()
```
1. [](#)The full sample code to insert data into TimescaleDB using
`pgcopy`, using the example of sensor data from four sensors:
```python
# insert using pgcopy
def fast_insert(conn):
cursor = conn.cursor()
# for sensors with ids 1-4
for id in range(1, 4, 1):
data = (id,)
# create random data
simulate_query = """SELECT generate_series(now() - interval '24 hour', now(), interval '5 minute') AS time,
%s as sensor_id,
random()*100 AS temperature,
random() AS cpu;
"""
cursor.execute(simulate_query, data)
values = cursor.fetchall()
# column names of the table you're inserting into
cols = ['time', 'sensor_id', 'temperature', 'cpu']
# create copy manager with the target table and insert
mgr = CopyManager(conn, 'sensor_data', cols)
mgr.copy(values)
# commit after all sensor data is inserted
# could also commit after each sensor insert is done
conn.commit()
```
1. [](#)You can also check if the insertion worked:
```python
cursor.execute("SELECT * FROM sensor_data LIMIT 5;")
print(cursor.fetchall())
```
## Execute a query
This section covers how to execute queries against your database.
The first procedure shows a simple `SELECT *` query. For more complex queries,
you can use prepared statements to ensure queries are executed safely against
the database.
For more information about properly using placeholders in `psycopg2`, see the
[basic module usage document][psycopg2-docs-basics].
For more information about how to execute more complex queries in `psycopg2`,
see the [psycopg2 documentation][psycopg2-docs-basics].
### Execute a query
1. Define the SQL query you'd like to run on the database. This example is a
simple `SELECT` statement querying each row from the previously created
`sensor_data` table.
```python
query = "SELECT * FROM sensor_data;"
```
1. Open a cursor from the existing database connection, `conn`, and then execute
the query you defined:
```python
cursor = conn.cursor()
query = "SELECT * FROM sensor_data;"
cursor.execute(query)
```
1. To access all resulting rows returned by your query, use one of `pyscopg2`'s
[results retrieval methods][results-retrieval-methods],
such as `fetchall()` or `fetchmany()`. This example prints the results of
the query, row by row. Note that the result of `fetchall()` is a list of
tuples, so you can handle them accordingly:
```python
cursor = conn.cursor()
query = "SELECT * FROM sensor_data;"
cursor.execute(query)
for row in cursor.fetchall():
print(row)
cursor.close()
```
1. [](#)If you want a list of dictionaries instead, you can define the
cursor using [`DictCursor`][dictcursor-docs]:
```python
cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
```
Using this cursor, `cursor.fetchall()` returns a list of dictionary-like objects.
For more complex queries, you can use prepared statements to ensure queries are
executed safely against the database.
### Execute queries using prepared statements
1. Write the query using prepared statements:
```python
# query with placeholders
cursor = conn.cursor()
query = """
SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu)
FROM sensor_data
JOIN sensors ON sensors.id = sensor_data.sensor_id
WHERE sensors.location = %s AND sensors.type = %s
GROUP BY five_min
ORDER BY five_min DESC;
"""
location = "floor"
sensor_type = "a"
data = (location, sensor_type)
cursor.execute(query, data)
results = cursor.fetchall()
```
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_pg_dump_do_not_recommend_for_large_migration/ =====
If you want to migrate more than 400GB of data, create a [Tiger Cloud Console support request](https://console.cloud.timescale.com/dashboard/support), or
send us an email at [support@tigerdata.com](mailto:support@tigerdata.com) saying how much data you want to migrate. We pre-provision
your Tiger Cloud service for you.
===== PAGE: https://docs.tigerdata.com/_partials/_livesync-console/ =====
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with real-time analytics enabled.
You need your [connection details][connection-info].
- Install the [Postgres client tools][install-psql] on your sync machine.
- Ensure that the source Postgres instance and the target Tiger Cloud service have the same extensions installed.
The source Postgres connector does not create extensions on the target. If the table uses column types from an extension,
first create the extension on the target Tiger Cloud service before syncing the table.
## Limitations
* The source Postgres instance must be accessible from the Internet.
Services hosted behind a firewall or VPC are not supported. This functionality is on the roadmap.
* Indexes, including the primary key and unique constraints, are not migrated to the target Tiger Cloud service.
We recommend that, depending on your query patterns, you create only the necessary indexes on the target Tiger Cloud service.
* This works for Postgres databases only as source. TimescaleDB is not yet supported.
* The source must be running Postgres 13 or later.
* Schema changes must be co-ordinated.
Make compatible changes to the schema in your Tiger Cloud service first, then make
the same changes to the source Postgres instance.
* Ensure that the source Postgres instance and the target Tiger Cloud service have the same extensions installed.
The source Postgres connector does not create extensions on the target. If the table uses
column types from an extension, first create the extension on the
target Tiger Cloud service before syncing the table.
* There is WAL volume growth on the source Postgres instance during large table copy.
* Continuous aggregate invalidation
The connector uses `session_replication_role=replica` during data replication,
which prevents table triggers from firing. This includes the internal
triggers that mark continuous aggregates as invalid when underlying data
changes.
If you have continuous aggregates on your target database, they do not
automatically refresh for data inserted during the migration. This limitation
only applies to data below the continuous aggregate's materialization
watermark. For example, backfilled data. New rows synced above the continuous
aggregate watermark are used correctly when refreshing.
This can lead to:
- Missing data in continuous aggregates for the migration period.
- Stale aggregate data.
- Queries returning incomplete results.
If the continuous aggregate exists in the source database, best
practice is to add it to the Postgres connector publication. If it only exists on the
target database, manually refresh the continuous aggregate using the `force`
option of [refresh_continuous_aggregate][refresh-caggs].
## Set your connection string
This variable holds the connection information for the source database. In the terminal on your migration machine,
set the following:
bash export SOURCE="postgres://:@:/"
Avoid using connection strings that route through connection poolers like PgBouncer or similar tools. This tool
requires a direct connection to the database to function properly.
## Tune your source database
Updating parameters on a Postgres instance will cause an outage. Choose a time that will cause the least issues to tune this database.
1. **Tune the Write Ahead Log (WAL) on the RDS/Aurora Postgres source database**
1. In [https://console.aws.amazon.com/rds/home#databases:][databases],
select the RDS instance to migrate.
1. Click `Configuration`, scroll down and note the `DB instance parameter group`, then click `Parameter Groups`
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/migrate/awsrds-parameter-groups.png"
alt="Create security rule to enable RDS EC2 connection"/>
1. Click `Create parameter group`, fill in the form with the following values, then click `Create`.
- **Parameter group name** - whatever suits your fancy.
- **Description** - knock yourself out with this one.
- **Engine type** - `PostgreSQL`
- **Parameter group family** - the same as `DB instance parameter group` in your `Configuration`.
1. In `Parameter groups`, select the parameter group you created, then click `Edit`.
1. Update the following parameters, then click `Save changes`.
- `rds.logical_replication` set to `1`: record the information needed for logical decoding.
- `wal_sender_timeout` set to `0`: disable the timeout for the sender process.
1. In RDS, navigate back to your [databases][databases], select the RDS instance to migrate, and click `Modify`.
1. Scroll down to `Database options`, select your new parameter group, and click `Continue`.
1. Click `Apply immediately` or choose a maintenance window, then click `Modify DB instance`.
Changing parameters will cause an outage. Wait for the database instance to reboot before continuing.
1. Verify that the settings are live in your database.
1. **Create a user for the source Postgres connector and assign permissions**
1. Create `<pg connector username>`:
```sql
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
```
You can use an existing user. However, you must ensure that the user has the following permissions.
1. Grant permissions to create a replication slot:
```sql
psql source -c "GRANT rds_replication TO <pg connector username>"
```
1. Grant permissions to create a publication:
```sql
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
```
1. Assign the user permissions on the source database:
```sql
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
```
If the tables you are syncing are not in the `public` schema, grant the user permissions for each schema you are syncing:
```sql
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
```
1. On each table you want to sync, make `<pg connector username>` the owner:
```sql
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
```
You can skip this step if the replicating user is already the owner of the tables.
1. **Enable replication `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
1. **Tune the Write Ahead Log (WAL) on the Postgres source database**
sql psql source <<EOF ALTER SYSTEM SET wal_level='logical'; ALTER SYSTEM SET max_wal_senders=10; ALTER SYSTEM SET wal_sender_timeout=0; EOF
* [GUC “wal_level” as “logical”](https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-WAL-LEVEL)
* [GUC “max_wal_senders” as 10](https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-WAL-SENDERS)
* [GUC “wal_sender_timeout” as 0](https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-WAL-SENDER-TIMEOUT)
This will require a restart of the Postgres source database.
1. **Create a user for the connector and assign permissions**
1. Create `<pg connector username>`:
```sql
psql source -c "CREATE USER <pg connector username> PASSWORD '<password>'"
```
You can use an existing user. However, you must ensure that the user has the following permissions.
1. Grant permissions to create a replication slot:
```sql
psql source -c "ALTER ROLE <pg connector username> REPLICATION"
```
1. Grant permissions to create a publication:
```sql
psql source -c "GRANT CREATE ON DATABASE <database name> TO <pg connector username>"
```
1. Assign the user permissions on the source database:
```sql
psql source <<EOF
GRANT USAGE ON SCHEMA "public" TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA "public" TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA "public" GRANT SELECT ON TABLES TO <pg connector username>;
EOF
```
If the tables you are syncing are not in the `public` schema, grant the user permissions for each schema you are syncing:
```sql
psql source <<EOF
GRANT USAGE ON SCHEMA <schema> TO <pg connector username>;
GRANT SELECT ON ALL TABLES IN SCHEMA <schema> TO <pg connector username>;
ALTER DEFAULT PRIVILEGES IN SCHEMA <schema> GRANT SELECT ON TABLES TO <pg connector username>;
EOF
```
1. On each table you want to sync, make `<pg connector username>` the owner:
```sql
psql source -c 'ALTER TABLE OWNER TO <pg connector username>;'
```
You can skip this step if the replicating user is already the owner of the tables.
1. **Enable replication `DELETE` and`UPDATE` operations**
Replica identity assists data replication by identifying the rows being modified. Your options are that
each table and hypertable in the source database should either have:
- **A primary key**: data replication defaults to the primary key of the table being replicated.
Nothing to do.
- **A viable unique index**: each table has a unique, non-partial, non-deferrable index that includes only columns
marked as `NOT NULL`. If a UNIQUE index does not exist, create one to assist the migration. You can delete if after
migration.
For each table, set `REPLICA IDENTITY` to the viable unique index:
shell psql -X -d source -c 'ALTER TABLE REPLICA IDENTITY USING INDEX <_index_name>'
- **No primary key or viable unique index**: use brute force.
For each table, set `REPLICA IDENTITY` to `FULL`:
shell psql -X -d source -c 'ALTER TABLE {table_name} REPLICA IDENTITY FULL'
For each `UPDATE` or `DELETE` statement, Postgres reads the whole table to find all matching rows. This results
in significantly slower replication. If you are expecting a large number of `UPDATE` or `DELETE` operations on the table,
best practice is to not use `FULL`.
## Synchronize data to your Tiger Cloud service
To sync data from your Postgres database to your Tiger Cloud service using Tiger Cloud Console:
1. **Connect to your Tiger Cloud service**
In [Tiger Cloud Console][portal-ops-mode], select the service to sync live data to.
1. **Connect the source database and the target service**

1. Click `Connectors` > `PostgreSQL`.
1. Set the name for the new connector by clicking the pencil icon.
1. Check the boxes for `Set wal_level to logical` and `Update your credentials`, then click `Continue`.
1. Enter your database credentials or a Postgres connection string, then click `Connect to database`.
This is the connection string for [`<pg connector username>`][livesync-tune-source-db]. Tiger Cloud Console connects to the source database and retrieves the schema information.
1. **Optimize the data to synchronize in hypertables**

1. In the `Select table` dropdown, select the tables to sync.
1. Click `Select tables +` .
Tiger Cloud Console checks the table schema and, if possible, suggests the column to use as the time dimension in a hypertable.
1. Click `Create Connector`.
Tiger Cloud Console starts source Postgres connector between the source database and the target service and displays the progress.
1. **Monitor synchronization**

1. To view the amount of data replicated, click `Connectors`. The diagram in `Connector data flow` gives you an overview of the connectors you have created, their status, and how much data has been replicated.
1. To review the syncing progress for each table, click `Connectors` > `Source connectors`, then select the name of your connector in the table.
1. **Manage the connector**

1. To edit the connector, click `Connectors` > `Source connectors`, then select the name of your connector in the table. You can rename the connector, delete or add new tables for syncing.
1. To pause a connector, click `Connectors` > `Source connectors`, then open the three-dot menu on the right and select `Pause`.
1. To delete a connector, click `Connectors` > `Source connectors`, then open the three-dot menu on the right and select `Delete`. You must pause the connector before deleting it.
And that is it, you are using the source Postgres connector to synchronize all the data, or specific tables, from a Postgres database
instance to your Tiger Cloud service, in real time.
===== PAGE: https://docs.tigerdata.com/_partials/_2-step-aggregation/ =====
This group of functions uses the two-step aggregation pattern.
Rather than calculating the final result in one step, you first create an
intermediate aggregate by using the aggregate function.
Then, use any of the accessors on the intermediate aggregate to calculate a
final result. You can also roll up multiple intermediate aggregates with the
rollup functions.
The two-step aggregation pattern has several advantages:
1. More efficient because multiple accessors can reuse the same aggregate
1. Easier to reason about performance, because aggregation is separate from
final computation
1. Easier to understand when calculations can be rolled up into larger
intervals, especially in window functions and [continuous aggregates][caggs]
1. Can perform retrospective analysis even when underlying data is dropped, because
the intermediate aggregate stores extra information not available in the
final result
To learn more, see the [blog post on two-step
aggregates][blog-two-step-aggregates].
===== PAGE: https://docs.tigerdata.com/_partials/_timescaledb-gucs/ =====
| Name | Type | Default | Description |
| -- | -- | -- | -- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `GUC_CAGG_HIGH_WORK_MEM_NAME` | `INTEGER` | `GUC_CAGG_HIGH_WORK_MEM_VALUE` | The high working memory limit for the continuous aggregate invalidation processing.<br />min: `64`, max: `MAX_KILOBYTES` |
| `GUC_CAGG_LOW_WORK_MEM_NAME` | `INTEGER` | `GUC_CAGG_LOW_WORK_MEM_VALUE` | The low working memory limit for the continuous aggregate invalidation processing.<br />min: `64`, max: `MAX_KILOBYTES` |
| `auto_sparse_indexes` | `BOOLEAN` | `true` | The hypertable columns that are used as index keys will have suitable sparse indexes when compressed. Must be set at the moment of chunk compression, e.g. when the `compress_chunk()` is called. |
| `bgw_log_level` | `ENUM` | `WARNING` | Log level for the scheduler and workers of the background worker subsystem. Requires configuration reload to change. |
| `cagg_processing_wal_batch_size` | `INTEGER` | `10000` | Number of entries processed from the WAL at a go. Larger values take more memory but might be more efficient.<br />min: `1000`, max: `10000000` |
| `compress_truncate_behaviour` | `ENUM` | `COMPRESS_TRUNCATE_ONLY` | Defines how truncate behaves at the end of compression. 'truncate_only' forces truncation. 'truncate_disabled' deletes rows instead of truncate. 'truncate_or_delete' allows falling back to deletion. |
| `compression_batch_size_limit` | `INTEGER` | `1000` | Setting this option to a number between 1 and 999 will force compression to limit the size of compressed batches to that amount of uncompressed tuples.Setting this to 0 defaults to the max batch size of 1000.<br />min: `1`, max: `1000` |
| `compression_orderby_default_function` | `STRING` | `"_timescaledb_functions.get_orderby_defaults"` | Function to use for calculating default order_by setting for compression |
| `compression_segmentby_default_function` | `STRING` | `"_timescaledb_functions.get_segmentby_defaults"` | Function to use for calculating default segment_by setting for compression |
| `current_timestamp_mock` | `STRING` | `NULL` | this is for debugging purposes |
| `debug_allow_cagg_with_deprecated_funcs` | `BOOLEAN` | `false` | this is for debugging/testing purposes |
| `debug_bgw_scheduler_exit_status` | `INTEGER` | `0` | this is for debugging purposes<br />min: `0`, max: `255` |
| `debug_compression_path_info` | `BOOLEAN` | `false` | this is for debugging/information purposes |
| `debug_have_int128` | `BOOLEAN` | `#ifdef HAVE_INT128 true` | this is for debugging purposes |
| `debug_require_batch_sorted_merge` | `ENUM` | `DRO_Allow` | this is for debugging purposes |
| `debug_require_vector_agg` | `ENUM` | `DRO_Allow` | this is for debugging purposes |
| `debug_require_vector_qual` | `ENUM` | `DRO_Allow` | this is for debugging purposes, to let us check if the vectorized quals are used or not. EXPLAIN differs after PG15 for custom nodes, and using the test templates is a pain |
| `debug_skip_scan_info` | `BOOLEAN` | `false` | Print debug info about SkipScan distinct columns |
| `debug_toast_tuple_target` | `INTEGER` | `/* bootValue = */ 128` | this is for debugging purposes<br />min: `/* minValue = */ 1`, max: `/* maxValue = */ 65535` |
| `enable_bool_compression` | `BOOLEAN` | `true` | Enable bool compression |
| `enable_bulk_decompression` | `BOOLEAN` | `true` | Increases throughput of decompression, but might increase query memory usage |
| `enable_cagg_reorder_groupby` | `BOOLEAN` | `true` | Enable group by clause reordering for continuous aggregates |
| `enable_cagg_sort_pushdown` | `BOOLEAN` | `true` | Enable pushdown of ORDER BY clause for continuous aggregates |
| `enable_cagg_watermark_constify` | `BOOLEAN` | `true` | Enable constifying cagg watermark for real-time caggs |
| `enable_cagg_window_functions` | `BOOLEAN` | `false` | Allow window functions in continuous aggregate views |
| `enable_chunk_append` | `BOOLEAN` | `true` | Enable using chunk append node |
| `enable_chunk_skipping` | `BOOLEAN` | `false` | Enable using chunk column stats to filter chunks based on column filters |
| `enable_chunkwise_aggregation` | `BOOLEAN` | `true` | Enable the pushdown of aggregations to the chunk level |
| `enable_columnarscan` | `BOOLEAN` | `true` | A columnar scan replaces sequence scans for columnar-oriented storage and enables storage-specific optimizations like vectorized filters. Disabling columnar scan will make PostgreSQL fall back to regular sequence scans. |
| `enable_compressed_direct_batch_delete` | `BOOLEAN` | `true` | Enable direct batch deletion in compressed chunks |
| `enable_compressed_skipscan` | `BOOLEAN` | `true` | Enable SkipScan for distinct inputs over compressed chunks |
| `enable_compression_indexscan` | `BOOLEAN` | `false` | Enable indexscan during compression, if matching index is found |
| `enable_compression_ratio_warnings` | `BOOLEAN` | `true` | Enable warnings for poor compression ratio |
| `enable_compression_wal_markers` | `BOOLEAN` | `true` | Enable the generation of markers in the WAL stream which mark the start and end of compression operations |
| `enable_compressor_batch_limit` | `BOOLEAN` | `false` | Enable compressor batch limit for compressors which can go over the allocation limit (1 GB). This feature willlimit those compressors by reducing the size of the batch and thus avoid hitting the limit. |
| `enable_constraint_aware_append` | `BOOLEAN` | `true` | Enable constraint exclusion at execution time |
| `enable_constraint_exclusion` | `BOOLEAN` | `true` | Enable planner constraint exclusion |
| `enable_custom_hashagg` | `BOOLEAN` | `false` | Enable creating custom hash aggregation plans |
| `enable_decompression_sorted_merge` | `BOOLEAN` | `true` | Enable the merge of compressed batches to preserve the compression order by |
| `enable_delete_after_compression` | `BOOLEAN` | `false` | Delete all rows after compression instead of truncate |
| `enable_deprecation_warnings` | `BOOLEAN` | `true` | Enable warnings when using deprecated functionality |
| `enable_direct_compress_copy` | `BOOLEAN` | `false` | Enable experimental support for direct compression during COPY |
| `enable_direct_compress_copy_client_sorted` | `BOOLEAN` | `false` | Correct handling of data sorting by the user is required for this option. |
| `enable_direct_compress_copy_sort_batches` | `BOOLEAN` | `true` | Enable batch sorting during direct compress COPY |
| `enable_dml_decompression` | `BOOLEAN` | `true` | Enable DML decompression when modifying compressed hypertable |
| `enable_dml_decompression_tuple_filtering` | `BOOLEAN` | `true` | Recheck tuples during DML decompression to only decompress batches with matching tuples |
| `enable_event_triggers` | `BOOLEAN` | `false` | Enable event triggers for chunks creation |
| `enable_exclusive_locking_recompression` | `BOOLEAN` | `false` | Enable getting exclusive lock on chunk during segmentwise recompression |
| `enable_foreign_key_propagation` | `BOOLEAN` | `true` | Adjust foreign key lookup queries to target whole hypertable |
| `enable_job_execution_logging` | `BOOLEAN` | `false` | Retain job run status in logging table |
| `enable_merge_on_cagg_refresh` | `BOOLEAN` | `false` | Enable MERGE statement on cagg refresh |
| `enable_multikey_skipscan` | `BOOLEAN` | `true` | Enable SkipScan for multiple distinct inputs |
| `enable_now_constify` | `BOOLEAN` | `true` | Enable constifying now() in query constraints |
| `enable_null_compression` | `BOOLEAN` | `true` | Enable null compression |
| `enable_optimizations` | `BOOLEAN` | `true` | Enable TimescaleDB query optimizations |
| `enable_ordered_append` | `BOOLEAN` | `true` | Enable ordered append optimization for queries that are ordered by the time dimension |
| `enable_parallel_chunk_append` | `BOOLEAN` | `true` | Enable using parallel aware chunk append node |
| `enable_qual_propagation` | `BOOLEAN` | `true` | Enable propagation of qualifiers in JOINs |
| `enable_rowlevel_compression_locking` | `BOOLEAN` | `false` | Use only if you know what you are doing |
| `enable_runtime_exclusion` | `BOOLEAN` | `true` | Enable runtime chunk exclusion in ChunkAppend node |
| `enable_segmentwise_recompression` | `BOOLEAN` | `true` | Enable segmentwise recompression |
| `enable_skipscan` | `BOOLEAN` | `true` | Enable SkipScan for DISTINCT queries |
| `enable_skipscan_for_distinct_aggregates` | `BOOLEAN` | `true` | Enable SkipScan for DISTINCT aggregates |
| `enable_sparse_index_bloom` | `BOOLEAN` | `true` | This sparse index speeds up the equality queries on compressed columns, and can be disabled when not desired. |
| `enable_tiered_reads` | `BOOLEAN` | `true` | Enable reading of tiered data by including a foreign table representing the data in the object storage into the query plan |
| `enable_transparent_decompression` | `BOOLEAN` | `true` | Enable transparent decompression when querying hypertable |
| `enable_tss_callbacks` | `BOOLEAN` | `true` | Enable ts_stat_statements callbacks |
| `enable_uuid_compression` | `BOOLEAN` | `false` | Enable uuid compression |
| `enable_vectorized_aggregation` | `BOOLEAN` | `true` | Enable vectorized aggregation for compressed data |
| `last_tuned` | `STRING` | `NULL` | records last time timescaledb-tune ran |
| `last_tuned_version` | `STRING` | `NULL` | version of timescaledb-tune used to tune |
| `license` | `STRING` | `TS_LICENSE_DEFAULT` | Determines which features are enabled |
| `materializations_per_refresh_window` | `INTEGER` | `10` | The maximal number of individual refreshes per cagg refresh. If more refreshes need to be performed, they are merged into a larger single refresh.<br />min: `0`, max: `INT_MAX` |
| `max_cached_chunks_per_hypertable` | `INTEGER` | `1024` | Maximum number of chunks stored in the cache<br />min: `0`, max: `65536` |
| `max_open_chunks_per_insert` | `INTEGER` | `1024` | Maximum number of open chunk tables per insert<br />min: `0`, max: `PG_INT16_MAX` |
| `max_tuples_decompressed_per_dml_transaction` | `INTEGER` | `100000` | If the number of tuples exceeds this value, an error will be thrown and transaction rolled back. Setting this to 0 sets this value to unlimited number of tuples decompressed.<br />min: `0`, max: `2147483647` |
| `restoring` | `BOOLEAN` | `false` | In restoring mode all timescaledb internal hooks are disabled. This mode is required for restoring logical dumps of databases with timescaledb. |
| `shutdown_bgw_scheduler` | `BOOLEAN` | `false` | this is for debugging purposes |
| `skip_scan_run_cost_multiplier` | `REAL` | `1.0` | Default is 1.0 i.e. regularly estimated SkipScan run cost, 0.0 will make SkipScan to have run cost = 0<br />min: `0.0`, max: `1.0` |
| `telemetry_level` | `ENUM` | `TELEMETRY_DEFAULT` | Level used to determine which telemetry to send |
Version: [2.22.1](https://github.com/timescale/timescaledb/releases/tag/2.22.1)
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_run_live_migration_timescaledb/ =====
2. **Pull the live-migration docker image to you migration machine**
shell sudo docker pull timescale/live-migration:latest
To list the available commands, run:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest --help
To see the available flags for each command, run `--help` for that command. For example:
shell sudo docker run --rm -it -e PGCOPYDB_SOURCE_PGURI=source timescale/live-migration:latest migrate --help
1. **Create a snapshot image of your source database in your Tiger Cloud service**
This process checks that you have tuned your source database and target service correctly for replication,
then creates a snapshot of your data on the migration machine:
shell docker run --rm -it --name live-migration-snapshot
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest snapshot
Live-migration supplies information about updates you need to make to the source database and target service. For example:
shell 2024-03-25T12:40:40.884 WARNING: The following tables in the Source DB have neither a primary key nor a REPLICA IDENTITY (FULL/INDEX) 2024-03-25T12:40:40.884 WARNING: UPDATE and DELETE statements on these tables will not be replicated to the Target DB 2024-03-25T12:40:40.884 WARNING: - public.metrics
If you have warnings, stop live-migration, make the suggested changes and start again.
1. **Synchronize data between your source database and your Tiger Cloud service**
This command migrates data from the snapshot to your Tiger Cloud service, then streams
transactions from the source to the target.
shell docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate
If the source Postgres version is 17 or later, you need to pass additional
flag `-e PGVERSION=17` to the `migrate` command.
During this process, you see the migration process:
shell Live-replay will complete in 1 minute 38.631 seconds (source_wal_rate: 106.0B/s, target_replay_rate: 589.0KiB/s, replay_lag: 56MiB)
If `migrate` stops add `--resume` to start from where it left off.
Once the data in your target Tiger Cloud service has almost caught up with the source database,
you see the following message:
shell Target has caught up with source (source_wal_rate: 751.0B/s, target_replay_rate: 0B/s, replay_lag: 7KiB)
To stop replication, hit 'c' and then ENTER
Wait until `replay_lag` is down to a few kilobytes before you move to the next step. Otherwise, data
replication may not have finished.
1. **Start app downtime**
1. Stop your app writing to the source database, then let the the remaining transactions
finish to fully sync with the target. You can use tools like the `pg_top` CLI or
`pg_stat_activity` to view the current transaction on the source database.
1. Stop Live-migration.
```shell
hit 'c' and then ENTER
```
Live-migration continues the remaining work. This includes copying
TimescaleDB metadata, sequences, and run policies. When the migration completes,
you see the following message:
```sh
Migration successfully completed
```
===== PAGE: https://docs.tigerdata.com/_partials/_caggs-types/ =====
There are three main ways to make aggregation easier: materialized views,
continuous aggregates, and real-time aggregates.
[Materialized views][pg-materialized views] are a standard Postgres function.
They are used to cache the result of a complex query so that you can reuse it
later on. Materialized views do not update regularly, although you can manually
refresh them as required.
[Continuous aggregates][about-caggs] are a TimescaleDB-only feature. They work in
a similar way to a materialized view, but they are updated automatically in the
background, as new data is added to your database. Continuous aggregates are
updated continuously and incrementally, which means they are less resource
intensive to maintain than materialized views. Continuous aggregates are based
on hypertables, and you can query them in the same way as you do your other
tables.
[Real-time aggregates][real-time-aggs] are a TimescaleDB-only feature. They are
the same as continuous aggregates, but they add the most recent raw data to the
previously aggregated data to provide accurate and up-to-date results, without
needing to aggregate data as it is being written.
===== PAGE: https://docs.tigerdata.com/_partials/_devops-rest-api-get-started/ =====
[Tiger REST API][rest-api-reference] is a comprehensive RESTful API you use to manage Tiger Cloud resources
including VPCs, services, and read replicas.
This page shows you how to set up secure authentication for the Tiger REST API and create your first service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Data account][create-account].
* Install [curl][curl].
## Configure secure authentication
Tiger REST API uses HTTP Basic Authentication with access keys and secret keys. All API requests must include
proper authentication headers.
1. **Set up API credentials**
1. In Tiger Cloud Console [copy your project ID][get-project-id] and store it securely using an environment variable:
```bash
export TIGERDATA_PROJECT_ID="your-project-id"
```
1. In Tiger Cloud Console [create your client credentials][create-client-credentials] and store them securely using environment variables:
```bash
export TIGERDATA_ACCESS_KEY="Public key"
export TIGERDATA_SECRET_KEY="Secret key"
```
1. **Configure the API endpoint**
Set the base URL in your environment:
```bash
export API_BASE_URL="https://console.cloud.timescale.com/public/api/v1"
```
1. **Test your authenticated connection to Tiger REST API by listing the services in the current Tiger Cloud project**
```bash
curl -X GET "${API_BASE_URL}/projects/${TIGERDATA_PROJECT_ID}/services" \
-u "${TIGERDATA_ACCESS_KEY}:${TIGERDATA_SECRET_KEY}" \
-H "Content-Type: application/json"
```
This call returns something like:
- No services:
```terminaloutput
[]%
```
- One or more services:
```terminaloutput
[{"service_id":"tgrservice","project_id":"tgrproject","name":"tiger-eon",
"region_code":"us-east-1","service_type":"TIMESCALEDB",
"created":"2025-10-20T12:21:28.216172Z","paused":false,"status":"READY",
"resources":[{"id":"104977","spec":{"cpu_millis":500,"memory_gbs":2,"volume_type":""}}],
"metadata":{"environment":"DEV"},
"endpoint":{"host":"tgrservice.tgrproject.tsdb.cloud.timescale.com","port":11111}}]
```
## Create your first Tiger Cloud service
Create a new service using the Tiger REST API:
1. **Create a service using the POST endpoint**
bash curl -X POST "${API_BASE_URL}/projects/${TIGERDATA_PROJECT_ID}/services"
-u "${TIGERDATA_ACCESS_KEY}:${TIGERDATA_SECRET_KEY}" \
-H "Content-Type: application/json" \
-d '{
"name": "my-first-service",
"addons": ["time-series"],
"region_code": "us-east-1",
"replica_count": 1,
"cpu_millis": "1000",
"memory_gbs": "4"
}'
Tiger Cloud creates a Development environment for you. That is, no delete protection, high-availability, spooling or
read replication. You see something like:
terminaloutput
{"service_id":"tgrservice","project_id":"tgrproject","name":"my-first-service",
"region_code":"us-east-1","service_type":"TIMESCALEDB",
"created":"2025-10-20T22:29:33.052075713Z","paused":false,"status":"QUEUED",
"resources":[{"id":"105120","spec":{"cpu_millis":1000,"memory_gbs":4,"volume_type":""}}],
"metadata":{"environment":"PROD"},
"endpoint":{"host":"tgrservice.tgrproject.tsdb.cloud.timescale.com","port":00001},
"initial_password":"notTellingYou",
"ha_replicas":{"sync_replica_count":0,"replica_count":1}}
1. Save `service_id` from the response to a variable:
bash # Extract service_id from the JSON response export SERVICE_ID="service_id-from-response"
1. **Check the configuration for the service**
bash
curl -X GET "${API_BASE_URL}/projects/${TIGERDATA_PROJECT_ID}/services/${SERVICE_ID}" \
-u "${TIGERDATA_ACCESS_KEY}:${TIGERDATA_SECRET_KEY}" \
-H "Content-Type: application/json"
You see something like:
terminaloutput
{"service_id":"tgrservice","project_id":"tgrproject","name":"my-first-service",
"region_code":"us-east-1","service_type":"TIMESCALEDB",
"created":"2025-10-20T22:29:33.052075Z","paused":false,"status":"READY",
"resources":[{"id":"105120","spec":{"cpu_millis":1000,"memory_gbs":4,"volume_type":""}}],
"metadata":{"environment":"DEV"},
"endpoint":{"host":"tgrservice.tgrproject.tsdb.cloud.timescale.com","port":11111},
"ha_replicas":{"sync_replica_count":0,"replica_count":1}}
And that is it, you are ready to use the [Tiger REST API][rest-api-reference] to manage your
services in Tiger Cloud.
## Security best practices
Follow these security guidelines when working with the Tiger REST API:
- **Credential management**
- Store API credentials as environment variables, not in code
- Use credential rotation policies for production environments
- Never commit credentials to version control systems
- **Network security**
- Use HTTPS endpoints exclusively for API communication
- Implement proper certificate validation in your HTTP clients
- **Data protection**
- Use secure storage for service connection strings and passwords
- Implement proper backup and recovery procedures for created services
- Follow data residency requirements for your region
===== PAGE: https://docs.tigerdata.com/_partials/_dimensions_info/ =====
### Dimension info
To create a `_timescaledb_internal.dimension_info` instance, you call [add_dimension][add_dimension]
to an existing hypertable.
#### Samples
Hypertables must always have a primary range dimension, followed by an arbitrary number of additional
dimensions that can be either range or hash, Typically this is just one hash. For example:
sql SELECT add_dimension('conditions', by_range('time')); SELECT add_dimension('conditions', by_hash('location', 2));
For incompatible data types such as `jsonb`, you can specify a function to the `partition_func` argument
of the dimension build to extract a compatible data type. Look in the example section below.
#### Custom partitioning
By default, TimescaleDB calls Postgres's internal hash function for the given type.
You use a custom partitioning function for value types that do not have a native Postgres hash function.
You can specify a custom partitioning function for both range and hash partitioning. A partitioning function should
take a `anyelement` argument as the only parameter and return a positive `integer` hash value. This hash value is
_not_ a partition identifier, but rather the inserted value's position in the dimension's key space, which is then
divided across the partitions.
#### by_range()
Create a by-range dimension builder. You can partition `by_range` on it's own.
##### Samples
- Partition on time using `CREATE TABLE`
The simplest usage is to partition on a time column:
sql CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
device TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
This is the default partition, you do not need to add it explicitly.
- Extract time from a non-time column using `create_hypertable`
If you have a table with a non-time column containing the time, such as
a JSON column, add a partition function to extract the time:
sql CREATE TABLE my_table (
metric_id serial not null,
data jsonb,
);
CREATE FUNCTION get_time(jsonb) RETURNS timestamptz AS $$
SELECT ($1->>'time')::timestamptz
$$ LANGUAGE sql IMMUTABLE;
SELECT create_hypertable('my_table', by_range('data', '1 day', 'get_time'));
##### Arguments
| Name | Type | Default | Required | Description |
|-|----------|---------|-|-|
|`column_name`| `NAME` | - |✔|Name of column to partition on.|
|`partition_func`| `REGPROC` | - |✖|The function to use for calculating the partition of a value.|
|`partition_interval`|`ANYELEMENT` | - |✖|Interval to partition column on.|
If the column to be partitioned is a:
- `TIMESTAMP`, `TIMESTAMPTZ`, or `DATE`: specify `partition_interval` either as an `INTERVAL` type
or an integer value in *microseconds*.
- Another integer type: specify `partition_interval` as an integer that reflects the column's
underlying semantics. For example, if this column is in UNIX time, specify `partition_interval` in milliseconds.
The partition type and default value depending on column type is:<a id="partition-types" href=""></a>
| Column Type | Partition Type | Default value |
|------------------------------|------------------|---------------|
| `TIMESTAMP WITHOUT TIMEZONE` | INTERVAL/INTEGER | 1 week |
| `TIMESTAMP WITH TIMEZONE` | INTERVAL/INTEGER | 1 week |
| `DATE` | INTERVAL/INTEGER | 1 week |
| `SMALLINT` | SMALLINT | 10000 |
| `INT` | INT | 100000 |
| `BIGINT` | BIGINT | 1000000 |
#### by_hash()
The main purpose of hash partitioning is to enable parallelization across multiple disks within the same time interval.
Every distinct item in hash partitioning is hashed to one of *N* buckets. By default, TimescaleDB uses flexible range
intervals to manage chunk sizes.
### Parallelizing disk I/O
You use Parallel I/O in the following scenarios:
- Two or more concurrent queries should be able to read from different disks in parallel.
- A single query should be able to use query parallelization to read from multiple disks in parallel.
For the following options:
- **RAID**: use a RAID setup across multiple physical disks, and expose a single logical disk to the hypertable.
That is, using a single tablespace.
Best practice is to use RAID when possible, as you do not need to manually manage tablespaces
in the database.
- **Multiple tablespaces**: for each physical disk, add a separate tablespace to the database. TimescaleDB allows you to
add multiple tablespaces to a *single* hypertable. However, although under the hood, a hypertable's
chunks are spread across the tablespaces associated with that hypertable.
When using multiple tablespaces, a best practice is to also add a second hash-partitioned dimension to your hypertable
and to have at least one hash partition per disk. While a single time dimension would also work, it would mean that
the first chunk is written to one tablespace, the second to another, and so on, and thus would parallelize only if a
query's time range exceeds a single chunk.
When adding a hash partitioned dimension, set the number of partitions to a multiple of number of disks. For example,
the number of partitions P=N*Pd where N is the number of disks and Pd is the number of partitions per
disk. This enables you to add more disks later and move partitions to the new disk from other disks.
TimescaleDB does *not* benefit from a very large number of hash
partitions, such as the number of unique items you expect in partition
field. A very large number of hash partitions leads both to poorer
per-partition load balancing (the mapping of items to partitions using
hashing), as well as much increased planning latency for some types of
queries.
##### Samples
sql CREATE TABLE conditions ( "time" TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, device TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL ) WITH ( tsdb.hypertable, tsdb.partition_column='time', tsdb.chunk_interval='1 day' );
SELECT add_dimension('conditions', by_hash('location', 2));
##### Arguments
| Name | Type | Default | Required | Description |
|-|----------|---------|-|----------------------------------------------------------|
|`column_name`| `NAME` | - |✔| Name of column to partition on. |
|`partition_func`| `REGPROC` | - |✖| The function to use to calcule the partition of a value. |
|`number_partitions`|`ANYELEMENT` | - |✔| Number of hash partitions to use for `partitioning_column`. Must be greater than 0. |
#### Returns
`by_range` and `by-hash` return an opaque `_timescaledb_internal.dimension_info` instance, holding the
dimension information used by this function.
===== PAGE: https://docs.tigerdata.com/_partials/_selfhosted_production_alert/ =====
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-redhat-x-platform/ =====
1. **Update your local repository list**
```bash
sudo yum update
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo yum install timescaledb-2-postgresql-17 postgresql17
```
<!-- hack until we have bandwidth to rewrite this linting rule -->
<!-- markdownlint-disable TS007 -->
On Red Hat Enterprise Linux 8 and later, disable the built-in Postgres module:
`sudo dnf -qy module disable postgresql`
<!-- markdownlint-enable TS007 -->
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-17/bin/postgresql-17-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-17/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-17
sudo systemctl start postgresql-17
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_since_2_2_0/ =====
Since [TimescaleDB v2.2.0](https://github.com/timescale/timescaledb/releases/tag/2.2.0)
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dual_write_6a_through_c/ =====
Dump the data from your source database on a per-table basis into CSV format,
and restore those CSVs into the target database using the
`timescaledb-parallel-copy` tool.
### 6a. Determine the time range of data to be copied
Determine the window of data that to be copied from the source database to the
target. Depending on the volume of data in the source table, it may be sensible
to split the source table into multiple chunks of data to move independently.
In the following steps, this time range is called `<start>` and `<end>`.
Usually the `time` column is of type `timestamp with time zone`, so the values
of `<start>` and `<end>` must be something like `2023-08-01T00:00:00Z`. If the
`time` column is not a `timestamp with time zone` then the values of `<start>`
and `<end>` must be the correct type for the column.
If you intend to copy all historic data from the source table, then the value
of `<start>` can be `'-infinity'`, and the `<end>` value is the value of the
completion point `T` that you determined.
### 6b. Remove overlapping data in the target
The dual-write process may have already written data into the target database
in the time range that you want to move. In this case, the dual-written data
must be removed. This can be achieved with a `DELETE` statement, as follows:
bash psql target -c "DELETE FROM WHERE time >= AND time < );"
The BETWEEN operator is inclusive of both the start and end ranges, so it is
not recommended to use it.
===== PAGE: https://docs.tigerdata.com/_partials/_psql-installation-homebrew/ =====
#### Installing psql using Homebrew
1. Install `psql`:
```bash
brew install libpq
```
1. Update your path to include the `psql` tool.
```bash
brew link --force libpq
```
On Intel chips, the symbolic link is added to `/usr/local/bin`. On Apple
Silicon, the symbolic link is added to `/opt/homebrew/bin`.
===== PAGE: https://docs.tigerdata.com/_partials/_early_access_2_17_1/ =====
Early access: TimescaleDB v2.17.1
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_postgresql/ =====
## Prepare to migrate
1. **Take the applications that connect to the source database offline**
The duration of the migration is proportional to the amount of data stored in your database. By
disconnection your app from your database you avoid and possible data loss.
1. **Set your connection strings**
These variables hold the connection information for the source database and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
## Align the extensions on the source and target
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Migrate the roles from TimescaleDB to your Tiger Cloud service
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
1. **Dump the roles from your source database**
Export your role-based security hierarchy. `<db_name>` has the same value as `<db_name>` in `source`.
I know, it confuses me as well.
bash pg_dumpall -d "source"
-l <db_name>
--quote-all-identifiers \
--roles-only \
--file=roles.sql
If you only use the default `postgres` role, this step is not necessary.
1. **Remove roles with superuser access**
Tiger Cloud service do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "tsdbadmin";/d' \ -e '/ALTER ROLE "tsdbadmin"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Dump the source database schema and data**
The `pg_dump` flags remove superuser access and tablespaces from your data. When you run
`pgdump`, check the run time, [a long-running `pg_dump` can cause issues][long-running-pgdump].
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information,
see [dumping with concurrency][dumping-with-concurrency] and [restoring with concurrency][restoring-with-concurrency].
## Upload your data to the target Tiger Cloud service
bash psql target -v ON_ERROR_STOP=1 --echo-errors \ -f roles.sql \ -f dump.sql
## Validate your Tiger Cloud service and restart your app
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
===== PAGE: https://docs.tigerdata.com/_partials/_hypercore-conversion-overview/ =====
When you convert chunks from the rowstore to the columnstore, multiple records are grouped into a single row.
The columns of this row hold an array-like structure that stores all the data. For example, data in the following
rowstore chunk:
| Timestamp | Device ID | Device Type | CPU |Disk IO|
|---|---|---|---|---|
|12:00:01|A|SSD|70.11|13.4|
|12:00:01|B|HDD|69.70|20.5|
|12:00:02|A|SSD|70.12|13.2|
|12:00:02|B|HDD|69.69|23.4|
|12:00:03|A|SSD|70.14|13.0|
|12:00:03|B|HDD|69.70|25.2|
Is converted and compressed into arrays in a row in the columnstore:
|Timestamp|Device ID|Device Type|CPU|Disk IO|
|-|-|-|-|-|
|[12:00:01, 12:00:01, 12:00:02, 12:00:02, 12:00:03, 12:00:03]|[A, B, A, B, A, B]|[SSD, HDD, SSD, HDD, SSD, HDD]|[70.11, 69.70, 70.12, 69.69, 70.14, 69.70]|[13.4, 20.5, 13.2, 23.4, 13.0, 25.2]|
Because a single row takes up less disk space, you can reduce your chunk size by up to 98%, and can also
speed up your queries. This saves on storage costs, and keeps your queries operating at lightning speed.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migration_cleanup/ =====
To clean up resources associated with live migration, use the following command:
sh docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
The `--prune` flag is used to delete temporary files in the `~/live-migration` directory
that were needed for the migration process. It's important to note that executing the
`clean` command means you cannot resume the interrupted live migration.
===== PAGE: https://docs.tigerdata.com/_partials/_devops-cli-get-started/ =====
Tiger CLI is a command-line interface that you use to manage Tiger Cloud resources
including VPCs, services, read replicas, and related infrastructure. Tiger CLI calls Tiger REST API to communicate with
Tiger Cloud.
This page shows you how to install and set up secure authentication for Tiger CLI, then create your first
service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Data account][create-account].
## Install and configure Tiger CLI
1. **Install Tiger CLI**
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
1. **Set up API credentials**
1. Log Tiger CLI into your Tiger Data account:
```shell
tiger auth login
```
Tiger CLI opens Console in your browser. Log in, then click `Authorize`.
You can have a maximum of 10 active client credentials. If you get an error, open [credentials][rest-api-credentials]
and delete an unused credential.
1. Select a Tiger Cloud project:
```terminaloutput
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
```
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in `~/.config/tiger/credentials` with restricted file permissions (600).
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`.
1. **Test your authenticated connection to Tiger Cloud by listing services**
```bash
tiger service list
```
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
## Create your first Tiger Cloud service
Create a new Tiger Cloud service using Tiger CLI:
1. **Submit a service creation request**
By default, Tiger CLI creates a service for you that matches your [pricing plan][pricing-plans]:
* **Free plan**: shared CPU/memory and the `time-series` and `ai` capabilities
* **Paid plan**: 0.5 CPU and 2 GB memory with the `time-series` capability
shell tiger service create
Tiger Cloud creates a Development environment for you. That is, no delete protection, high-availability, spooling or
read replication. You see something like:
terminaloutput
🚀 Creating service 'db-11111' (auto-generated name)...
✅ Service creation request accepted!
📋 Service ID: tgrservice
🔐 Password saved to system keyring for automatic authentication
🎯 Set service 'tgrservice' as default service.
⏳ Waiting for service to be ready (wait timeout: 30m0s)...
🎉 Service is ready and running!
🔌 Run 'tiger db connect' to connect to your new service ┌───────────────────┬──────────────────────────────────────────────────────────────────────────────────────────────────┐ │ PROPERTY │ VALUE │ ├───────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────┤ │ Service ID │ tgrservice │ │ Name │ db-11111 │ │ Status │ READY │ │ Type │ TIMESCALEDB │ │ Region │ us-east-1 │ │ CPU │ 0.5 cores (500m) │ │ Memory │ 2 GB │ │ Direct Endpoint │ tgrservice.tgrproject.tsdb.cloud.timescale.com:39004 │ │ Created │ 2025-10-20 20:33:46 UTC │ │ Connection String │ postgresql://tsdbadmin@tgrservice.tgrproject.tsdb.cloud.timescale.com:0007/tsdb?sslmode=require │ │ Console URL │ https://console.cloud.timescale.com/dashboard/services/tgrservice │ └───────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────┘
This service is set as default by the CLI.
1. **Check the CLI configuration**
shell tiger config show
You see something like:
terminaloutput api_url: https://console.cloud.timescale.com/public/api/v1 console_url: https://console.cloud.timescale.com gateway_url: https://console.cloud.timescale.com/api docs_mcp: true docs_mcp_url: https://mcp.tigerdata.com/docs project_id: tgrproject service_id: tgrservice output: table analytics: true password_storage: keyring debug: false config_dir: /Users//.config/tiger
And that is it, you are ready to use Tiger CLI to manage your services in Tiger Cloud.
## Commands
You can use the following commands with Tiger CLI. For more information on each command, use the `-h` flag. For example:
`tiger auth login -h`
| Command | Subcommand | Description |
|---------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| auth | | Manage authentication and credentials for your Tiger Data account |
| | login | Create an authenticated connection to your Tiger Data account |
| | logout | Remove the credentials used to create authenticated connections to Tiger Cloud |
| | status | Show your current authentication status and project ID |
| version | | Show information about the currently installed version of Tiger CLI |
| config | | Manage your Tiger CLI configuration |
| | show | Show the current configuration |
| | set `<key>` `<value>` | Set a specific value in your configuration. For example, `tiger config set debug true` |
| | unset `<key>` | Clear the value of a configuration parameter. For example, `tiger config unset debug` |
| | reset | Reset the configuration to the defaults. This also logs you out from the current Tiger Cloud project |
| service | | Manage the Tiger Cloud services in this project |
| | create | Create a new service in this project. Possible flags are: <ul><li>`--name`: service name (auto-generated if not provided)</li><li>`--addons`: addons to enable (time-series, ai, or none for PostgreSQL-only)</li><li>`--region`: region code where the service will be deployed</li><li>`--cpu-memory`: CPU/memory allocation combination</li><li>`--replicas`: number of high-availability replicas</li><li>`--no-wait`: don't wait for the operation to complete</li><li>`--wait-timeout`: wait timeout duration (for example, 30m, 1h30m, 90s)</li><li>`--no-set-default`: don't set this service as the default service</li><li>`--with-password`: include password in output</li><li>`--output, -o`: output format (`json`, `yaml`, table)</li></ul> <br/> Possible `cpu-memory` combinations are: <ul><li>shared/shared</li><li>0.5 CPU/2 GB</li><li>1 CPU/4 GB</li><li>2 CPU/8 GB</li><li>4 CPU/16 GB</li><li>8 CPU/32 GB</li><li>16 CPU/64 GB</li><li>32 CPU/128 GB</li></ul> |
| | delete `<service-id>` | Delete a service from this project. This operation is irreversible and requires confirmation by typing the service ID |
| | fork `<service-id>` | Fork an existing service to create a new independent copy. Key features are: <ul><li><strong>Timing options</strong>: `--now`, `--last-snapshot`, `--to-timestamp`</li><li><strong>Resource configuration</strong>: `--cpu-memory`</li><li><strong>Naming</strong>: `--name <name>`. Defaults to `{source-service-name}-fork`</li><li><strong>Wait behavior</strong>: `--no-wait`, `--wait-timeout`</li><li><strong>Default service</strong>: `--no-set-default`</li></ul> |
| | get `<service-id>` (aliases: describe, show) | Show detailed information about a specific service in this project |
| | list | List all the services in this project |
| | update-password `<service-id>` | Update the master password for a service |
| db | | Database operations and management |
| | connect `<service-id>` | Connect to a service |
| | connection-string `<service-id>` | Retrieve the connection string for a service |
| | save-password `<service-id>` | Save the password for a service |
| | test-connection `<service-id>` | Test the connectivity to a service |
| mcp | | Manage the Tiger Model Context Protocol Server for AI Assistant integration |
| | install `[client]` | Install and configure Tiger Model Context Protocol Server for a specific client (`claude-code`, `cursor`, `windsurf`, or other). If no client is specified, you'll be prompted to select one interactively |
| | start | Start the Tiger Model Context Protocol Server. This is the same as `tiger mcp start stdio` |
| | start stdio | Start the Tiger Model Context Protocol Server with stdio transport (default) |
| | start http | Start the Tiger Model Context Protocol Server with HTTP transport. Includes flags: `--port` (default: `8080`), `--host` (default: `localhost`) |
## Global flags
You can use the following global flags with Tiger CLI:
| Flag | Default | Description |
|-------------------------------|-------------------|-----------------------------------------------------------------------------|
| `--analytics` | `true` | Set to `false` to disable usage analytics |
| `--color ` | `true` | Set to `false` to disable colored output |
| `--config-dir` string | `.config/tiger` | Set the directory that holds `config.yaml` |
| `--debug` | No debugging | Enable debug logging |
| `--help` | - | Print help about the current command. For example, `tiger service --help` |
| `--password-storage` string | keyring | Set the password storage method. Options are `keyring`, `pgpass`, or `none` |
| `--service-id` string | - | Set the Tiger Cloud service to manage |
| ` --skip-update-check ` | - | Do not check if a new version of Tiger CLI is available|
## Configuration parameters
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`. The name of these
variables matches the flags you use to update them. However, you can override them using the following
environmental variables:
- **Configuration parameters**
- `TIGER_CONFIG_DIR`: path to configuration directory (default: `~/.config/tiger`)
- `TIGER_API_URL`: Tiger REST API base endpoint (default: https://console.cloud.timescale.com/public/api/v1)
- `TIGER_CONSOLE_URL`: URL to Tiger Cloud Console (default: https://console.cloud.timescale.com)
- `TIGER_GATEWAY_URL`: URL to the Tiger Cloud Console gateway (default: https://console.cloud.timescale.com/api)
- `TIGER_DOCS_MCP`: enable/disable docs MCP proxy (default: `true`)
- `TIGER_DOCS_MCP_URL`: URL to the Tiger MCP Server for Tiger Data docs (default: https://mcp.tigerdata.com/docs)
- `TIGER_SERVICE_ID`: ID for the service updated when you call CLI commands
- `TIGER_ANALYTICS`: enable or disable analytics (default: `true`)
- `TIGER_PASSWORD_STORAGE`: password storage method (keyring, pgpass, or none)
- `TIGER_DEBUG`: enable/disable debug logging (default: `false`)
- `TIGER_COLOR`: set to `false` to disable colored output (default: `true`)
- **Authentication parameters**
To authenticate without using the interactive login, either:
- Set the following parameters with your [client credentials][rest-api-credentials], then `login`:
```shell
TIGER_PUBLIC_KEY=<public_key> TIGER_SECRET_KEY=<secret_key> TIGER_PROJECT_ID=<project_id>\
tiger auth login
```
- Add your [client credentials][rest-api-credentials] to the `login` command:
```shell
tiger auth login --public-key=<public_key> --secret-key=<secret-key> --project-id=<project_id>
```
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_self_postgres_plan_migration_path/ =====
Best practice is to always use the latest version of TimescaleDB. Subscribe to our releases on GitHub or use Tiger Cloud
and always run the latest update without any hassle.
Check the following support matrix against the versions of TimescaleDB and Postgres that you are running currently
and the versions you want to update to, then choose your upgrade path.
For example, to upgrade from TimescaleDB 2.13 on Postgres 13 to TimescaleDB 2.18.2 you need to:
1. Upgrade TimescaleDB to 2.15
1. Upgrade Postgres to 14, 15 or 16.
1. Upgrade TimescaleDB to 2.18.2.
You may need to [upgrade to the latest Postgres version][upgrade-pg] before you upgrade TimescaleDB. Also,
if you use [TimescaleDB Toolkit][toolkit-install], ensure the `timescaledb_toolkit` extension is >=
v1.6.0 before you upgrade TimescaleDB extension.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10|
|-----------------------|-|-|-|-|-|-|-|-|
| 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌|
| 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌|
| 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌|
| 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌|
| 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌|
| 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌|
| 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌|
| 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌
| 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21.
These minor versions [introduced a breaking binary interface change][postgres-breaking-change] that,
once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22.
When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher.
Users of [Tiger Cloud](https://console.cloud.timescale.com/) and platform packages for Linux, Windows, MacOS,
Docker, and Kubernetes are unaffected.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_dump_timescaledb/ =====
## Prepare to migrate
1. **Take the applications that connect to the source database offline**
The duration of the migration is proportional to the amount of data stored in your database. By
disconnection your app from your database you avoid and possible data loss.
1. **Set your connection strings**
These variables hold the connection information for the source database and target Tiger Cloud service:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://tsdbadmin:@:/tsdb?sslmode=require"
You find the connection information for your Tiger Cloud service in the configuration file you
downloaded when you created the service.
## Align the version of TimescaleDB on the source and target
1. Ensure that the source and target databases are running the same version of TimescaleDB.
1. Check the version of TimescaleDB running on your Tiger Cloud service:
```bash
psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
```
1. Update the TimescaleDB extension in your source database to match the target service:
If the TimescaleDB extension is the same version on the source database and target service,
you do not need to do this.
```bash
psql source -c "ALTER EXTENSION timescaledb UPDATE TO '<version here>';"
```
For more information and guidance, see [Upgrade TimescaleDB](https://docs.tigerdata.com/self-hosted/latest/upgrades/).
1. Ensure that the Tiger Cloud service is running the Postgres extensions used in your source database.
1. Check the extensions on the source database:
```bash
psql source -c "SELECT * FROM pg_extension;"
```
1. For each extension, enable it on your target Tiger Cloud service:
```bash
psql target -c "CREATE EXTENSION IF NOT EXISTS <extension name> CASCADE;"
```
## Migrate the roles from TimescaleDB to your Tiger Cloud service
Roles manage database access permissions. To migrate your role-based security hierarchy to your Tiger Cloud service:
1. **Dump the roles from your source database**
Export your role-based security hierarchy. `<db_name>` has the same value as `<db_name>` in `source`.
I know, it confuses me as well.
bash pg_dumpall -d "source"
-l <db_name>
--quote-all-identifiers \
--roles-only \
--file=roles.sql
If you only use the default `postgres` role, this step is not necessary.
1. **Remove roles with superuser access**
Tiger Cloud service do not support roles with superuser access. Run the following script
to remove statements, permissions and clauses that require superuser permissions from `roles.sql`:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "tsdbadmin";/d' \ -e '/ALTER ROLE "tsdbadmin"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
1. **Dump the source database schema and data**
The `pg_dump` flags remove superuser access and tablespaces from your data. When you run
`pgdump`, check the run time, [a long-running `pg_dump` can cause issues][long-running-pgdump].
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --file=dump.sql
To dramatically reduce the time taken to dump the source database, using multiple connections. For more information,
see [dumping with concurrency][dumping-with-concurrency] and [restoring with concurrency][restoring-with-concurrency].
## Upload your data to the target Tiger Cloud service
This command uses the [timescaledb_pre_restore] and [timescaledb_post_restore] functions to put your database in the
correct state.
bash psql target -v ON_ERROR_STOP=1 --echo-errors \ -f roles.sql \ -c "SELECT timescaledb_pre_restore();" \ -f dump.sql \ -c "SELECT timescaledb_post_restore();"
## Validate your Tiger Cloud service and restart your app
1. Update the table statistics.
```bash
psql target -c "ANALYZE;"
```
1. Verify the data in the target Tiger Cloud service.
Check that your data is correct, and returns the results that you expect,
1. Enable any Tiger Cloud features you want to use.
Migration from Postgres moves the data only. Now manually enable Tiger Cloud features like
[hypertables][about-hypertables], [hypercore][data-compression] or [data retention][data-retention]
while your database is offline.
1. Reconfigure your app to use the target database, then restart it.
===== PAGE: https://docs.tigerdata.com/_partials/_early_access/ =====
Early access
===== PAGE: https://docs.tigerdata.com/_partials/_add-data-twelvedata-crypto/ =====
## Load financial data
This tutorial uses real-time cryptocurrency data, also known as tick data, from
[Twelve Data][twelve-data]. To ingest data into the tables that you created, you need to
download the dataset, then upload the data to your Tiger Cloud service.
1. Unzip [crypto_sample.zip](https://assets.timescale.com/docs/downloads/candlestick/crypto_sample.zip) to a `<local folder>`.
This test dataset contains second-by-second trade data for the most-traded crypto-assets
and a regular table of asset symbols and company names.
To import up to 100GB of data directly from your current Postgres-based database,
[migrate with downtime][migrate-with-downtime] using native Postgres tooling. To seamlessly import 100GB-10TB+
of data, use the [live migration][migrate-live] tooling supplied by Tiger Data. To add data from non-Postgres
data sources, see [Import and ingest data][data-ingest].
1. In Terminal, navigate to `<local folder>` and connect to your service.
bash psql -d "postgres://:@:/"
The connection information for a service is available in the file you downloaded when you created it.
1. At the `psql` prompt, use the `COPY` command to transfer data into your
Tiger Cloud service. If the `.csv` files aren't in your current directory,
specify the file paths in these commands:
```sql
\COPY crypto_ticks FROM 'tutorial_sample_tick.csv' CSV HEADER;
```
```sql
\COPY crypto_assets FROM 'tutorial_sample_assets.csv' CSV HEADER;
```
Because there are millions of rows of data, the `COPY` process could take a
few minutes depending on your internet connection and local client
resources.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-fedora/ =====
1. **Install the latest Postgres packages**
```bash
sudo yum install https://download.postgresql.org/pub/repos/yum/reporpms/F-$(rpm -E %{fedora})-x86_64/pgdg-fedora-repo-latest.noarch.rpm
```
1. **Add the TimescaleDB repository**
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/9/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
1. **Update your local repository list**
```bash
sudo yum update
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo yum install timescaledb-2-postgresql-17 postgresql17
```
<!-- hack until we have bandwidth to rewrite this linting rule -->
<!-- markdownlint-disable TS007 -->
On Red Hat Enterprise Linux 8 and later, disable the built-in Postgres module:
`sudo dnf -qy module disable postgresql`
<!-- markdownlint-enable TS007 -->
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-17/bin/postgresql-17-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-17/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-17
sudo systemctl start postgresql-17
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_add-data-blockchain/ =====
## Load financial data
The dataset contains around 1.5 million Bitcoin transactions, the trades for five days. It includes
information about each transaction, along with the value in [satoshi][satoshi-def]. It also states if a
trade is a [coinbase][coinbase-def] transaction, and the reward a coin miner receives for mining the coin.
To ingest data into the tables that you created, you need to download the
dataset and copy the data to your database.
1. Download the `bitcoin_sample.zip` file. The file contains a `.csv`
file that contains Bitcoin transactions for the past five days. Download:
[bitcoin_sample.zip](https://assets.timescale.com/docs/downloads/bitcoin-blockchain/bitcoin_sample.zip)
1. In a new terminal window, run this command to unzip the `.csv` files:
```bash
unzip bitcoin_sample.zip
```
1. In Terminal, navigate to the folder where you unzipped the Bitcoin transactions, then
connect to your service using [psql][connect-using-psql].
1. At the `psql` prompt, use the `COPY` command to transfer data into your
Tiger Cloud service. If the `.csv` files aren't in your current directory,
specify the file paths in these commands:
```sql
\COPY transactions FROM 'tutorial_bitcoin_sample.csv' CSV HEADER;
```
Because there is over a million rows of data, the `COPY` process could take
a few minutes depending on your internet connection and local client
resources.
===== PAGE: https://docs.tigerdata.com/_partials/_hypercore-intro/ =====
Hypercore is a hybrid row-columnar storage engine in TimescaleDB. It is designed specifically for
real-time analytics and powered by time-series data. The advantage of hypercore is its ability
to seamlessly switch between row-oriented and column-oriented storage, delivering the best of both worlds:

Hypercore solves the key challenges in real-time analytics:
- High ingest throughput
- Low-latency ingestion
- Fast query performance
- Efficient handling of data updates and late-arriving data
- Streamlined data management
Hypercore’s hybrid approach combines the benefits of row-oriented and column-oriented formats:
- **Fast ingest with rowstore**: new data is initially written to the rowstore, which is optimized for
high-speed inserts and updates. This process ensures that real-time applications easily handle
rapid streams of incoming data. Mutability—upserts, updates, and deletes happen seamlessly.
- **Efficient analytics with columnstore**: as the data **cools** and becomes more suited for
analytics, it is automatically converted to the columnstore. This columnar format enables
fast scanning and aggregation, optimizing performance for analytical workloads while also
saving significant storage space.
- **Faster queries on compressed data in columnstore**: in the columnstore conversion, hypertable
chunks are compressed by up to 98%, and organized for efficient, large-scale queries. Combined with [chunk skipping][chunk-skipping], this helps you save on storage costs and keeps your queries operating at lightning speed.
- **Fast modification of compressed data in columnstore**: just use SQL to add or modify data in the columnstore.
TimescaleDB is optimized for superfast INSERT and UPSERT performance.
- **Full mutability with transactional semantics**: regardless of where data is stored,
hypercore provides full ACID support. Like in a vanilla Postgres database, inserts and updates
to the rowstore and columnstore are always consistent, and available to queries as soon as they are
completed.
For an in-depth explanation of how hypertables and hypercore work, see the [Data model][data-model].
===== PAGE: https://docs.tigerdata.com/_partials/_experimental-schema-upgrade/ =====
When you upgrade the `timescaledb` extension, the experimental schema is removed
by default. To use experimental features after an upgrade, you need to add the
experimental schema again.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_import_setup_connection_strings_parquet/ =====
This variable holds the connection information for the target Tiger Cloud service.
In the terminal on the source machine, set the following:
bash export TARGET=postgres://tsdbadmin:@:/tsdb?sslmode=require
See where to [find your connection details][connection-info].
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_pg_dump_minimal_downtime/ =====
For minimal downtime, run the migration commands from a machine with a low-latency,
high-throughput link to the source and target databases. If you are using an AWS
EC2 instance to run the migration commands, use one in the same region as your target
Tiger Cloud service.
===== PAGE: https://docs.tigerdata.com/_partials/_migrate_live_migrate_faq_all/ =====
### ERROR: relation "xxx.yy" does not exist
This may happen when a relation is removed after executing the `snapshot` command. A relation can be
a table, index, view, or materialized view. When you see you this error:
- Do not perform any explicit DDL operation on the source database during the course of migration.
- If you are migrating from self-hosted TimescaleDB or MST, disable the chunk retention policy on your source database
until you have finished migration.
### FATAL: remaining connection slots are reserved for non-replication superuser connections
This may happen when the number of connections exhaust `max_connections` defined in your target Tiger Cloud service.
By default, live-migration needs around ~6 connections on the source and ~12 connections on the target.
### Migration seems to be stuck with “x GB copied to Target DB (Source DB is y GB)”
When you are migrating a lot of data involved in aggregation, or there are many materialized views taking time
to complete the materialization, this may be due to `REFRESH MATERIALIZED VIEWS` happening at the end of initial
data migration.
To resolve this issue:
1. See what is happening on the target Tiger Cloud service:
shell psql target -c "select * from pg_stat_activity where application_name ilike '%pgcopydb%';"
1. When you run the `migrate`, add the following flags to exclude specific materialized views being materialized:
shell --skip-table-data ”
1. When `migrate` has finished, manually refresh the materialized views you excluded.
### Restart migration from scratch after a non-resumable failure
If the migration halts due to a failure, such as a misconfiguration of the source or target database, you may need to
restart the migration from scratch. In such cases, you can reuse the original target Tiger Cloud service created for the
migration by utilizing the `--drop-if-exists` flag with the migrate command.
This flag ensures that the existing target objects created by the previous migration are dropped, allowing the migration
to proceed without trouble.
Note: This flag also requires you to manually recreate the TimescaleDB extension on the target.
Here’s an example command sequence to restart the migration:
shell psql target -c "DROP EXTENSION timescaledb CASCADE"
psql target -c 'CREATE EXTENSION timescaledb VERSION ""'
docker run --rm -it --name live-migration-migrate
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest migrate --drop-if-exists
This approach provides a clean slate for the migration process while reusing the existing target instance.
### Inactive or lagging replication slots
If you encounter an “Inactive or lagging replication slots” warning on your cloud provider console after using live-migration, it might be due to lingering replication slots created by the live-migration tool on your source database.
To clean up resources associated with live migration, use the following command:
sh docker run --rm -it --name live-migration-clean
-e PGCOPYDB_SOURCE_PGURI=source \
-e PGCOPYDB_TARGET_PGURI=target \
--pid=host \
-v ~/live-migration:/opt/timescale/ts_cdc \
timescale/live-migration:latest clean --prune
The `--prune` flag is used to delete temporary files in the `~/live-migration` directory
that were needed for the migration process. It's important to note that executing the
`clean` command means you cannot resume the interrupted live migration.
### Role passwords
Because of issues dumping passwords from various managed service providers, Live-migration
migrates roles without passwords. You have to migrate passwords manually.
### Table privileges
Live-migration does not migrate table privileges. After completing Live-migration:
1. Grant all roles to `tsdbadmin`.
shell psql -d source -t -A -c "SELECT FORMAT('GRANT %I TO tsdbadmin;', rolname) FROM pg_catalog.pgroles WHERE rolname not like 'pg%' AND rolname != 'tsdbadmin' AND NOT rolsuper" | psql -d target -f -
1. On your migration machine, edit `/tmp/grants.psql` to match table privileges on your source database.
shell pg_dump --schema-only --quote-all-identifiers --exclude-schema=_timescaledb_catalog --format=plain --dbname "source" | grep "(ALTER.OWNER.|GRANT|REVOKE)" > /tmp/grants.psql
1. Run `grants.psql` on your target Tiger Cloud service.
shell psql -d target -f /tmp/grants.psql
### Postgres to Tiger Cloud: “live-replay not keeping up with source load”
1. Go to Tiger Cloud Console -> `Monitoring` -> `Insights` tab and find the query which takes significant time
2. If the query is either UPDATE/DELETE, make sure the columns used on the WHERE clause have necessary indexes.
3. If the query is either UPDATE/DELETE on the tables which are converted as hypertables, make sure the REPLIDA IDENTITY(defaults to primary key) on the source is compatible with the target primary key. If not, create an UNIQUE index source database by including the hypertable partition column and make it as a REPLICA IDENTITY. Also, create the same UNIQUE index on target.
### ERROR: out of memory (or) Failed on request of size xxx in memory context "yyy" on a Tiger Cloud service
This error occurs when the Out of Memory (OOM) guard is triggered due to memory allocations exceeding safe limits. It typically happens when multiple concurrent connections to the TimescaleDB instance are performing memory-intensive operations. For example, during live migrations, this error can occur when large indexes are being created simultaneously.
The live-migration tool includes a retry mechanism to handle such errors. However, frequent OOM crashes may significantly delay the migration process.
One of the following can be used to avoid the OOM errors:
1. Upgrade to Higher Memory Spec Instances: To mitigate memory constraints, consider using a TimescaleDB instance with higher specifications, such as an instance with 8 CPUs and 32 GB RAM (or more). Higher memory capacity can handle larger workloads and reduce the likelihood of OOM errors.
1. Reduce Concurrency: If upgrading your instance is not feasible, you can reduce the concurrency of the index migration process using the `--index-jobs=<value>` flag in the migration command. By default, the value of `--index-jobs` matches the GUC max_parallel_workers. Lowering this value reduces the memory usage during migration but may increase the total migration time.
By taking these steps, you can prevent OOM errors and ensure a smoother migration experience with TimescaleDB.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-debian-based/ =====
1. **Install the latest Postgres packages**
```bash
sudo apt install gnupg postgresql-common apt-transport-https lsb-release wget
```
1. **Run the Postgres package setup script**
```bash
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
```
If you want to do some development on Postgres, add the libraries:
```
sudo apt install postgresql-server-dev-17
```
1. **Add the TimescaleDB package**
<Terminal>
```bash
echo "deb https://packagecloud.io/timescale/timescaledb/debian/ $(lsb_release -c -s) main" | sudo tee /etc/apt/sources.list.d/timescaledb.list
```
```bash
echo "deb https://packagecloud.io/timescale/timescaledb/ubuntu/ $(lsb_release -c -s) main" | sudo tee /etc/apt/sources.list.d/timescaledb.list
```
</Terminal>
1. **Install the TimescaleDB GPG key**
```bash
wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/timescaledb.gpg
```
For Ubuntu 21.10 and earlier use the following command:
`wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo apt-key add -`
1. **Update your local repository list**
```bash
sudo apt update
```
1. **Install TimescaleDB**
```bash
sudo apt install timescaledb-2-postgresql-17 postgresql-client-17
```
To install a specific TimescaleDB [release][releases-page], set the version. For example:
`sudo apt-get install timescaledb-2-postgresql-14='2.6.0*' timescaledb-2-loader-postgresql-14='2.6.0*'`
Older versions of TimescaleDB may not support all the OS versions listed on this page.
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
By default, this script is included with the `timescaledb-tools` package when you install TimescaleDB. Use the prompts to tune your development or production environment. For more information on manual configuration, see [Configuration][config]. If you have an issue, run `sudo apt install timescaledb-tools`.
1. **Restart Postgres**
```bash
sudo systemctl restart postgresql
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_use-case-setup-blockchain-dataset/ =====
# Ingest data into a Tiger Cloud service
This tutorial uses a dataset that contains Bitcoin blockchain data for
the past five days, in a hypertable named `transactions`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data using hypertables
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
You can also connect to your service using [psql][connect-using-psql].
1. Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data:
```sql
CREATE TABLE transactions (
time TIMESTAMPTZ NOT NULL,
block_id INT,
hash TEXT,
size INT,
weight INT,
is_coinbase BOOLEAN,
output_total BIGINT,
output_total_usd DOUBLE PRECISION,
fee BIGINT,
fee_usd DOUBLE PRECISION,
details JSONB
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='block_id',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Create an index on the `hash` column to make queries for individual
transactions faster:
```sql
CREATE INDEX hash_idx ON public.transactions USING HASH (hash);
```
1. Create an index on the `block_id` column to make block-level queries faster:
When you create a hypertable, it is partitioned on the time column. TimescaleDB
automatically creates an index on the time column. However, you'll often filter
your time-series data on other columns as well. You use [indexes][indexing] to improve
query performance.
```sql
CREATE INDEX block_idx ON public.transactions (block_id);
```
1. Create a unique index on the `time` and `hash` columns to make sure you
don't accidentally insert duplicate records:
```sql
CREATE UNIQUE INDEX time_hash_idx ON public.transactions (time, hash);
```
## Load financial data
The dataset contains around 1.5 million Bitcoin transactions, the trades for five days. It includes
information about each transaction, along with the value in [satoshi][satoshi-def]. It also states if a
trade is a [coinbase][coinbase-def] transaction, and the reward a coin miner receives for mining the coin.
To ingest data into the tables that you created, you need to download the
dataset and copy the data to your database.
1. Download the `bitcoin_sample.zip` file. The file contains a `.csv`
file that contains Bitcoin transactions for the past five days. Download:
[bitcoin_sample.zip](https://assets.timescale.com/docs/downloads/bitcoin-blockchain/bitcoin_sample.zip)
1. In a new terminal window, run this command to unzip the `.csv` files:
```bash
unzip bitcoin_sample.zip
```
1. In Terminal, navigate to the folder where you unzipped the Bitcoin transactions, then
connect to your service using [psql][connect-using-psql].
1. At the `psql` prompt, use the `COPY` command to transfer data into your
Tiger Cloud service. If the `.csv` files aren't in your current directory,
specify the file paths in these commands:
```sql
\COPY transactions FROM 'tutorial_bitcoin_sample.csv' CSV HEADER;
```
Because there is over a million rows of data, the `COPY` process could take
a few minutes depending on your internet connection and local client
resources.
===== PAGE: https://docs.tigerdata.com/_partials/_import-data-iot/ =====
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. **Import time-series data into a hypertable**
1. Unzip [metrics.csv.gz](https://assets.timescale.com/docs/downloads/metrics.csv.gz) to a `<local folder>`.
This test dataset contains energy consumption data.
To import up to 100GB of data directly from your current Postgres based database,
[migrate with downtime][migrate-with-downtime] using native Postgres tooling. To seamlessly import 100GB-10TB+
of data, use the [live migration][migrate-live] tooling supplied by Tiger Data. To add data from non-Postgres
data sources, see [Import and ingest data][data-ingest].
1. In Terminal, navigate to `<local folder>` and update the following string with [your connection details][connection-info]
to connect to your service.
```bash
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>?sslmode=require"
```
1. Create an optimized hypertable for your time-series data:
1. Create a [hypertable][hypertables-section] with [hypercore][hypercore] enabled by default for your
time-series data using [CREATE TABLE][hypertable-create-table]. For [efficient queries][secondary-indexes]
on data in the columnstore, remember to `segmentby` the column you will use most often to filter your data.
In your sql client, run the following command:
```sql
CREATE TABLE "metrics"(
created timestamp with time zone default now() not null,
type_id integer not null,
value double precision not null
) WITH (
tsdb.hypertable,
tsdb.partition_column='created',
tsdb.segmentby = 'type_id',
tsdb.orderby = 'created DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Upload the dataset to your service
```sql
\COPY metrics FROM metrics.csv CSV;
```
1. **Have a quick look at your data**
You query hypertables in exactly the same way as you would a relational Postgres table.
Use one of the following SQL editors to run a query and see the data you uploaded:
- **Data mode**: write queries, visualize data, and share your results in [Tiger Cloud Console][portal-data-mode] for all your Tiger Cloud services.
- **SQL editor**: write, fix, and organize SQL faster and more accurately in [Tiger Cloud Console][portal-ops-mode] for a Tiger Cloud service.
- **psql**: easily run queries on your Tiger Cloud services or self-hosted TimescaleDB deployment from Terminal.
```sql
SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
```
On this amount of data, this query on data in the rowstore takes about 3.6 seconds. You see something like:
| Time | value |
|------------------------------|-------|
| 2023-05-29 22:00:00+00 | 23.1 |
| 2023-05-28 22:00:00+00 | 19.5 |
| 2023-05-30 22:00:00+00 | 25 |
| 2023-05-31 22:00:00+00 | 8.1 |
===== PAGE: https://docs.tigerdata.com/_partials/_toolkit-install-update-debian-base/ =====
## Prerequisites
To follow this procedure:
- [Install TimescaleDB][debian-install].
- Add the TimescaleDB repository and the GPG key.
## Install TimescaleDB Toolkit
These instructions use the `apt` package manager.
1. Update your local repository list:
```bash
sudo apt update
```
1. Install TimescaleDB Toolkit:
```bash
sudo apt install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use Toolkit.
1. Create the Toolkit extension in the database:
```sql
CREATE EXTENSION timescaledb_toolkit;
```
## Update TimescaleDB Toolkit
Update Toolkit by installing the latest version and running `ALTER EXTENSION`.
1. Update your local repository list:
```bash
apt update
```
1. Install the latest version of TimescaleDB Toolkit:
```bash
apt install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use the new version of Toolkit.
1. Update the Toolkit extension in the database:
```sql
ALTER EXTENSION timescaledb_toolkit UPDATE;
```
For some Toolkit versions, you might need to disconnect and reconnect active
sessions.
===== PAGE: https://docs.tigerdata.com/_partials/_grafana-viz-prereqs/ =====
Before you begin, make sure you have:
* Created a [Timescale][cloud-login] service.
* Installed a self-managed Grafana account, or signed up for
[Grafana Cloud][install-grafana].
* Ingested some data to your database. You can use the stock trade data from
the [Getting Started Guide][gsg-data].
The examples in this section use these variables and Grafana functions:
* `$symbol`: a variable used to filter results by stock symbols.
* `_timeFrom()::timestamptz` & `_timeTo()::timestamptz`:
Grafana variables. You change the values of these variables by
using the dashboard's date chooser when viewing your graph.
* `$bucket_interval`: the interval size to pass to the `time_bucket`
function when aggregating data.
===== PAGE: https://docs.tigerdata.com/_partials/_cloud-mst-comparison/ =====
Tiger Cloud is a high-performance developer focused cloud that provides Postgres services enhanced
with our blazing fast vector search. You can securely integrate Tiger Cloud with your AWS, GCS or Azure
infrastructure. [Create a Tiger Cloud service][timescale-service] and try for free.
If you need to run TimescaleDB on GCP or Azure, you're in the right place — keep reading.
===== PAGE: https://docs.tigerdata.com/_partials/_plan_upgrade/ =====
- Install the Postgres client tools on your migration machine. This includes `psql`, and `pg_dump`.
- Read [the release notes][relnotes] for the version of TimescaleDB that you are upgrading to.
- [Perform a backup][backup] of your database. While TimescaleDB
upgrades are performed in-place, upgrading is an intrusive operation. Always
make sure you have a backup on hand, and that the backup is readable in the
case of disaster.
===== PAGE: https://docs.tigerdata.com/_partials/_use-case-iot-create-cagg/ =====
1. **Monitor energy consumption on a day-to-day basis**
1. Create a continuous aggregate `kwh_day_by_day` for energy consumption:
```sql
CREATE MATERIALIZED VIEW kwh_day_by_day(time, value)
with (timescaledb.continuous) as
SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
```
1. Add a refresh policy to keep `kwh_day_by_day` up-to-date:
```sql
SELECT add_continuous_aggregate_policy('kwh_day_by_day',
start_offset => NULL,
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. **Monitor energy consumption on an hourly basis**
1. Create a continuous aggregate `kwh_hour_by_hour` for energy consumption:
```sql
CREATE MATERIALIZED VIEW kwh_hour_by_hour(time, value)
with (timescaledb.continuous) as
SELECT time_bucket('01:00:00', metrics.created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
```
1. Add a refresh policy to keep the continuous aggregate up-to-date:
```sql
SELECT add_continuous_aggregate_policy('kwh_hour_by_hour',
start_offset => NULL,
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. **Analyze your data**
Now you have made continuous aggregates, it could be a good idea to use them to perform analytics on your data.
For example, to see how average energy consumption changes during weekdays over the last year, run the following query:
```sql
WITH per_day AS (
SELECT
time,
value
FROM kwh_day_by_day
WHERE "time" at time zone 'Europe/Berlin' > date_trunc('month', time) - interval '1 year'
ORDER BY 1
), daily AS (
SELECT
to_char(time, 'Dy') as day,
value
FROM per_day
), percentile AS (
SELECT
day,
approx_percentile(0.50, percentile_agg(value)) as value
FROM daily
GROUP BY 1
ORDER BY 1
)
SELECT
d.day,
d.ordinal,
pd.value
FROM unnest(array['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) WITH ORDINALITY AS d(day, ordinal)
LEFT JOIN percentile pd ON lower(pd.day) = lower(d.day);
```
You see something like:
| day | ordinal | value |
| --- | ------- | ----- |
| Mon | 2 | 23.08078714975423 |
| Sun | 1 | 19.511430831944395 |
| Tue | 3 | 25.003118897837307 |
| Wed | 4 | 8.09300571759772 |
===== PAGE: https://docs.tigerdata.com/_partials/_use-case-transport-geolocation/ =====
### Set up your data for geospatial queries
To add geospatial analysis to your ride count visualization, you need geospatial data to work out which trips
originated where. As TimescaleDB is compatible with all Postgres extensions, use [PostGIS][postgis] to slice
data by time and location.
1. Connect to your [Tiger Cloud service][in-console-editors] and add the PostGIS extension:
```sql
CREATE EXTENSION postgis;
```
1. Add geometry columns for pick up and drop off locations:
```sql
ALTER TABLE rides ADD COLUMN pickup_geom geometry(POINT,2163);
ALTER TABLE rides ADD COLUMN dropoff_geom geometry(POINT,2163);
```
1. Convert the latitude and longitude points into geometry coordinates that work with PostGIS:
```sql
UPDATE rides SET pickup_geom = ST_Transform(ST_SetSRID(ST_MakePoint(pickup_longitude,pickup_latitude),4326),2163),
dropoff_geom = ST_Transform(ST_SetSRID(ST_MakePoint(dropoff_longitude,dropoff_latitude),4326),2163);
```
This updates 10,906,860 rows of data on both columns, it takes a while. Coffee is your friend.
### Visualize the area where you can make the most money
In this section you visualize a query that returns rides longer than 5 miles for
trips taken within 2 km of Times Square. The data includes the distance travelled and
is `GROUP BY` `trip_distance` and location so that Grafana can plot the data properly.
This enables you to see where a taxi driver is most likely to pick up a passenger who wants a longer ride,
and make more money.
1. **Create a geolocalization dashboard**
1. In Grafana, create a new dashboard that is connected to your Tiger Cloud service data source with a Geomap
visualization.
1. In the `Queries` section, select `Code`, then select the Time series `Format`.

1. To find rides longer than 5 miles in Manhattan, paste the following query:
```sql
SELECT time_bucket('5m', rides.pickup_datetime) AS time,
rides.trip_distance AS value,
rides.pickup_latitude AS latitude,
rides.pickup_longitude AS longitude
FROM rides
WHERE rides.pickup_datetime BETWEEN '2016-01-01T01:41:55.986Z' AND '2016-01-01T07:41:55.986Z' AND
ST_Distance(pickup_geom,
ST_Transform(ST_SetSRID(ST_MakePoint(-73.9851,40.7589),4326),2163)
) < 2000
GROUP BY time,
rides.trip_distance,
rides.pickup_latitude,
rides.pickup_longitude
ORDER BY time
LIMIT 500;
```
You see a world map with a dot on New York.
1. Zoom into your map to see the visualization clearly.
1. **Customize the visualization**
1. In the Geomap options, under `Map Layers`, click `+ Add layer` and select `Heatmap`.
You now see the areas where a taxi driver is most likely to pick up a passenger who wants a
longer ride, and make more money.

===== PAGE: https://docs.tigerdata.com/_partials/_old-api-create-hypertable/ =====
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
===== PAGE: https://docs.tigerdata.com/_partials/_timescale-cloud-regions/ =====
Tiger Cloud services run in the following Amazon Web Services (AWS) regions:
| Region | Zone | Location |
| ---------------- | ------------- | -------------- |
| `ap-south-1` | Asia Pacific | Mumbai |
| `ap-southeast-1` | Asia Pacific | Singapore |
| `ap-southeast-2` | Asia Pacific | Sydney |
| `ap-northeast-1` | Asia Pacific | Tokyo |
| `ca-central-1` | Canada | Central |
| `eu-central-1` | Europe | Frankfurt |
| `eu-west-1` | Europe | Ireland |
| `eu-west-2` | Europe | London |
| `sa-east-1` | South America | São Paulo |
| `us-east-1` | United States | North Virginia |
| `us-east-2` | United States | Ohio |
| `us-west-2` | United States | Oregon |
===== PAGE: https://docs.tigerdata.com/_partials/_timescale-intro/ =====
Tiger Data extends Postgres for all of your resource-intensive production workloads, so you
can build faster, scale further, and stay under budget.
===== PAGE: https://docs.tigerdata.com/_partials/_devops-mcp-commands/ =====
Tiger Model Context Protocol Server exposes the following MCP tools to your AI Assistant:
| Command | Parameter | Required | Description |
|--------------------------|---------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `service_list` | - | - | Returns a list of the services in the current project. |
| `service_get` | - | - | Returns detailed information about a service. |
| | `service_id` | ✓ | The unique identifier of the service (10-character alphanumeric string). |
| | `with_password` | - | Set to `true` to include the password in the response and connection string. <br/> **WARNING**: never do this unless the user explicitly requests the password. |
| `service_create` | - | - | Create a new service in Tiger Cloud. <br/> **WARNING**: creates billable resources. |
| | `name` | - | Set the human-readable name of up to 128 characters for this service. |
| | `addons` | - | Set the array of [addons][create-service] to enable for the service. Options: <ul><li>`time-series`: enables TimescaleDB</li><li>`ai`: enables the AI and vector extensions</li></ul> Set an empty array for Postgres-only. |
| | `region` | - | Set the [AWS region][cloud-regions] to deploy this service in. |
| | `cpu_memory` | - | CPU and memory allocation combination. <br /> Available configurations are: <ul><li>shared/shared</li><li>0.5 CPU/2 GB</li><li>1 CPU/4 GB</li><li>2 CPU/8 GB</li><li>4 CPU/16 GB</li><li>8 CPU/32 GB</li><li>16 CPU/64 GB</li><li>32 CPU/128 GB</li></ul> |
| | `replicas` | - | Set the number of [high-availability replicas][readreplica] for fault tolerance. |
| | `wait` | - | Set to `true` to wait for service to be fully ready before returning. |
| | `timeout_minutes` | - | Set the timeout in minutes to wait for service to be ready. Only used when `wait=true`. Default: 30 minutes |
| | `set_default` | - | By default, the new service is the default for following commands in CLI. Set to `false` to keep the previous service as the default. |
| | `with_password` | - | Set to `true` to include the password for this service in response and connection string. <br/> **WARNING**: never set to `true` unless user explicitly requests the password. |
| `service_update_password` | - | - | Update the password for the `tsdbadmin` for this service. The password change takes effect immediately and may terminate existing connections. |
| | `service_id` | ✓ | The unique identifier of the service you want to update the password for. |
| | `password` | ✓ | The new password for the `tsdbadmin` user. |
| `db_execute_query` | - | - | Execute a single SQL query against a service. This command returns column metadata, result rows, affected row count, and execution time. Multi-statement queries are not supported. <br/> **WARNING**: can execute destructive SQL including INSERT, UPDATE, DELETE, and DDL commands. |
| | `service_id` | ✓ | The unique identifier of the service. Use `tiger_service_list` to find service IDs. |
| | `query` | ✓ | The SQL query to execute. Single statement queries are supported. |
| | `parameters` | - | Query parameters for parameterized queries. Values are substituted for the `$n` placeholders in the query. |
| | `timeout_seconds` | - | The query timeout in seconds. Default: `30`. |
| | `role` | - | The service role/username to connect as. Default: `tsdbadmin`. |
| | `pooled` | - | Use [connection pooling][Connection pooling]. This is only available if you have already enabled it for the service. Default: `false`. |
===== PAGE: https://docs.tigerdata.com/_partials/_cloudwatch-data-exporter/ =====
1. **In Tiger Cloud Console, open [Exporters][console-integrations]**
1. **Click `New exporter`**
1. **Select the data type and specify `AWS CloudWatch` for provider**

1. **Provide your AWS CloudWatch configuration**
- The AWS region must be the same for your Tiger Cloud exporter and AWS CloudWatch Log group.
- The exporter name appears in Tiger Cloud Console, best practice is to make this name easily understandable.
- For CloudWatch credentials, either use an [existing CloudWatch Log group][console-cloudwatch-configuration]
or [create a new one][console-cloudwatch-create-group]. If you're uncertain, use
the default values. For more information, see [Working with log groups and log streams][cloudwatch-log-naming].
1. **Choose the authentication method to use for the exporter**

1. In AWS, navigate to [IAM > Identity providers][create-an-iam-id-provider], then click `Add provider`.
1. Update the new identity provider with your details:
Set `Provider URL` to the [region where you are creating your exporter][reference].

1. Click `Add provider`.
1. In AWS, navigate to [IAM > Roles][add-id-provider-as-wi-role], then click `Create role`.
1. Add your identity provider as a Web identity role and click `Next`.

1. Set the following permission and trust policies:
- Permission policy:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:PutLogEvents",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:DescribeLogGroups",
"logs:PutRetentionPolicy",
"xray:PutTraceSegments",
"xray:PutTelemetryRecords",
"xray:GetSamplingRules",
"xray:GetSamplingTargets",
"xray:GetSamplingStatisticSummaries",
"ssm:GetParameters"
],
"Resource": "*"
}
]
}
```
- Role with a Trust Policy:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Federated": "arn:aws:iam::12345678910:oidc-provider/irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com"
},
"Action": "sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringEquals": {
"irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com:aud": "sts.amazonaws.com"
}
}
},
{
"Sid": "Statement1",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::12345678910:role/my-exporter-role"
},
"Action": "sts:AssumeRole"
}
]
}
```
1. Click `Add role`.
When you use CloudWatch credentials, you link an Identity and Access Management (IAM)
user with access to CloudWatch only with your Tiger Cloud service:
1. Retrieve the user information from [IAM > Users in AWS console][list-iam-users].
If you do not have an AWS user with access restricted to CloudWatch only,
[create one][create-an-iam-user].
For more information, see [Creating IAM users (console)][aws-access-keys].
1. Enter the credentials for the AWS IAM user.
AWS keys give access to your AWS services. To keep your AWS account secure, restrict users to the minimum required permissions. Always store your keys in a safe location. To avoid this issue, use the IAM role authentication method.
1. Select the AWS Region your CloudWatch services run in, then click `Create exporter`.
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-srt-candlestick/ =====
SELECT
time_bucket('1 day', "time") AS day,
symbol,
max(price) AS high,
first(price, time) AS open,
last(price, time) AS close,
min(price) AS low
FROM stocks_real_time srt
GROUP BY day, symbol
ORDER BY day DESC, symbol
LIMIT 10;
-- Output
day | symbol | high | open | close | low
-----------------------+--------+--------------+----------+----------+--------------
2023-06-07 00:00:00+00 | AAPL | 179.25 | 178.91 | 179.04 | 178.17
2023-06-07 00:00:00+00 | ABNB | 117.99 | 117.4 | 117.9694 | 117
2023-06-07 00:00:00+00 | AMAT | 134.8964 | 133.73 | 134.8964 | 133.13
2023-06-07 00:00:00+00 | AMD | 125.33 | 124.11 | 125.13 | 123.82
2023-06-07 00:00:00+00 | AMZN | 127.45 | 126.22 | 126.69 | 125.81
...
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-crypto-cagg/ =====
SELECT * FROM assets_candlestick_daily
ORDER BY day DESC, symbol
LIMIT 10;
-- Output
day | symbol | high | open | close | low
-----------------------+--------+----------+--------+----------+----------
2025-01-30 00:00:00+00 | ADA/USD | 0.9708 | 0.9396 | 0.9607 | 0.9365
2025-01-30 00:00:00+00 | ATOM/USD | 6.114 | 5.825 | 6.063 | 5.776
2025-01-30 00:00:00+00 | AVAX/USD | 34.1 | 32.8 | 33.95 | 32.44
2025-01-30 00:00:00+00 | BNB/USD | 679.3 | 668.12 | 677.81 | 666.08
2025-01-30 00:00:00+00 | BTC/USD | 105595.65 | 103735.84 | 105157.21 | 103298.84
2025-01-30 00:00:00+00 | CRO/USD | 0.13233 | 0.12869 | 0.13138 | 0.12805
2025-01-30 00:00:00+00 | DAI/USD | 1 | 1 | 0.9999 | 0.99989998
2025-01-30 00:00:00+00 | DOGE/USD | 0.33359 | 0.32392 | 0.33172 | 0.32231
2025-01-30 00:00:00+00 | DOT/USD | 6.01 | 5.779 | 6.004 | 5.732
2025-01-30 00:00:00+00 | ETH/USD | 3228.9 | 3113.36 | 3219.25 | 3092.92
(10 rows)
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-cagg-tesla/ =====
SELECT * FROM stock_candlestick_daily
WHERE symbol='TSLA'
ORDER BY day DESC
LIMIT 10;
-- Output
day | symbol | high | open | close | low
-----------------------+--------+----------+----------+----------+----------
2023-07-31 00:00:00+00 | TSLA | 269 | 266.42 | 266.995 | 263.8422
2023-07-28 00:00:00+00 | TSLA | 267.4 | 259.32 | 266.8 | 258.06
2023-07-27 00:00:00+00 | TSLA | 269.98 | 268.3 | 256.8 | 241.5539
2023-07-26 00:00:00+00 | TSLA | 271.5168 | 265.48 | 265.3283 | 258.0418
2023-07-25 00:00:00+00 | TSLA | 270.22 | 267.5099 | 264.55 | 257.21
2023-07-20 00:00:00+00 | TSLA | 267.58 | 267.34 | 260.6 | 247.4588
2023-07-14 00:00:00+00 | TSLA | 285.27 | 277.29 | 281.7 | 264.7567
2023-07-13 00:00:00+00 | TSLA | 290.0683 | 274.07 | 277.4509 | 270.6127
2023-07-12 00:00:00+00 | TSLA | 277.68 | 271.26 | 272.94 | 258.0418
2023-07-11 00:00:00+00 | TSLA | 271.44 | 270.83 | 269.8303 | 266.3885
(10 rows)
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-srt-4-days/ =====
SELECT * FROM stocks_real_time srt
LIMIT 10;
-- Output
time | symbol | price | day_volume
-----------------------+--------+----------+------------
2023-07-31 16:32:16+00 | PEP | 187.755 | 1618189
2023-07-31 16:32:16+00 | TSLA | 268.275 | 51902030
2023-07-31 16:32:16+00 | INTC | 36.035 | 22736715
2023-07-31 16:32:15+00 | CHTR | 402.27 | 626719
2023-07-31 16:32:15+00 | TSLA | 268.2925 | 51899210
2023-07-31 16:32:15+00 | AMD | 113.72 | 29136618
2023-07-31 16:32:15+00 | NVDA | 467.72 | 13951198
2023-07-31 16:32:15+00 | AMD | 113.72 | 29137753
2023-07-31 16:32:15+00 | RTX | 87.74 | 4295687
2023-07-31 16:32:15+00 | RTX | 87.74 | 4295907
(10 rows)
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-srt-bucket-first-last/ =====
SELECT time_bucket('1 hour', time) AS bucket,
first(price,time),
last(price, time)
FROM stocks_real_time srt
WHERE time > now() - INTERVAL '4 days'
GROUP BY bucket;
-- Output
bucket | first | last
------------------------+--------+--------
2023-08-07 08:00:00+00 | 88.75 | 182.87
2023-08-07 09:00:00+00 | 140.85 | 35.16
2023-08-07 10:00:00+00 | 182.89 | 52.58
2023-08-07 11:00:00+00 | 86.69 | 255.15
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-srt-orderby/ =====
SELECT * FROM stocks_real_time srt
WHERE symbol='TSLA'
ORDER BY time DESC
LIMIT 10;
-- Output
time | symbol | price | day_volume
-----------------------+--------+----------+------------
2025-01-30 00:51:00+00 | TSLA | 405.32 | NULL
2025-01-30 00:41:00+00 | TSLA | 406.05 | NULL
2025-01-30 00:39:00+00 | TSLA | 406.25 | NULL
2025-01-30 00:32:00+00 | TSLA | 406.02 | NULL
2025-01-30 00:32:00+00 | TSLA | 406.10 | NULL
2025-01-30 00:25:00+00 | TSLA | 405.95 | NULL
2025-01-30 00:24:00+00 | TSLA | 406.04 | NULL
2025-01-30 00:24:00+00 | TSLA | 406.04 | NULL
2025-01-30 00:22:00+00 | TSLA | 406.38 | NULL
2025-01-30 00:21:00+00 | TSLA | 405.77 | NULL
(10 rows)
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-cagg/ =====
SELECT * FROM stock_candlestick_daily
ORDER BY day DESC, symbol
LIMIT 10;
-- Output
day | symbol | high | open | close | low
-----------------------+--------+----------+--------+----------+----------
2023-07-31 00:00:00+00 | AAPL | 196.71 | 195.9 | 196.1099 | 195.2699
2023-07-31 00:00:00+00 | ABBV | 151.25 | 151.25 | 148.03 | 148.02
2023-07-31 00:00:00+00 | ABNB | 154.95 | 153.43 | 152.95 | 151.65
2023-07-31 00:00:00+00 | ABT | 113 | 112.4 | 111.49 | 111.44
2023-07-31 00:00:00+00 | ADBE | 552.87 | 536.74 | 550.835 | 536.74
2023-07-31 00:00:00+00 | AMAT | 153.9786 | 152.5 | 151.84 | 150.52
2023-07-31 00:00:00+00 | AMD | 114.57 | 113.47 | 113.15 | 112.35
2023-07-31 00:00:00+00 | AMGN | 237 | 236.61 | 233.6 | 233.515
2023-07-31 00:00:00+00 | AMT | 191.69 | 189.75 | 190.55 | 188.97
2023-07-31 00:00:00+00 | AMZN | 133.89 | 132.42 | 133.055 | 132.32
(10 rows)
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-srt-aggregation/ =====
SELECT
time_bucket('1 day', time) AS bucket,
symbol,
max(price) AS high,
first(price, time) AS open,
last(price, time) AS close,
min(price) AS low
FROM stocks_real_time srt
WHERE time > now() - INTERVAL '1 week'
GROUP BY bucket, symbol
ORDER BY bucket, symbol
LIMIT 10;
-- Output
day | symbol | high | open | close | low
-----------------------+--------+--------------+----------+----------+--------------
2023-06-07 00:00:00+00 | AAPL | 179.25 | 178.91 | 179.04 | 178.17
2023-06-07 00:00:00+00 | ABNB | 117.99 | 117.4 | 117.9694 | 117
2023-06-07 00:00:00+00 | AMAT | 134.8964 | 133.73 | 134.8964 | 133.13
2023-06-07 00:00:00+00 | AMD | 125.33 | 124.11 | 125.13 | 123.82
2023-06-07 00:00:00+00 | AMZN | 127.45 | 126.22 | 126.69 | 125.81
...
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-srt-first-last/ =====
SELECT symbol, first(price,time), last(price, time)
FROM stocks_real_time srt
WHERE time > now() - INTERVAL '4 days'
GROUP BY symbol
ORDER BY symbol
LIMIT 10;
-- Output
symbol | first | last
-------+----------+----------
AAPL | 179.0507 | 179.04
ABNB | 118.83 | 117.9694
AMAT | 133.55 | 134.8964
AMD | 122.6476 | 125.13
AMZN | 126.5599 | 126.69
...
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-crypto-srt-orderby/ =====
SELECT * FROM crypto_ticks srt
WHERE symbol='ETH/USD'
ORDER BY time DESC
LIMIT 10;
-- Output
time | symbol | price | day_volume
-----------------------+--------+----------+------------
2025-01-30 12:05:09+00 | ETH/USD | 3219.25 | 39425
2025-01-30 12:05:00+00 | ETH/USD | 3219.26 | 39425
2025-01-30 12:04:42+00 | ETH/USD | 3219.26 | 39459
2025-01-30 12:04:33+00 | ETH/USD | 3219.91 | 39458
2025-01-30 12:04:15+00 | ETH/USD | 3219.6 | 39458
2025-01-30 12:04:06+00 | ETH/USD | 3220.68 | 39458
2025-01-30 12:03:57+00 | ETH/USD | 3220.68 | 39483
2025-01-30 12:03:48+00 | ETH/USD | 3220.12 | 39483
2025-01-30 12:03:20+00 | ETH/USD | 3219.79 | 39482
2025-01-30 12:03:11+00 | ETH/USD | 3220.06 | 39472
(10 rows)
===== PAGE: https://docs.tigerdata.com/_queries/getting-started-week-average/ =====
SELECT
time_bucket('1 day', time) AS bucket,
symbol,
avg(price)
FROM stocks_real_time srt
WHERE time > now() - INTERVAL '1 week'
GROUP BY bucket, symbol
ORDER BY bucket, symbol
LIMIT 10;
-- Output
bucket | symbol | avg
-----------------------+--------+--------------------
2023-06-01 00:00:00+00 | AAPL | 179.3242530284364
2023-06-01 00:00:00+00 | ABNB | 112.05498586371293
2023-06-01 00:00:00+00 | AMAT | 134.41263567849518
2023-06-01 00:00:00+00 | AMD | 119.43332772033834
2023-06-01 00:00:00+00 | AMZN | 122.3446364966392
...
===== PAGE: https://docs.tigerdata.com/integrations/corporate-data-center/ =====
# Integrate your data center with Tiger Cloud
This page explains how to integrate your corporate on-premise infrastructure with Tiger Cloud using [AWS Transit Gateway][aws-transit-gateway].
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need your [connection details][connection-info].
- Set up [AWS Transit Gateway][gtw-setup].
## Connect your on-premise infrastructure to your Tiger Cloud services
To connect to Tiger Cloud:
1. **Connect your infrastructure to AWS Transit Gateway**
Establish connectivity between your on-premise infrastructure and AWS. See the [Centralize network connectivity using AWS Transit Gateway][aws-onprem].
1. **Create a Peering VPC in [Tiger Cloud Console][console-login]**
1. In `Security` > `VPC`, click `Create a VPC`:

1. Choose your region and IP range, name your VPC, then click `Create VPC`:

Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans]. If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your plan in [Tiger Cloud Console][console-login].
1. Add a peering connection:
1. In the `VPC Peering` column, click `Add`.
1. Provide your AWS account ID, Transit Gateway ID, CIDR ranges, and AWS region. Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID.

1. Click `Add connection`.
1. **Accept and configure peering connection in your AWS account**
Once your peering connection appears as `Processing`, you can accept and configure it in AWS:
1. Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as `Connected` in Tiger Cloud Console.
1. Configure at least the following in your AWS account networking:
- Your subnet route table to route traffic to your Transit Gateway for the Peering VPC CIDRs.
- Your Transit Gateway route table to route traffic to the newly created Transit Gateway peering attachment for the Peering VPC CIDRs.
- Security groups to allow outbound TCP 5432.
1. **Attach a Tiger Cloud service to the Peering VPC In [Tiger Cloud Console][console-services]**
1. Select the service you want to connect to the Peering VPC.
1. Click `Operations` > `Security` > `VPC`.
1. Select the VPC, then click `Attach VPC`.
You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
You have successfully integrated your Microsoft Azure infrastructure with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/cloudwatch/ =====
# Integrate Amazon CloudWatch with Tiger Cloud
[Amazon CloudWatch][cloudwatch] is a monitoring and observability service designed to help collect, analyze, and act on data from applications, infrastructure, and services running in AWS and on-premises environments.
You can export telemetry data from your Tiger Cloud services with the time-series and analytics capability enabled to CloudWatch. The available metrics include CPU usage, RAM usage, and storage. This integration is available for [Scale and Enterprise][pricing-plan-features] pricing tiers.
This pages explains how to export telemetry data from your Tiger Cloud service into CloudWatch by creating a Tiger Cloud data exporter, then attaching it to the service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need your [connection details][connection-info].
- Sign up for [Amazon CloudWatch][cloudwatch-signup].
## Create a data exporter
A Tiger Cloud data exporter sends telemetry data from a Tiger Cloud service to a third-party monitoring
tool. You create an exporter on the [project level][projects], in the same AWS region as your service:
1. **In Tiger Cloud Console, open [Exporters][console-integrations]**
1. **Click `New exporter`**
1. **Select the data type and specify `AWS CloudWatch` for provider**

1. **Provide your AWS CloudWatch configuration**
- The AWS region must be the same for your Tiger Cloud exporter and AWS CloudWatch Log group.
- The exporter name appears in Tiger Cloud Console, best practice is to make this name easily understandable.
- For CloudWatch credentials, either use an [existing CloudWatch Log group][console-cloudwatch-configuration]
or [create a new one][console-cloudwatch-create-group]. If you're uncertain, use
the default values. For more information, see [Working with log groups and log streams][cloudwatch-log-naming].
1. **Choose the authentication method to use for the exporter**

1. In AWS, navigate to [IAM > Identity providers][create-an-iam-id-provider], then click `Add provider`.
1. Update the new identity provider with your details:
Set `Provider URL` to the [region where you are creating your exporter][reference].

1. Click `Add provider`.
1. In AWS, navigate to [IAM > Roles][add-id-provider-as-wi-role], then click `Create role`.
1. Add your identity provider as a Web identity role and click `Next`.

1. Set the following permission and trust policies:
- Permission policy:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:PutLogEvents",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:DescribeLogGroups",
"logs:PutRetentionPolicy",
"xray:PutTraceSegments",
"xray:PutTelemetryRecords",
"xray:GetSamplingRules",
"xray:GetSamplingTargets",
"xray:GetSamplingStatisticSummaries",
"ssm:GetParameters"
],
"Resource": "*"
}
]
}
```
- Role with a Trust Policy:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Federated": "arn:aws:iam::12345678910:oidc-provider/irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com"
},
"Action": "sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringEquals": {
"irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com:aud": "sts.amazonaws.com"
}
}
},
{
"Sid": "Statement1",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::12345678910:role/my-exporter-role"
},
"Action": "sts:AssumeRole"
}
]
}
```
1. Click `Add role`.
When you use CloudWatch credentials, you link an Identity and Access Management (IAM)
user with access to CloudWatch only with your Tiger Cloud service:
1. Retrieve the user information from [IAM > Users in AWS console][list-iam-users].
If you do not have an AWS user with access restricted to CloudWatch only,
[create one][create-an-iam-user].
For more information, see [Creating IAM users (console)][aws-access-keys].
1. Enter the credentials for the AWS IAM user.
AWS keys give access to your AWS services. To keep your AWS account secure, restrict users to the minimum required permissions. Always store your keys in a safe location. To avoid this issue, use the IAM role authentication method.
1. Select the AWS Region your CloudWatch services run in, then click `Create exporter`.
### Attach a data exporter to a Tiger Cloud service
To send telemetry data to an external monitoring tool, you attach a data exporter to your
Tiger Cloud service. You can attach only one exporter to a service.
To attach an exporter:
1. **In [Tiger Cloud Console][console-services], choose the service**
1. **Click `Operations` > `Exporters`**
1. **Select the exporter, then click `Attach exporter`**
1. **If you are attaching a first `Logs` data type exporter, restart the service**
### Monitor Tiger Cloud service metrics
You can now monitor your service metrics. Use the following metrics to check the service is running correctly:
* `timescale.cloud.system.cpu.usage.millicores`
* `timescale.cloud.system.cpu.total.millicores`
* `timescale.cloud.system.memory.usage.bytes`
* `timescale.cloud.system.memory.total.bytes`
* `timescale.cloud.system.disk.usage.bytes`
* `timescale.cloud.system.disk.total.bytes`
Additionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|`host`|`us-east-1.timescale.cloud`| |
|`project-id`|| |
|`service-id`|| |
|`region`|`us-east-1`| AWS region |
|`role`|`replica` or `primary`| For service with replicas |
|`node-id`|| For multi-node services |
### Edit a data exporter
To update a data exporter:
1. **In Tiger Cloud Console, open [Exporters][console-integrations]**
1. **Next to the exporter you want to edit, click the menu > `Edit`**
1. **Edit the exporter fields and save your changes**
You cannot change fields such as the provider or the AWS region.
### Delete a data exporter
To remove a data exporter that you no longer need:
1. **Disconnect the data exporter from your Tiger Cloud services**
1. In [Tiger Cloud Console][console-services], choose the service.
1. Click `Operations` > `Exporters`.
1. Click the trash can icon.
1. Repeat for every service attached to the exporter you want to remove.
The data exporter is now unattached from all services. However, it still exists in your project.
1. **Delete the exporter on the project level**
1. In Tiger Cloud Console, open [Exporters][console-integrations]
1. Next to the exporter you want to edit, click menu > `Delete`
1. Confirm that you want to delete the data exporter.
### Reference
When you create the IAM OIDC provider, the URL must match the region you create the exporter in.
It must be one of the following:
| Region | Zone | Location | URL
|------------------|---------------|----------------|--------------------|
| `ap-southeast-1` | Asia Pacific | Singapore | `irsa-oidc-discovery-prod-ap-southeast-1.s3.ap-southeast-1.amazonaws.com`
| `ap-southeast-2` | Asia Pacific | Sydney | `irsa-oidc-discovery-prod-ap-southeast-2.s3.ap-southeast-2.amazonaws.com`
| `ap-northeast-1` | Asia Pacific | Tokyo | `irsa-oidc-discovery-prod-ap-northeast-1.s3.ap-northeast-1.amazonaws.com`
| `ca-central-1` | Canada | Central | `irsa-oidc-discovery-prod-ca-central-1.s3.ca-central-1.amazonaws.com`
| `eu-central-1` | Europe | Frankfurt | `irsa-oidc-discovery-prod-eu-central-1.s3.eu-central-1.amazonaws.com`
| `eu-west-1` | Europe | Ireland | `irsa-oidc-discovery-prod-eu-west-1.s3.eu-west-1.amazonaws.com`
| `eu-west-2` | Europe | London | `irsa-oidc-discovery-prod-eu-west-2.s3.eu-west-2.amazonaws.com`
| `sa-east-1` | South America | São Paulo | `irsa-oidc-discovery-prod-sa-east-1.s3.sa-east-1.amazonaws.com`
| `us-east-1` | United States | North Virginia | `irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com`
| `us-east-2` | United States | Ohio | `irsa-oidc-discovery-prod-us-east-2.s3.us-east-2.amazonaws.com`
| `us-west-2` | United States | Oregon | `irsa-oidc-discovery-prod-us-west-2.s3.us-west-2.amazonaws.com`
===== PAGE: https://docs.tigerdata.com/integrations/pgadmin/ =====
# Integrate pgAdmin with Tiger
[pgAdmin][pgadmin] is a feature-rich open-source administration and development platform for Postgres. It is available for Chrome, Firefox, Edge, and
Safari browsers, or can be installed on Microsoft Windows, Apple macOS, or various Linux flavors.

This page explains how to integrate pgAdmin with your Tiger Cloud service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
- [Download][download-pgadmin] and install pgAdmin.
## Connect pgAdmin to your Tiger Cloud service
To connect to Tiger Cloud:
1. **Start pgAdmin**
1. **In the `Quick Links` section of the `Dashboard` tab, click `Add New Server`**
1. **In `Register - Server` > `General`, fill in the `Name` and `Comments` fields with the server name and description, respectively**
1. **Configure the connection**
1. In the `Connection` tab, configure the connection using your [connection details][connection-info].
1. If you configured your service to connect using a [stricter SSL mode][ssl-mode], then in the `SSL` tab check `Use SSL`, set `SSL mode` to the configured mode, and in the `CA Certificate` field type the location of the SSL root CA certificate to use.
1. **Click `Save`**
You have successfully integrated pgAdmin with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/kubernetes/ =====
# Integrate Kubernetes with Tiger
[Kubernetes][kubernetes] is an open-source container orchestration system that automates the deployment, scaling, and management of containerized applications. You can connect Kubernetes to Tiger Cloud, and deploy TimescaleDB within your Kubernetes clusters.
This guide explains how to connect a Kubernetes cluster to Tiger Cloud, configure persistent storage, and deploy TimescaleDB in your kubernetes cluster.
## Prerequisites
To follow the steps on this page:
- Install [self-managed Kubernetes][kubernetes-install] or sign up for a Kubernetes [Turnkey Cloud Solution][kubernetes-managed].
- Install [kubectl][kubectl] for command-line interaction with your cluster.
## Integrate TimescaleDB in a Kubernetes cluster
To connect your Kubernetes cluster to your Tiger Cloud service:
1. **Create a default namespace for your Tiger Cloud components**
1. Create a namespace:
```shell
kubectl create namespace timescale
```
1. Set this namespace as the default for your session:
```shell
kubectl config set-context --current --namespace=timescale
```
For more information, see [Kubernetes Namespaces][kubernetes-namespace].
1. **Create a Kubernetes secret that stores your Tiger Cloud service credentials**
Update the following command with your [connection details][connection-info], then run it:
```shell
kubectl create secret generic timescale-secret \
--from-literal=PGHOST=<host> \
--from-literal=PGPORT=<port> \
--from-literal=PGDATABASE=<dbname> \
--from-literal=PGUSER=<user> \
--from-literal=PGPASSWORD=<password>
```
1. **Configure network access to Tiger Cloud**
- **Managed Kubernetes**: outbound connections to external databases like Tiger Cloud work by default.
Make sure your cluster’s security group or firewall rules allow outbound traffic to Tiger Cloud IP.
- **Self-hosted Kubernetes**: If your cluster is behind a firewall or running on-premise, you may need to allow
egress traffic to Tiger Cloud. Test connectivity using your [connection details][connection-info]:
```shell
nc -zv <host> <port>
```
If the connection fails, check your firewall rules.
1. **Create a Kubernetes deployment that can access your Tiger Cloud**
Run the following command to apply the deployment:
```shell
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: timescale-app
spec:
replicas: 1
selector:
matchLabels:
app: timescale-app
template:
metadata:
labels:
app: timescale-app
spec:
containers:
- name: timescale-container
image: postgres:latest
envFrom:
- secretRef:
name: timescale-secret
EOF
```
1. **Test the connection**
1. Create and run a pod that uses the [connection details][connection-info] you added to `timescale-secret` in
the `timescale` namespace:
```shell
kubectl run test-pod --image=postgres --restart=Never \
--env="PGHOST=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGHOST}' | base64 --decode)" \
--env="PGPORT=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPORT}' | base64 --decode)" \
--env="PGDATABASE=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGDATABASE}' | base64 --decode)" \
--env="PGUSER=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGUSER}' | base64 --decode)" \
--env="PGPASSWORD=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPASSWORD}' | base64 --decode)" \
-- sleep infinity
```
2. Launch a psql shell in the `test-pod` you just created:
```shell
kubectl exec -it test-pod -- bash -c "psql -h \$PGHOST -U \$PGUSER -d \$PGDATABASE"
```
You start a `psql` session connected to your Tiger Cloud service.
Running TimescaleDB on Kubernetes is similar to running Postgres. This procedure outlines the steps for a non-distributed system.
To connect your Kubernetes cluster to self-hosted TimescaleDB running in the cluster:
1. **Create a default namespace for Tiger Data components**
1. Create the Tiger Data namespace:
```shell
kubectl create namespace timescale
```
1. Set this namespace as the default for your session:
```shell
kubectl config set-context --current --namespace=timescale
```
For more information, see [Kubernetes Namespaces][kubernetes-namespace].
1. **Set up a persistent volume claim (PVC) storage**
To manually set up a persistent volume and claim for self-hosted Kubernetes, run the following command:
yaml kubectl apply -f - <<EOF apiVersion: v1 kind: PersistentVolumeClaim metadata:
name: timescale-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
EOF
1. **Deploy TimescaleDB as a StatefulSet**
By default, the [TimescaleDB Docker image][timescale-docker-image] you are installing on Kubernetes uses the
default Postgres database, user and password. To deploy TimescaleDB on Kubernetes, run the following command:
```yaml
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: timescaledb
spec:
serviceName: timescaledb
replicas: 1
selector:
matchLabels:
app: timescaledb
template:
metadata:
labels:
app: timescaledb
spec:
containers:
- name: timescaledb
image: 'timescale/timescaledb:latest-pg17'
env:
- name: POSTGRES_USER
value: postgres
- name: POSTGRES_PASSWORD
value: postgres
- name: POSTGRES_DB
value: postgres
- name: PGDATA
value: /var/lib/postgresql/data/pgdata
ports:
- containerPort: 5432
volumeMounts:
- mountPath: /var/lib/postgresql/data
name: timescale-storage
volumes:
- name: timescale-storage
persistentVolumeClaim:
claimName: timescale-pvc
EOF
```
1. **Allow applications to connect by exposing TimescaleDB within Kubernetes**
yaml kubectl apply -f - <<EOF apiVersion: v1 kind: Service metadata:
name: timescaledb
spec:
selector:
app: timescaledb
ports:
- protocol: TCP
port: 5432
targetPort: 5432
type: ClusterIP
EOF
1. **Create a Kubernetes secret to store the database credentials**
shell kubectl create secret generic timescale-secret \ --from-literal=PGHOST=timescaledb \ --from-literal=PGPORT=5432 \ --from-literal=PGDATABASE=postgres \ --from-literal=PGUSER=postgres \ --from-literal=PGPASSWORD=postgres
1. **Deploy an application that connects to TimescaleDB**
```shell
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: timescale-app
spec:
replicas: 1
selector:
matchLabels:
app: timescale-app
template:
metadata:
labels:
app: timescale-app
spec:
containers:
- name: timescale-container
image: postgres:latest
envFrom:
- secretRef:
name: timescale-secret
EOF
```
1. **Test the database connection**
1. Create and run a pod to verify database connectivity using your [connection details][connection-info] saved in `timescale-secret`:
```shell
kubectl run test-pod --image=postgres --restart=Never \
--env="PGHOST=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGHOST}' | base64 --decode)" \
--env="PGPORT=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPORT}' | base64 --decode)" \
--env="PGDATABASE=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGDATABASE}' | base64 --decode)" \
--env="PGUSER=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGUSER}' | base64 --decode)" \
--env="PGPASSWORD=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPASSWORD}' | base64 --decode)" \
-- sleep infinity
```
1. Launch the Postgres interactive shell within the created `test-pod`:
```shell
kubectl exec -it test-pod -- bash -c "psql -h \$PGHOST -U \$PGUSER -d \$PGDATABASE"
```
You see the Postgres interactive terminal.
You have successfully integrated Kubernetes with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/prometheus/ =====
# Integrate Prometheus with Tiger
[Prometheus][prometheus] is an open-source monitoring system with a dimensional data model, flexible query language, and a modern alerting approach.
This page shows you how to export your service telemetry to Prometheus:
- For Tiger Cloud, using a dedicated Prometheus exporter in Tiger Cloud Console.
- For self-hosted TimescaleDB, using [Postgres Exporter][postgresql-exporter].
## Prerequisites
To follow the steps on this page:
- [Download and run Prometheus][install-prometheus].
- For Tiger Cloud:
Create a target [Tiger Cloud service][create-service] with the time-series and analytics capability enabled.
- For self-hosted TimescaleDB:
- Create a target [self-hosted TimescaleDB][enable-timescaledb] instance. You need your [connection details][connection-info].
- [Install Postgres Exporter][install-exporter].
To reduce latency and potential data transfer costs, install Prometheus and Postgres Exporter on a machine in the same AWS region as your Tiger Cloud service.
## Export Tiger Cloud service telemetry to Prometheus
To export your data, do the following:
To export metrics from a Tiger Cloud service, you create a dedicated Prometheus exporter in Tiger Cloud Console, attach it to your service, then configure Prometheus to scrape metrics using the exposed URL. The Prometheus exporter exposes the metrics related to the Tiger Cloud service like CPU, memory, and storage. To scrape other metrics, use Postgres Exporter as described for self-hosted TimescaleDB. The Prometheus exporter is available for [Scale and Enterprise][pricing-plan-features] pricing plans.
1. **Create a Prometheus exporter**
1. In [Tiger Cloud Console][open-console], click `Exporters` > `+ New exporter`.
1. Select `Metrics` for data type and `Prometheus` for provider.

1. Choose the region for the exporter. Only services in the same project and region can be attached to this exporter.
1. Name your exporter.
1. Change the auto-generated Prometheus credentials, if needed. See [official documentation][prometheus-authentication] on basic authentication in Prometheus.
1. **Attach the exporter to a service**
1. Select a service, then click `Operations` > `Exporters`.
1. Select the exporter in the drop-down, then click `Attach exporter`.

The exporter is now attached to your service. To unattach it, click the trash icon in the exporter list.

1. **Configure the Prometheus scrape target**
1. Select your service, then click `Operations` > `Exporters` and click the information icon next to the exporter. You see the exporter details.

1. Copy the exporter URL.
1. In your Prometheus installation, update `prometheus.yml` to point to the exporter URL as a scrape target:
```yml
scrape_configs:
- job_name: "timescaledb-exporter"
scheme: https
static_configs:
- targets: ["my-exporter-url"]
basic_auth:
username: "user"
password: "pass"
```
See the [Prometheus documentation][scrape-targets] for details on configuring scrape targets.
You can now monitor your service metrics. Use the following metrics to check the service is running correctly:
* `timescale.cloud.system.cpu.usage.millicores`
* `timescale.cloud.system.cpu.total.millicores`
* `timescale.cloud.system.memory.usage.bytes`
* `timescale.cloud.system.memory.total.bytes`
* `timescale.cloud.system.disk.usage.bytes`
* `timescale.cloud.system.disk.total.bytes`
Additionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|`host`|`us-east-1.timescale.cloud`| |
|`project-id`|| |
|`service-id`|| |
|`region`|`us-east-1`| AWS region |
|`role`|`replica` or `primary`| For service with replicas |
To export metrics from self-hosted TimescaleDB, you import telemetry data about your database to Postgres Exporter, then configure Prometheus to scrape metrics from it. Postgres Exporter exposes metrics that you define, excluding the system metrics.
1. **Create a user to access telemetry data about your database**
1. Connect to your database in [`psql`][psql] using your [connection details][connection-info].
1. Create a user named `monitoring` with a secure password:
```sql
CREATE USER monitoring WITH PASSWORD '<password>';
```
1. Grant the `pg_read_all_stats` permission to the `monitoring` user:
```sql
GRANT pg_read_all_stats to monitoring;
```
1. **Import telemetry data about your database to Postgres Exporter**
1. Connect Postgres Exporter to your database:
Use your [connection details][connection-info] to import telemetry data about your database. You connect as
the `monitoring` user:
- Local installation:
```shell
export DATA_SOURCE_NAME="postgres://<user>:<password>@<host>:<port>/<database>?sslmode=<sslmode>"
./postgres_exporter
```
- Docker:
```shell
docker run -d \
-e DATA_SOURCE_NAME="postgres://<user>:<password>@<host>:<port>/<database>?sslmode=<sslmode>" \
-p 9187:9187 \
prometheuscommunity/postgres-exporter
```
1. Check the metrics for your database in the Prometheus format:
- Browser:
Navigate to `http://<exporter-host>:9187/metrics`.
- Command line:
```shell
curl http://<exporter-host>:9187/metrics
```
1. **Configure Prometheus to scrape metrics**
1. In your Prometheus installation, update `prometheus.yml` to point to your Postgres Exporter instance as a scrape
target. In the following example, you replace `<exporter-host>` with the hostname or IP address of the PostgreSQL
Exporter.
```yaml
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'postgresql'
static_configs:
- targets: ['<exporter-host>:9187']
```
If `prometheus.yml` has not been created during installation, create it manually. If you are using Docker, you can
find the IPAddress in `Inspect` > `Networks` for the container running Postgres Exporter.
1. Restart Prometheus.
1. Check the Prometheus UI at `http://<prometheus-host>:9090/targets` and `http://<prometheus-host>:9090/tsdb-status`.
You see the Postgres Exporter target and the metrics scraped from it.
You can further [visualize your data][grafana-prometheus] with Grafana. Use the
[Grafana Postgres dashboard][postgresql-exporter-dashboard] or [create a custom dashboard][grafana] that suits your needs.
===== PAGE: https://docs.tigerdata.com/integrations/psql/ =====
# Connect to a Tiger Cloud service with psql
[`psql`][psql-docs] is a terminal-based frontend to Postgres that enables you to type in queries interactively, issue them to Postgres, and see the query results.
This page shows you how to use the `psql` command line tool to interact with your Tiger Cloud service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Check for an existing installation
On many operating systems, `psql` is installed by default. To use the functionality described in this page, best practice is to use the latest version of `psql`. To check the version running on your system:
<Terminal>
bash psql --version
powershell wmic /output:C:\list.txt product get name, version
</Terminal>
If you already have the latest version of `psql` installed, proceed to the [Connect to your service][connect-database] section.
## Install psql
If there is no existing installation, take the following steps to install `psql`:
Install using Homebrew. `libpqxx` is the official C++ client API for Postgres.
1. Install Homebrew, if you don't already have it:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
For more information about Homebrew, including installation instructions, see the [Homebrew documentation][homebrew].
1. Make sure your Homebrew repository is up to date:
```bash
brew doctor
brew update
```
1. Install `psql`:
```bash
brew install libpq
```
1. Update your path to include the `psql` tool:
```bash
brew link --force libpq
```
On Intel chips, the symbolic link is added to `/usr/local/bin`. On Apple Silicon, the symbolic link is added to `/opt/homebrew/bin`.
Install using MacPorts. `libpqxx` is the official C++ client API for Postgres.
1. [Install MacPorts][macports] by downloading and running the package installer.
1. Make sure MacPorts is up to date:
```bash
sudo port selfupdate
```
1. Install the latest version of `libpqxx`:
```bash
sudo port install libpqxx
```
1. View the files that were installed by `libpqxx`:
```bash
port contents libpqxx
```
Install `psql` on Debian and Ubuntu with the `apt` package manager.
1. Make sure your `apt` repository is up to date:
```bash
sudo apt-get update
```
1. Install the `postgresql-client` package:
```bash
sudo apt-get install postgresql-client
```
`psql` is installed by default when you install Postgres. This procedure uses the interactive installer provided by Postgres and EnterpriseDB.
1. Download and run the Postgres installer from [www.enterprisedb.com][windows-installer].
1. In the `Select Components` dialog, check `Command Line Tools`, along with any other components you want to install, and click `Next`.
1. Complete the installation wizard to install the package.
## Connect to your service
To use `psql` to connect to your service, you need the connection details. See [Find your connection details][connection-info].
Connect to your service with either:
- The parameter flags:
bash psql -h -p -U -W -d
- The service URL:
bash psql "postgres://@:/?sslmode=require"
You are prompted to provide the password.
- The service URL with the password already included and [a stricter SSL mode][ssl-mode] enabled:
bash psql "postgres://:@:/?sslmode=verify-full"
## Useful psql commands
When you start using `psql`, these are the commands you are likely to use most frequently:
|Command|Description|
|-|-|
|`\c <DB_NAME>`|Connect to a new database|
|`\d `|Show the details of a table|
|`\df`|List functions in the current database|
|`\df+`|List all functions with more details|
|`\di`|List all indexes from all tables|
|`\dn`|List all schemas in the current database|
|`\dt`|List available tables|
|`\du`|List Postgres database roles|
|`\dv`|List views in current schema|
|`\dv+`|List all views with more details|
|`\dx`|Show all installed extensions|
|`ef <FUNCTION_NAME>`|Edit a function|
|`\h`|Show help on syntax of SQL commands|
|`\l`|List available databases|
|`\password <USERNAME>`|Change the password for the user|
|`\q`|Quit `psql`|
|`\set`|Show system variables list|
|`\timing`|Show how long a query took to execute|
|`\x`|Show expanded query results|
|`\?`|List all `psql` slash commands|
For more on `psql` commands, see the [Tiger Data psql cheat sheet][psql-cheat-sheet] and [psql documentation][psql-docs].
## Save query results to a file
When you run queries in `psql`, the results are shown in the terminal by default.
If you are running queries that have a lot of results, you might like to save
the results into a comma-separated `.csv` file instead. You can do this using
the `COPY` command. For example:
sql \copy (SELECT * FROM ...) TO '/tmp/output.csv' (format CSV);
This command sends the results of the query to a new file called `output.csv` in
the `/tmp/` directory. You can open the file using any spreadsheet program.
## Run long queries
To run multi-line queries in `psql`, use the `EOF` delimiter. For example:
sql psql -d target -f -v hypertable= - <<'EOF' SELECT public.alter_job(j.id, scheduled=>true) FROM _timescaledb_config.bgw_job j JOIN _timescaledb_catalog.hypertable h ON h.id = j.hypertable_id WHERE j.proc_schema IN ('_timescaledb_internal', '_timescaledb_functions') AND j.proc_name = 'policy_columnstore' AND j.id >= 1000 AND format('%I.%I', h.schema_name, h.table_name)::text::regclass = :'hypertable'::text::regclass; EOF
## Edit queries in a text editor
Sometimes, queries can get very long, and you might make a mistake when you try
typing it the first time around. If you have made a mistake in a long query,
instead of retyping it, you can use a built-in text editor, which is based on
`Vim`. Launch the query editor with the `\e` command. Your previous query is
loaded into the editor. When you have made your changes, press `Esc`, then type
`:`+`w`+`q` to save the changes, and return to the command prompt. Access the
edited query by pressing `↑`, and press `Enter` to run it.
===== PAGE: https://docs.tigerdata.com/integrations/google-cloud/ =====
# Integrate Google Cloud with Tiger Cloud
[Google Cloud][google-cloud] is a suite of cloud computing services, offering scalable infrastructure, AI, analytics, databases, security, and developer tools to help businesses build, deploy, and manage applications.
This page explains how to integrate your Google Cloud infrastructure with Tiger Cloud using [AWS Transit Gateway][aws-transit-gateway].
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need your [connection details][connection-info].
- Set up [AWS Transit Gateway][gtw-setup].
## Connect your Google Cloud infrastructure to your Tiger Cloud services
To connect to Tiger Cloud:
1. **Connect your infrastructure to AWS Transit Gateway**
Establish connectivity between Google Cloud and AWS. See [Connect HA VPN to AWS peer gateways][gcp-aws].
1. **Create a Peering VPC in [Tiger Cloud Console][console-login]**
1. In `Security` > `VPC`, click `Create a VPC`:

1. Choose your region and IP range, name your VPC, then click `Create VPC`:

Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans]. If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your plan in [Tiger Cloud Console][console-login].
1. Add a peering connection:
1. In the `VPC Peering` column, click `Add`.
1. Provide your AWS account ID, Transit Gateway ID, CIDR ranges, and AWS region. Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID.

1. Click `Add connection`.
1. **Accept and configure peering connection in your AWS account**
Once your peering connection appears as `Processing`, you can accept and configure it in AWS:
1. Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as `Connected` in Tiger Cloud Console.
1. Configure at least the following in your AWS account networking:
- Your subnet route table to route traffic to your Transit Gateway for the Peering VPC CIDRs.
- Your Transit Gateway route table to route traffic to the newly created Transit Gateway peering attachment for the Peering VPC CIDRs.
- Security groups to allow outbound TCP 5432.
1. **Attach a Tiger Cloud service to the Peering VPC In [Tiger Cloud Console][console-services]**
1. Select the service you want to connect to the Peering VPC.
1. Click `Operations` > `Security` > `VPC`.
1. Select the VPC, then click `Attach VPC`.
You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
You have successfully integrated your Google Cloud infrastructure with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/troubleshooting/ =====
# Troubleshooting
## JDBC authentication type is not supported
When connecting to Tiger Cloud service with a Java Database Connectivity (JDBC)
driver, you might get this error message:
text Check that your connection definition references your JDBC database with correct URL syntax, username, and password. The authentication type 10 is not supported.
Your Tiger Cloud authentication type doesn't match your JDBC driver's
supported authentication types. The recommended approach is to upgrade your JDBC
driver to a version that supports `scram-sha-256` encryption. If that isn't an
option, you can change the authentication type for your Tiger Cloud service
to `md5`. Note that `md5` is less secure, and is provided solely for
compatibility with older clients.
For information on changing your authentication type, see the documentation on
[resetting your service password][password-reset].
===== PAGE: https://docs.tigerdata.com/integrations/datadog/ =====
# Integrate Datadog with Tiger Cloud
[Datadog][datadog] is a cloud-based monitoring and analytics platform that provides comprehensive visibility into
applications, infrastructure, and systems through real-time monitoring, logging, and analytics.
This page explains how to:
- [Monitor Tiger Cloud service metrics with Datadog][datadog-monitor-cloud]
This integration is available for [Scale and Enterprise][pricing-plan-features] pricing plans.
- Configure Datadog Agent to collect metrics for your Tiger Cloud service
This integration is available for all pricing plans.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need your [connection details][connection-info].
- Sign up for [Datadog][datadog-signup].
You need your [Datadog API key][datadog-api-key] to follow this procedure.
- Install [Datadog Agent][datadog-agent-install].
## Monitor Tiger Cloud service metrics with Datadog
Export telemetry data from your Tiger Cloud services with the time-series and analytics capability enabled to
Datadog using a Tiger Cloud data exporter. The available metrics include CPU usage, RAM usage, and storage.
### Create a data exporter
A Tiger Cloud data exporter sends telemetry data from a Tiger Cloud service to a third-party monitoring
tool. You create an exporter on the [project level][projects], in the same AWS region as your service:
1. **In Tiger Cloud Console, open [Exporters][console-integrations]**
1. **Click `New exporter`**
1. **Select `Metrics` for `Data type` and `Datadog` for provider**

1. **Choose your AWS region and provide the API key**
The AWS region must be the same for your Tiger Cloud exporter and the Datadog provider.
1. **Set `Site` to your Datadog region, then click `Create exporter`**
### Manage a data exporter
This section shows you how to attach, monitor, edit, and delete a data exporter.
### Attach a data exporter to a Tiger Cloud service
To send telemetry data to an external monitoring tool, you attach a data exporter to your
Tiger Cloud service. You can attach only one exporter to a service.
To attach an exporter:
1. **In [Tiger Cloud Console][console-services], choose the service**
1. **Click `Operations` > `Exporters`**
1. **Select the exporter, then click `Attach exporter`**
1. **If you are attaching a first `Logs` data type exporter, restart the service**
### Monitor Tiger Cloud service metrics
You can now monitor your service metrics. Use the following metrics to check the service is running correctly:
* `timescale.cloud.system.cpu.usage.millicores`
* `timescale.cloud.system.cpu.total.millicores`
* `timescale.cloud.system.memory.usage.bytes`
* `timescale.cloud.system.memory.total.bytes`
* `timescale.cloud.system.disk.usage.bytes`
* `timescale.cloud.system.disk.total.bytes`
Additionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|`host`|`us-east-1.timescale.cloud`| |
|`project-id`|| |
|`service-id`|| |
|`region`|`us-east-1`| AWS region |
|`role`|`replica` or `primary`| For service with replicas |
|`node-id`|| For multi-node services |
### Edit a data exporter
To update a data exporter:
1. **In Tiger Cloud Console, open [Exporters][console-integrations]**
1. **Next to the exporter you want to edit, click the menu > `Edit`**
1. **Edit the exporter fields and save your changes**
You cannot change fields such as the provider or the AWS region.
### Delete a data exporter
To remove a data exporter that you no longer need:
1. **Disconnect the data exporter from your Tiger Cloud services**
1. In [Tiger Cloud Console][console-services], choose the service.
1. Click `Operations` > `Exporters`.
1. Click the trash can icon.
1. Repeat for every service attached to the exporter you want to remove.
The data exporter is now unattached from all services. However, it still exists in your project.
1. **Delete the exporter on the project level**
1. In Tiger Cloud Console, open [Exporters][console-integrations]
1. Next to the exporter you want to edit, click menu > `Delete`
1. Confirm that you want to delete the data exporter.
### Reference
When you create the IAM OIDC provider, the URL must match the region you create the exporter in.
It must be one of the following:
| Region | Zone | Location | URL
|------------------|---------------|----------------|--------------------|
| `ap-southeast-1` | Asia Pacific | Singapore | `irsa-oidc-discovery-prod-ap-southeast-1.s3.ap-southeast-1.amazonaws.com`
| `ap-southeast-2` | Asia Pacific | Sydney | `irsa-oidc-discovery-prod-ap-southeast-2.s3.ap-southeast-2.amazonaws.com`
| `ap-northeast-1` | Asia Pacific | Tokyo | `irsa-oidc-discovery-prod-ap-northeast-1.s3.ap-northeast-1.amazonaws.com`
| `ca-central-1` | Canada | Central | `irsa-oidc-discovery-prod-ca-central-1.s3.ca-central-1.amazonaws.com`
| `eu-central-1` | Europe | Frankfurt | `irsa-oidc-discovery-prod-eu-central-1.s3.eu-central-1.amazonaws.com`
| `eu-west-1` | Europe | Ireland | `irsa-oidc-discovery-prod-eu-west-1.s3.eu-west-1.amazonaws.com`
| `eu-west-2` | Europe | London | `irsa-oidc-discovery-prod-eu-west-2.s3.eu-west-2.amazonaws.com`
| `sa-east-1` | South America | São Paulo | `irsa-oidc-discovery-prod-sa-east-1.s3.sa-east-1.amazonaws.com`
| `us-east-1` | United States | North Virginia | `irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com`
| `us-east-2` | United States | Ohio | `irsa-oidc-discovery-prod-us-east-2.s3.us-east-2.amazonaws.com`
| `us-west-2` | United States | Oregon | `irsa-oidc-discovery-prod-us-west-2.s3.us-west-2.amazonaws.com`
## Configure Datadog Agent to collect metrics for your Tiger Cloud services
Datadog Agent includes a [Postgres integration][datadog-postgres] that you use to collect detailed Postgres database
metrics about your Tiger Cloud services.
1. **Connect to your Tiger Cloud service**
For Tiger Cloud, open an [SQL editor][run-queries] in [Tiger Cloud Console][open-console]. For self-hosted TimescaleDB, use [`psql`][psql].
1. **Add the `datadog` user to your Tiger Cloud service**
sql create user datadog with password '';
sql grant pg_monitor to datadog;
sql grant SELECT ON pg_stat_database to datadog;
1. **Test the connection and rights for the datadog user**
Update the following command with your [connection details][connection-info], then run it from the command line:
bash
psql "postgres://datadog:<datadog password>@<host>:<port>/tsdb?sslmode=require" -c \
"select * from pg_stat_database LIMIT(1);" \
&& echo -e "\e[0;32mPostgres connection - OK\e[0m" || echo -e "\e[0;31mCannot connect to Postgres\e[0m"
You see the output from the `pg_stat_database` table, which means you have given the correct rights to `datadog`.
1. **Connect Datadog to your Tiger Cloud service**
1. Configure the [Datadog Agent Postgres configuration file][datadog-config]; it is usually located on the Datadog Agent host at:
- **Linux**: `/etc/datadog-agent/conf.d/postgres.d/conf.yaml`
- **MacOS**: `/opt/datadog-agent/etc/conf.d/postgres.d/conf.yaml`
- **Windows**: `C:\ProgramData\Datadog\conf.d\postgres.d\conf.yaml`
1. Integrate Datadog Agent with your Tiger Cloud service:
Use your [connection details][connection-info] to update the following and add it to the Datadog Agent Postgres
configuration file:
```yaml
init_config:
instances:
- host: <host>
port: <port>
username: datadog
password: <datadog's password>>
dbname: tsdb
disable_generic_tags: true
```
1. **Add Tiger Cloud metrics**
Tags to make it easier for build Datadog dashboards that combine metrics from the Tiger Cloud data exporter and
Datadog Agent. Use your [connection details][connection-info] to update the following and add it to
`<datadog_home>/datadog.yaml`:
yaml tags:
- project-id:<project-id>
- service-id:<service-id>
- region:<region>
1. **Restart Datadog Agent**
See how to [Start, stop, and restart Datadog Agent][datadog-agent-restart].
Metrics for your Tiger Cloud service are now visible in Datadog. Check the Datadog Postgres integration documentation for a
comprehensive list of [metrics][datadog-postgres-metrics] collected.
===== PAGE: https://docs.tigerdata.com/integrations/decodable/ =====
# Integrate Decodable with Tiger Cloud
[Decodable][decodable] is a real-time data platform that allows you to build, run, and manage data pipelines effortlessly.

This page explains how to integrate Decodable with your Tiger Cloud service to enable efficient real-time streaming and analytics.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
- Sign up for [Decodable][sign-up-decodable].
This page uses the pipeline you create using the [Decodable Quickstart Guide][decodable-quickstart].
## Connect Decodable to your Tiger Cloud service
To stream data gathered in Decodable to a Tiger Cloud service:
1. **Create the sync to pipe a Decodable data stream into your Tiger Cloud service**
1. Log in to your [Decodable account][decodable-app].
1. Click `Connections`, then click `New Connection`.
1. Select a `PostgreSQL sink` connection type, then click `Connect`.
1. Using your [connection details][connection-info], fill in the connection information.
Leave `schema` and `JDBC options` empty.
1. Select the `http_events` source stream, then click `Next`.
Decodable creates the table in your Tiger Cloud service and starts streaming data.
1. **Test the connection**
1. Connect to your Tiger Cloud service.
For Tiger Cloud, open an [SQL editor][run-queries] in [Tiger Cloud Console][open-console]. For self-hosted TimescaleDB, use [`psql`][psql].
1. Check the data from Decodable is streaming into your Tiger Cloud service.
```sql
SELECT * FROM http_events;
```
You see something like:

You have successfully integrated Decodable with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/debezium/ =====
# Integrate Debezium with Tiger Cloud
[Debezium][debezium] is an open-source distributed platform for change data capture (CDC).
It enables you to capture changes in a self-hosted TimescaleDB instance and stream them to other systems in real time.
Debezium can capture events about:
- [Hypertables][hypertables]: captured events are rerouted from their chunk-specific topics to a single logical topic
named according to the following pattern: `<topic.prefix>.<hypertable-schema-name>.<hypertable-name>`
- [Continuous aggregates][caggs]: captured events are rerouted from their chunk-specific topics to a single logical topic
named according to the following pattern: `<topic.prefix>.<aggregate-schema-name>.<aggregate-name>`
- [Hypercore][hypercore]: If you enable hypercore, the Debezium TimescaleDB connector does not apply any special
processing to data in the columnstore. Compressed chunks are forwarded unchanged to the next downstream job in the
pipeline for further processing as needed. Typically, messages with compressed chunks are dropped, and are not
processed by subsequent jobs in the pipeline.
This limitation only affects changes to chunks in the columnstore. Changes to data in the rowstore work correctly.
This page explains how to capture changes in your database and stream them using Debezium on Apache Kafka.
## Prerequisites
To follow the steps on this page:
* Create a target [self-hosted TimescaleDB][enable-timescaledb] instance.
- [Install Docker][install-docker] on your development machine.
## Configure your database to work with Debezium
To set up self-hosted TimescaleDB to communicate with Debezium:
1. **Configure your self-hosted Postgres deployment**
1. Open `postgresql.conf`.
The Postgres configuration files are usually located in:
- Docker: `/home/postgres/pgdata/data/`
- Linux: `/etc/postgresql/<version>/main/` or `/var/lib/pgsql/<version>/data/`
- MacOS: `/opt/homebrew/var/postgresql@<version>/`
- Windows: `C:\Program Files\PostgreSQL\<version>\data\`
1. Enable logical replication.
Modify the following settings in `postgresql.conf`:
```ini
wal_level = logical
max_replication_slots = 10
max_wal_senders = 10
```
1. Open `pg_hba.conf` and enable host replication.
To allow replication connections, add the following:
```
local replication debezium trust
```
This permission is for the `debezium` Postgres user running on a local or Docker deployment. For more about replication
permissions, see [Configuring Postgres to allow replication with the Debezium connector host][debezium-replication-permissions].
1. Restart Postgres.
1. **Connect to your self-hosted TimescaleDB instance**
Use [`psql`][psql-connect].
1. **Create a Debezium user in Postgres**
Create a user with the `LOGIN` and `REPLICATION` permissions:
```sql
CREATE ROLE debezium WITH LOGIN REPLICATION PASSWORD '<debeziumpassword>';
```
1. **Enable a replication spot for Debezium**
1. Create a table for Debezium to listen to:
```sql
CREATE TABLE accounts (created_at TIMESTAMPTZ DEFAULT NOW(),
name TEXT,
city TEXT);
```
1. Turn the table into a hypertable:
```sql
SELECT create_hypertable('accounts', 'created_at');
```
Debezium also works with [continuous aggregates][caggs].
1. Create a publication and enable a replication slot:
```sql
CREATE PUBLICATION dbz_publication FOR ALL TABLES WITH (publish = 'insert, update');
```
## Configure Debezium to work with your database
Set up Kafka Connect server, plugins, drivers, and connectors:
1. **Run Zookeeper in Docker**
In another Terminal window, run the following command:
bash docker run -it --rm --name zookeeper -p 2181:2181 -p 2888:2888 -p 3888:3888 quay.io/debezium/zookeeper:3.0
Check the output log to see that zookeeper is running.
1. **Run Kafka in Docker**
In another Terminal window, run the following command:
bash docker run -it --rm --name kafka -p 9092:9092 --link zookeeper:zookeeper quay.io/debezium/kafka:3.0
Check the output log to see that Kafka is running.
1. **Run Kafka Connect in Docker**
In another Terminal window, run the following command:
bash docker run -it --rm --name connect \ -p 8083:8083 \ -e GROUP_ID=1 \ -e CONFIG_STORAGE_TOPIC=accounts \ -e OFFSET_STORAGE_TOPIC=offsets \ -e STATUS_STORAGE_TOPIC=storage \ --link kafka:kafka \ --link timescaledb:timescaledb \ quay.io/debezium/connect:3.0
Check the output log to see that Kafka Connect is running.
1. **Register the Debezium Postgres source connector**
Update the `<properties>` for the `<debezium-user>` you created in your self-hosted TimescaleDB instance in the following command.
Then run the command in another Terminal window:
bash curl -X POST http://localhost:8083/connectors \ -H "Content-Type: application/json" \ -d '{
"name": "timescaledb-connector",
"config": {
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": "timescaledb",
"database.port": "5432",
"database.user": "<debezium-user>",
"database.password": "<debezium-password>",
"database.dbname" : "postgres",
"topic.prefix": "accounts",
"plugin.name": "pgoutput",
"schema.include.list": "public,_timescaledb_internal",
"transforms": "timescaledb",
"transforms.timescaledb.type": "io.debezium.connector.postgresql.transforms.timescaledb.TimescaleDb",
"transforms.timescaledb.database.hostname": "timescaledb",
"transforms.timescaledb.database.port": "5432",
"transforms.timescaledb.database.user": "<debezium-user>",
"transforms.timescaledb.database.password": "<debezium-password>",
"transforms.timescaledb.database.dbname": "postgres"
}
}'
1. **Verify `timescaledb-source-connector` is included in the connector list**
1. Check the tasks associated with `timescaledb-connector`:
```bash
curl -i -X GET -H "Accept:application/json" localhost:8083/connectors/timescaledb-connector
```
You see something like:
```bash
{"name":"timescaledb-connector","config":
{ "connector.class":"io.debezium.connector.postgresql.PostgresConnector",
"transforms.timescaledb.database.hostname":"timescaledb",
"transforms.timescaledb.database.password":"debeziumpassword","database.user":"debezium",
"database.dbname":"postgres","transforms.timescaledb.database.dbname":"postgres",
"transforms.timescaledb.database.user":"debezium",
"transforms.timescaledb.type":"io.debezium.connector.postgresql.transforms.timescaledb.TimescaleDb",
"transforms.timescaledb.database.port":"5432","transforms":"timescaledb",
"schema.include.list":"public,_timescaledb_internal","database.port":"5432","plugin.name":"pgoutput",
"topic.prefix":"accounts","database.hostname":"timescaledb","database.password":"debeziumpassword",
"name":"timescaledb-connector"},"tasks":[{"connector":"timescaledb-connector","task":0}],"type":"source"}
```
1. **Verify `timescaledb-connector` is running**
1. Open the Terminal window running Kafka Connect. When the connector is active, you see something like the following:
```bash
2025-04-30 10:40:15,168 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal._hyper_1_1_chunk' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,168 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_job_stat' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,175 INFO Postgres|accounts|streaming SignalProcessor started. Scheduling it every 5000ms [io.debezium.pipeline.signal.SignalProcessor]
2025-04-30 10:40:15,175 INFO Postgres|accounts|streaming Creating thread debezium-postgresconnector-accounts-SignalProcessor [io.debezium.util.Threads]
2025-04-30 10:40:15,175 INFO Postgres|accounts|streaming Starting streaming [io.debezium.pipeline.ChangeEventSourceCoordinator]
2025-04-30 10:40:15,176 INFO Postgres|accounts|streaming Retrieved latest position from stored offset 'LSN{0/1FCE570}' [io.debezium.connector.postgresql.PostgresStreamingChangeEventSource]
2025-04-30 10:40:15,176 INFO Postgres|accounts|streaming Looking for WAL restart position for last commit LSN 'null' and last change LSN 'LSN{0/1FCE570}' [io.debezium.connector.postgresql.connection.WalPositionLocator]
2025-04-30 10:40:15,176 INFO Postgres|accounts|streaming Initializing PgOutput logical decoder publication [io.debezium.connector.postgresql.connection.PostgresReplicationConnection]
2025-04-30 10:40:15,189 INFO Postgres|accounts|streaming Obtained valid replication slot ReplicationSlot [active=false, latestFlushedLsn=LSN{0/1FCCFF0}, catalogXmin=884] [io.debezium.connector.postgresql.connection.PostgresConnection]
2025-04-30 10:40:15,189 INFO Postgres|accounts|streaming Connection gracefully closed [io.debezium.jdbc.JdbcConnection]
2025-04-30 10:40:15,204 INFO Postgres|accounts|streaming Requested thread factory for component PostgresConnector, id = accounts named = keep-alive [io.debezium.util.Threads]
2025-04-30 10:40:15,204 INFO Postgres|accounts|streaming Creating thread debezium-postgresconnector-accounts-keep-alive [io.debezium.util.Threads]
2025-04-30 10:40:15,216 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_policy_chunk_stats' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,216 INFO Postgres|accounts|streaming REPLICA IDENTITY for 'public.accounts' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,217 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_job_stat_history' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,217 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal._hyper_1_1_chunk' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,217 INFO Postgres|accounts|streaming REPLICA IDENTITY for '_timescaledb_internal.bgw_job_stat' is 'DEFAULT'; UPDATE and DELETE events will contain previous values only for PK columns [io.debezium.connector.postgresql.PostgresSchema]
2025-04-30 10:40:15,219 INFO Postgres|accounts|streaming Processing messages [io.debezium.connector.postgresql.PostgresStreamingChangeEventSource]
```
1. Watch the events in the accounts topic on your self-hosted TimescaleDB instance.
In another Terminal instance, run the following command:
```bash
docker run -it --rm --name watcher --link zookeeper:zookeeper --link kafka:kafka quay.io/debezium/kafka:3.0 watch-topic -a -k accounts
```
You see the topics being streamed. For example:
```bash
status-task-timescaledb-connector-0 {"state":"RUNNING","trace":null,"worker_id":"172.17.0.5:8083","generation":31}
status-topic-timescaledb.public.accounts:connector-timescaledb-connector {"topic":{"name":"timescaledb.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009337985}}
status-topic-accounts._timescaledb_internal.bgw_job_stat:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338118}}
status-topic-accounts._timescaledb_internal.bgw_job_stat:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338120}}
status-topic-accounts._timescaledb_internal.bgw_job_stat_history:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat_history","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338243}}
status-topic-accounts._timescaledb_internal.bgw_job_stat_history:connector-timescaledb-connector {"topic":{"name":"accounts._timescaledb_internal.bgw_job_stat_history","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338245}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338250}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
status-topic-accounts.public.accounts:connector-timescaledb-connector {"topic":{"name":"accounts.public.accounts","connector":"timescaledb-connector","task":0,"discoverTimestamp":1746009338251}}
["timescaledb-connector",{"server":"accounts"}] {"last_snapshot_record":true,"lsn":33351024,"txId":893,"ts_usec":1746009337290783,"snapshot":"INITIAL","snapshot_completed":true}
status-connector-timescaledb-connector {"state":"UNASSIGNED","trace":null,"worker_id":"172.17.0.5:8083","generation":31}
status-task-timescaledb-connector-0 {"state":"UNASSIGNED","trace":null,"worker_id":"172.17.0.5:8083","generation":31}
status-connector-timescaledb-connector {"state":"RUNNING","trace":null,"worker_id":"172.17.0.5:8083","generation":33}
status-task-timescaledb-connector-0 {"state":"RUNNING","trace":null,"worker_id":"172.17.0.5:8083","generation":33}
```
Debezium requires logical replication to be enabled. Currently, this is not enabled by default on Tiger Cloud services.
We are working on enabling this feature as you read. As soon as it is live, these docs will be updated.
And that is it, you have configured Debezium to interact with Tiger Data products.
===== PAGE: https://docs.tigerdata.com/integrations/fivetran/ =====
# Integrate Fivetran with Tiger Cloud
[Fivetran][fivetran] is a fully managed data pipeline platform that simplifies ETL (Extract, Transform, Load) processes
by automatically syncing data from multiple sources to your data warehouse.

This page shows you how to inject data from data sources managed by Fivetran into a Tiger Cloud service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
* Sign up for [Fivetran][sign-up-fivetran]
## Set your Tiger Cloud service as a destination in Fivetran
To be able to inject data into your Tiger Cloud service, set it as a destination in Fivetran:

1. In [Fivetran Dashboard > Destinations][fivetran-dashboard-destinations], click `Add destination`.
1. Search for the `PostgreSQL` connector and click `Select`. Add the destination name and click `Add`.
1. In the `PostgreSQL` setup, add your [Tiger Cloud service connection details][connection-info], then click `Save & Test`.
Fivetran validates the connection settings and sets up any security configurations.
1. Click `View Destination`.
The `Destination Connection Details` page opens.
## Set up a Fivetran connection as your data source
In a real world scenario, you can select any of the over 600 connectors available in Fivetran to sync data with your
Tiger Cloud service. This section shows you how to inject the logs for your Fivetran connections into your Tiger Cloud service.

1. In [Fivetran Dashboard > Connections][fivetran-dashboard-connectors], click `Add connector`.
1. Search for the `Fivetran Platform` connector, then click `Setup`.
1. Leave the default schema name, then click `Save & Test`.
You see `All connection tests passed!`
1. Click `Continue`, enable `Add Quickstart Data Model` and click `Continue`.
Your Fivetran connection is connected to your Tiger Cloud service destination.
1. Click `Start Initial Sync`.
Fivetran creates the log schema in your service and syncs the data to your service.
## View Fivetran data in your Tiger Cloud service
To see data injected by Fivetran into your Tiger Cloud service:
1. In [data mode][portal-data-mode] in Tiger Cloud Console, select your service, then run the following query:
sql SELECT * FROM fivetran_log.account LIMIT 10;
You see something like the following:

You have successfully integrated Fivetran with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/find-connection-details/ =====
# Find your connection details
To connect to your Tiger Cloud service or self-hosted TimescaleDB, you need at least the following:
- Hostname
- Port
- Username
- Password
- Database name
Find the connection details based on your deployment type:
## Connect to your service
Retrieve the connection details for your Tiger Cloud service:
- **In `<service name>-credentials.txt`**:
All connection details are supplied in the configuration file you download when you create a new service.
- **In Tiger Cloud Console**:
Open the [`Services`][console-services] page and select your service. The connection details, except the password, are available in `Service info` > `Connection info` > `More details`. If necessary, click `Forgot your password?` to get a new one.

## Find your project and service ID
To retrieve the connection details for your Tiger Cloud project and Tiger Cloud service:
1. **Retrieve your project ID**:
In [Tiger Cloud Console][console-services], click your project name in the upper left corner, then click `Copy` next to the project ID.

1. **Retrieve your service ID**:
Click the dots next to the service, then click `Copy` next to the service ID.

## Create client credentials
You use client credentials to obtain access tokens outside of the user context.
To retrieve the connection details for your Tiger Cloud project for programmatic usage
such as Terraform or the [Tiger Cloud REST API][rest-api-reference]:
1. **Open the settings for your project**:
In [Tiger Cloud Console][console-services], click your project name in the upper left corner, then click `Project settings`.
1. **Create client credentials**:
1. Click `Create credentials`, then copy `Public key` and `Secret key` locally.

This is the only time you see the `Secret key`. After this, only the `Public key` is visible in this page.
1. Click `Done`.
## Create client credentials
You use client credentials to obtain access tokens outside of the user context.
To retrieve the connection details for your Tiger Cloud project for programmatic usage
such as Terraform or the [Tiger Cloud REST API][rest-api-reference]:
1. **Open the settings for your project**:
In [Tiger Cloud Console][console-services], click your project name in the upper left corner, then click `Project settings`.
1. **Create client credentials**:
1. Click `Create credentials`, then copy `Public key` and `Secret key` locally.

This is the only time you see the `Secret key`. After this, only the `Public key` is visible in this page.
1. Click `Done`.
Find the connection details in the [Postgres configuration file][postgres-config] or by asking your database administrator. The `postgres` superuser, created during Postgres installation, has all the permissions required to run procedures in this documentation. However, it is recommended to create other users and assign permissions on the need-only basis.
In the `Services` page of the MST Console, click the service you want to connect to. You see the connection details:

===== PAGE: https://docs.tigerdata.com/integrations/terraform/ =====
# Integrate Terraform with Tiger
[Terraform][terraform] is an infrastructure-as-code tool that enables you to safely and predictably provision and manage infrastructure.
This page explains how to configure Terraform to manage your Tiger Cloud service or self-hosted TimescaleDB.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
* [Download and install][terraform-install] Terraform.
## Configure Terraform
Configure Terraform based on your deployment type:
You use the [Tiger Data Terraform provider][terraform-provider] to manage Tiger Cloud services:
1. **Generate client credentials for programmatic use**
1. In [Tiger Cloud Console][console], click `Projects` and save your `Project ID`, then click `Project settings`.
1. Click `Create credentials`, then save `Public key` and `Secret key`.
1. **Configure Tiger Data Terraform provider**
1. Create a `main.tf` configuration file with at least the following content. Change `x.y.z` to the [latest version][terraform-provider] of the provider.
```hcl
terraform {
required_providers {
timescale = {
source = "timescale/timescale"
version = "x.y.z"
}
}
}
provider "timescale" {
project_id = var.ts_project_id
access_key = var.ts_access_key
secret_key = var.ts_secret_key
}
variable "ts_project_id" {
type = string
}
variable "ts_access_key" {
type = string
}
variable "ts_secret_key" {
type = string
}
```
1. Create a `terraform.tfvars` file in the same directory as your `main.tf` to pass in the variable values:
```hcl
export TF_VAR_ts_project_id="<your-timescale-project-id>"
export TF_VAR_ts_access_key="<your-timescale-access-key>"
export TF_VAR_ts_secret_key="<your-timescale-secret-key>"
```
1. **Add your resources**
Add your Tiger Cloud services or VPC connections to the `main.tf` configuration file. For example:
hcl resource "timescale_service" "test" {
name = "test-service"
milli_cpu = 500
memory_gb = 2
region_code = "us-east-1"
enable_ha_replica = false
timeouts = {
create = "30m"
}
}
resource "timescale_vpc" "vpc" {
cidr = "10.10.0.0/16"
name = "test-vpc"
region_code = "us-east-1"
}
You can now manage your resources with Terraform. See more about [available resources][terraform-resources] and [data sources][terraform-data-sources].
You use the [`cyrilgdn/postgresql`][pg-provider] Postgres provider to connect to your self-hosted TimescaleDB instance.
Create a `main.tf` configuration file with the following content, using your [connection details][connection-info]:
hcl terraform {
required_providers {
postgresql = {
source = "cyrilgdn/postgresql"
version = ">= 1.15.0"
}
}
}
provider "postgresql" {
host = "your-timescaledb-host"
port = "your-timescaledb-port"
database = "your-database-name"
username = "your-username"
password = "your-password"
sslmode = "require" # Or "disable" if SSL isn't enabled
}
You can now manage your database with Terraform.
===== PAGE: https://docs.tigerdata.com/integrations/azure-data-studio/ =====
# Integrate Azure Data Studio with Tiger
[Azure Data Studio][azure-data-studio] is an open-source, cross-platform hybrid data analytics tool designed to simplify the data landscape.
This page explains how to integrate Azure Data Studio with Tiger Cloud.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
* Download and install [Azure Data Studio][ms-azure-data-studio].
* Install the [Postgres extension for Azure Data Studio][postgresql-azure-data-studio].
## Connect to your Tiger Cloud service with Azure Data Studio
To connect to Tiger Cloud:
1. **Start `Azure Data Studio`**
1. **In the `SERVERS` page, click `New Connection`**
1. **Configure the connection**
1. Select `PostgreSQL` for `Connection type`.
1. Configure the server name, database, username, port, and password using your [connection details][connection-info].
1. Click `Advanced`.
If you configured your Tiger Cloud service to connect using [stricter SSL mode][ssl-mode], set `SSL mode` to the
configured mode, then type the location of your SSL root CA certificate in `SSL root certificate filename`.
1. In the `Port` field, type the port number and click `OK`.
1. **Click `Connect`**
You have successfully integrated Azure Data Studio with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/telegraf/ =====
# Ingest data using Telegraf
Telegraf is a server-based agent that collects and sends metrics and events from databases,
systems, and IoT sensors. Telegraf is an open source, plugin-driven tool for the collection
and output of data.
To view metrics gathered by Telegraf and stored in a [hypertable][about-hypertables] in a
Tiger Cloud service.
- [Link Telegraf to your Tiger Cloud service](#link-telegraf-to-your-service): create a Telegraf configuration
- [View the metrics collected by Telegraf](#view-the-metrics-collected-by-telegraf): connect to your service and
query the metrics table
## Prerequisites
Best practice is to use an [Ubuntu EC2 instance][create-ec2-instance] hosted in the same region as your
Tiger Cloud service as a migration machine. That is, the machine you run the commands on to move your
data from your source database to your target Tiger Cloud service.
Before you migrate your data:
- Create a target [Tiger Cloud service][created-a-database-service-in-timescale].
Each Tiger Cloud service has a single database that supports the
[most popular extensions][all-available-extensions]. Tiger Cloud services do not support tablespaces,
and there is no superuser associated with a service.
Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance
can significantly reduce the overall migration window.
- To ensure that maintenance does not run during the process, [adjust the maintenance window][adjust-maintenance-window].
- [Install Telegraf][install-telegraf]
## Link Telegraf to your service
To create a Telegraf configuration that exports data to a hypertable in your service:
1. **Set up your service connection string**
This variable holds the connection information for the target Tiger Cloud service.
In the terminal on the source machine, set the following:
bash export TARGET=postgres://tsdbadmin:@:/tsdb?sslmode=require
See where to [find your connection details][connection-info].
1. **Generate a Telegraf configuration file**
In Terminal, run the following:
```bash
telegraf --input-filter=cpu --output-filter=postgresql config > telegraf.conf
```
`telegraf.conf` configures a CPU input plugin that samples
various metrics about CPU usage, and the Postgres output plugin. `telegraf.conf`
also includes all available input, output, processor, and aggregator
plugins. These are commented out by default.
1. **Test the configuration**
```bash
telegraf --config telegraf.conf --test
```
You see an output similar to the following:
```bash
2022-11-28T12:53:44Z I! Starting Telegraf 1.24.3
2022-11-28T12:53:44Z I! Available plugins: 208 inputs, 9 aggregators, 26 processors, 20 parsers, 57 outputs
2022-11-28T12:53:44Z I! Loaded inputs: cpu
2022-11-28T12:53:44Z I! Loaded aggregators:
2022-11-28T12:53:44Z I! Loaded processors:
2022-11-28T12:53:44Z W! Outputs are not used in testing mode!
2022-11-28T12:53:44Z I! Tags enabled: host=localhost
> cpu,cpu=cpu0,host=localhost usage_guest=0,usage_guest_nice=0,usage_idle=90.00000000087311,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=6.000000000040018,usage_user=3.999999999996362 1669640025000000000
> cpu,cpu=cpu1,host=localhost usage_guest=0,usage_guest_nice=0,usage_idle=92.15686274495818,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=5.882352941192206,usage_user=1.9607843136712912 1669640025000000000
> cpu,cpu=cpu2,host=localhost usage_guest=0,usage_guest_nice=0,usage_idle=91.99999999982538,usage_iowait=0,usage_irq=0,usage_nice=0,usage_softirq=0,usage_steal=0,usage_system=3.999999999996362,usage_user=3.999999999996362 1669640025000000000
```
1. **Configure the Postgres output plugin**
1. In `telegraf.conf`, in the `[[outputs.postgresql]]` section, set `connection` to
the value of target.
```bash
connection = "<VALUE OF target>"
```
1. Use hypertables when Telegraf creates a new table:
In the section that begins with the comment `## Templated statements to execute
when creating a new table`, add the following template:
```bash
## Templated statements to execute when creating a new table.
```
The `by_range` dimension builder was added to TimescaleDB 2.13.
## View the metrics collected by Telegraf
This section shows you how to generate system metrics using Telegraf, then connect to your
service and query the metrics [hypertable][about-hypertables].
1. **Collect system metrics using Telegraf**
Run the following command for a 30 seconds:
```bash
telegraf --config telegraf.conf
```
Telegraf uses loaded inputs `cpu` and outputs `postgresql` along with
`global tags`, the intervals when the agent collects data from the inputs, and
flushes to the outputs.
1. **View the metrics**
1. Connect to your Tiger Cloud service:
```bash
psql target
```
1. View the metrics collected in the `cpu` table in `tsdb`:
```sql
SELECT*FROM cpu;
```
You see something like:
```sql
time | cpu | host | usage_guest | usage_guest_nice | usage_idle | usage_iowait | usage_irq | usage_nice | usage_softirq | usage_steal | usage_system | usage_user
---------------------+-----------+----------------------------------+-------------+------------------+-------------------+--------------+-----------+------------+---------------+-------------+---------------------+---------------------
2022-12-05 12:25:20 | cpu0 | hostname | 0 | 0 | 83.08605341237833 | 0 | 0 | 0 | 0 | 0 | 6.824925815961274 | 10.089020771444481
2022-12-05 12:25:20 | cpu1 | hostname | 0 | 0 | 84.27299703278959 | 0 | 0 | 0 | 0 | 0 | 5.934718100814769 | 9.792284866395647
2022-12-05 12:25:20 | cpu2 | hostname | 0 | 0 | 87.53709198848934 | 0 | 0 | 0 | 0 | 0 | 4.747774480755411 | 7.715133531241037
2022-12-05 12:25:20 | cpu3 | hostname| 0 | 0 | 86.68639053296472 | 0 | 0 | 0 | 0 | 0 | 4.43786982253345 | 8.875739645039992
2022-12-05 12:25:20 | cpu4 | hostname | 0 | 0 | 96.15384615371369 | 0 | 0 | 0 | 0 | 0 | 1.1834319526667423 | 2.6627218934917614
```
To view the average usage per CPU core, use `SELECT cpu, avg(usage_user) FROM cpu GROUP BY cpu;`.
For more information about the options that you can configure in Telegraf,
see the [PostgreQL output plugin][output-plugin].
===== PAGE: https://docs.tigerdata.com/integrations/supabase/ =====
# Integrate Supabase with Tiger
[Supabase][supabase] is an open source Firebase alternative. This page shows how to run real-time analytical queries
against a Tiger Cloud service through Supabase using a foreign data wrapper (fdw) to bring aggregated data from your
Tiger Cloud service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
- Create a [Supabase project][supabase-new-project]
## Set up your Tiger Cloud service
To set up a Tiger Cloud service optimized for analytics to receive data from Supabase:
1. **Optimize time-series data in hypertables**
Time-series data represents how a system, process, or behavior changes over time. [Hypertables][hypertables-section]
are Postgres tables that help you improve insert and query performance by automatically partitioning your data by
time.
1. [Connect to your Tiger Cloud service][connect] and create a table that will point to a Supabase database:
```sql
CREATE TABLE signs (
time timestamptz NOT NULL DEFAULT now(),
origin_time timestamptz NOT NULL,
name TEXT
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. **Optimize cooling data for analytics**
Hypercore is the hybrid row-columnar storage engine in TimescaleDB, designed specifically for real-time analytics
and powered by time-series data. The advantage of hypercore is its ability to seamlessly switch between row-oriented
and column-oriented storage. This flexibility enables TimescaleDB to deliver the best of both worlds, solving the
key challenges in real-time analytics.
sql ALTER TABLE signs SET (
timescaledb.enable_columnstore = true,
timescaledb.segmentby = 'name');
1. **Create optimized analytical queries**
Continuous aggregates are designed to make queries on very large datasets run
faster. Continuous aggregates in Tiger Cloud use Postgres [materialized views][postgres-materialized-views] to
continuously, and incrementally refresh a query in the background, so that when you run the query,
only the data that has changed needs to be computed, not the entire dataset.
1. Create a continuous aggregate pointing to the Supabase database.
```sql
CREATE MATERIALIZED VIEW IF NOT EXISTS signs_per_minute
WITH (timescaledb.continuous)
AS
SELECT time_bucket('1 minute', time) as ts,
name,
count(*) as total
FROM signs
GROUP BY 1, 2
WITH NO DATA;
```
1. Setup a delay stats comparing `origin_time` to `time`.
```sql
CREATE MATERIALIZED VIEW IF NOT EXISTS _signs_per_minute_delay
WITH (timescaledb.continuous)
AS
SELECT time_bucket('1 minute', time) as ts,
stats_agg(extract(epoch from origin_time - time)::float8) as delay_agg,
candlestick_agg(time, extract(epoch from origin_time - time)::float8, 1) as delay_candlestick
FROM signs GROUP BY 1
WITH NO DATA;
```
1. Setup a view to recieve the data from Supabase.
```sql
CREATE VIEW signs_per_minute_delay
AS
SELECT ts,
average(delay_agg) as avg_delay,
stddev(delay_agg) as stddev_delay,
open(delay_candlestick) as open,
high(delay_candlestick) as high,
low(delay_candlestick) as low,
close(delay_candlestick) as close
FROM _signs_per_minute_delay
```
1. **Add refresh policies for your analytical queries**
You use `start_offset` and `end_offset` to define the time range that the continuous aggregate will cover. Assuming
that the data is being inserted without any delay, set the `start_offset` to `5 minutes` and the `end_offset` to
`1 minute`. This means that the continuous aggregate is refreshed every minute, and the refresh covers the last 5
minutes.
You set `schedule_interval` to `INTERVAL '1 minute'` so the continuous aggregate refreshes on your Tiger Cloud service
every minute. The data is accessed from Supabase, and the continuous aggregate is refreshed every minute in
the other side.
sql SELECT add_continuous_aggregate_policy('signs_per_minute',
start_offset => INTERVAL '5 minutes',
end_offset => INTERVAL '1 minute',
schedule_interval => INTERVAL '1 minute');
Do the same thing for data inserted with a delay:
sql SELECT add_continuous_aggregate_policy('_signs_per_minute_delay',
start_offset => INTERVAL '5 minutes',
end_offset => INTERVAL '1 minute',
schedule_interval => INTERVAL '1 minute');
## Set up a Supabase database
To set up a Supabase database that injects data into your Tiger Cloud service:
1. **Connect a foreign server in Supabase to your Tiger Cloud service**
1. Connect to your Supabase project using Supabase dashboard or psql.
1. Enable the `postgres_fdw` extension.
```sql
CREATE EXTENSION postgres_fdw;
```
1. Create a foreign server that points to your Tiger Cloud service.
Update the following command with your [connection details][connection-info], then run it
in the Supabase database:
```sql
CREATE SERVER timescale
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (
host '<value of host>',
port '<value of port>',
dbname '<value of dbname>',
sslmode 'require',
extensions 'timescaledb'
);
```
1. **Create the user mapping for the foreign server**
Update the following command with your [connection details][connection-info], the run it
in the Supabase database:
sql CREATE USER MAPPING FOR CURRENT_USER SERVER timescale OPTIONS (
user '<value of user>',
password '<value of password>'
);
1. **Create a foreign table that points to a table in your Tiger Cloud service.**
This query introduced the following columns:
- `time`: with a default value of `now()`. This is because the `time` column is used by Tiger Cloud to optimize data
in the columnstore.
- `origin_time`: store the original timestamp of the data.
Using both columns, you understand the delay between Supabase (`origin_time`) and the time the data is
inserted into your Tiger Cloud service (`time`).
sql CREATE FOREIGN TABLE signs (
TIME timestamptz NOT NULL DEFAULT now(),
origin_time timestamptz NOT NULL,
NAME TEXT)
SERVER timescale OPTIONS (
schema_name 'public',
table_name 'signs'
);
1. **Create a foreign table in Supabase**
1. Create a foreign table that matches the `signs_per_minute` view in your Tiger Cloud service. It represents a top level
view of the data.
```sql
CREATE FOREIGN TABLE signs_per_minute (
ts timestamptz,
name text,
total int
)
SERVER timescale OPTIONS (schema_name 'public', table_name 'signs_per_minute');
```
1. Create a foreign table that matches the `signs_per_minute_delay` view in your Tiger Cloud service.
```sql
CREATE FOREIGN TABLE signs_per_minute_delay (
ts timestamptz,
avg_delay float8,
stddev_delay float8,
open float8,
high float8,
low float8,
close float8
) SERVER timescale OPTIONS (schema_name 'public', table_name 'signs_per_minute_delay');
```
## Test the integration
To inject data into your Tiger Cloud service from a Supabase database using a foreign table:
1. **Insert data into your Supabase database**
Connect to Supabase and run the following query:
sql INSERT INTO signs (origin_time, name) VALUES (now(), 'test')
1. **Check the data in your Tiger Cloud service**
[Connect to your Tiger Cloud service][connect] and run the following query:
sql SELECT * from signs;
You see something like:
| origin_time | time | name |
|-------------|------|------|
| 2025-02-27 16:30:04.682391+00 | 2025-02-27 16:30:04.682391+00 | test |
You have successfully integrated Supabase with your Tiger Cloud service.
===== PAGE: https://docs.tigerdata.com/integrations/index/ =====
# Integrations
You can integrate your Tiger Cloud service with third-party solutions to expand and extend what you can do with your data.
## Integrates with Postgres? Integrates with your service!
A Tiger Cloud service is a Postgres database instance extended by Tiger Data with custom capabilities. This means that any third-party solution that you can integrate with Postgres, you can also integrate with Tiger Cloud. See the full list of Postgres integrations [here][postgresql-integrations].
Some of the most in-demand integrations are listed below.
## Authentication and security
| Name | Description |
|:-----------------------------------------------------------------------------------------------------------------------------------:|---------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/auth-logo.png' alt='auth-logo' />[Auth.js][auth-js] | Implement authentication and authorization for web applications. |
| <img isIcon src='https://assets.timescale.com/docs/icons/auth0-logo.png' alt='auth0-logo' />[Auth0][auth0] | Securely manage user authentication and access controls for applications. |
| <img isIcon src='https://assets.timescale.com/docs/icons/okta-logo.png' alt='okta-logo' />[Okta][okta] | Secure authentication and user identity management for applications. |
## Business intelligence and data visualization
| Name | Description |
|:----------------------------------------------------------------------------------------------------------------------------------:|-------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/cube-js-logo.png' alt='cubejs-logo' />[Cube.js][cube-js] | Build and optimize data APIs for analytics applications. |
| <img isIcon src='https://assets.timescale.com/docs/icons/looker-logo.png' alt='looker-logo' />[Looker][looker] | Explore, analyze, and share business insights with a BI platform. |
| <img isIcon src='https://assets.timescale.com/docs/icons/metabase-logo.png' alt='metabase-logo' />[Metabase][metabase] | Create dashboards and visualize business data without SQL expertise. |
| <img isIcon src='https://assets.timescale.com/docs/icons/power-bi-logo.png' alt='power-bi-logo' />[Power BI][power-bi] | Visualize data, build interactive dashboards, and share insights. |
| <img isIcon src='https://assets.timescale.com/docs/icons/superset-logo.png' alt='superset-logo' />[Superset][superset] | Create and explore data visualizations and dashboards. |
## Configuration and deployment
| Name | Description |
|:----------------------------------:|--------------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/azure-functions-logo.png' alt='azure-functions-logo' />[Azure Functions][azure-functions] | Run event-driven serverless code in the cloud without managing infrastructure. |
| <img isIcon src='https://assets.timescale.com/docs/icons/deno-deploy-logo.png' alt='deno-deploy-logo' />[Deno Deploy][deno-deploy] | Deploy and run JavaScript and TypeScript applications at the edge. |
| <img isIcon src='https://assets.timescale.com/docs/icons/flyway-logo.png' alt='flyway-logo' />[Flyway][flyway] | Manage and automate database migrations using version control. |
| <img isIcon src='https://assets.timescale.com/docs/icons/liquibase-logo.png' alt='liquibase-logo' />[Liquibase][liquibase] | Track, version, and automate database schema changes. |
| <img isIcon src='https://assets.timescale.com/docs/icons/pulimi-logo.png' alt='pulimi-logo' />[Pulumi][pulumi] | Define and manage cloud infrastructure using code in multiple languages. |
| <img isIcon src='https://assets.timescale.com/docs/icons/render-logo.png' alt='render-logo' />[Render][render] | Deploy and scale web applications, databases, and services easily. |
| <img isIcon src='https://assets.timescale.com/docs/icons/terraform-logo.png' alt='terraform-logo' />[Terraform][terraform] | Safely and predictably provision and manage infrastructure in any cloud. |
| <img isIcon src='https://assets.timescale.com/docs/icons/kubernets-logo.png' alt='kubernets-logo' />[Kubernetes][kubernetes] | Deploy, scale, and manage containerized applications automatically. |
## Data engineering and extract, transform, load
| Name | Description |
|:------------------------------------:|------------------------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/airbyte-logo.png' alt='airbyte-logo' />[Airbyte][airbyte] | Sync data between various sources and destinations. |
| <img isIcon src='https://assets.timescale.com/docs/icons/amazon-sagemaker-logo.png' alt='amazon-sagemaker-logo' />[Amazon SageMaker][amazon-sagemaker] | Build, train, and deploy ML models into a production-ready hosted environment. |
| <img isIcon src='https://assets.timescale.com/docs/icons/airflow-logo.png' alt='airflow-logo' />[Apache Airflow][apache-airflow] | Programmatically author, schedule, and monitor workflows. |
| <img isIcon src='https://assets.timescale.com/docs/icons/beam-logo.png' alt='beam-logo' />[Apache Beam][apache-beam] | Build and execute batch and streaming data pipelines across multiple processing engines. |
| <img isIcon src='https://assets.timescale.com/docs/icons/kafka-logo.png' alt='kafka-logo' />[Apache Kafka][kafka] | Stream high-performance data pipelines, analytics, and data integration. |
| <img isIcon src='https://assets.timescale.com/docs/icons/lambda-logo.png' alt='lambda-logo' />[AWS Lambda][aws-lambda] | Run code without provisioning or managing servers, scaling automatically as needed. |
| <img isIcon src='https://assets.timescale.com/docs/icons/dbt-logo.png' alt='dbt-logo' />[dbt][dbt] | Transform and model data in your warehouse using SQL-based workflows. |
| <img isIcon src='https://assets.timescale.com/docs/icons/debezium-logo.png' alt='debezium-logo' />[Debezium][debezium] | Capture and stream real-time changes from databases. |
| <img isIcon src='https://assets.timescale.com/docs/icons/decodable-logo.png' alt='decodable-logo' />[Decodable][decodable] | Build, run, and manage data pipelines effortlessly. |
| <img isIcon src='https://assets.timescale.com/docs/icons/delta-lake-logo.png' alt='delta-lake-logo' />[DeltaLake][deltalake] | Enhance data lakes with ACID transactions and schema enforcement. |
| <img isIcon src='https://assets.timescale.com/docs/icons/firebase-logo.png' alt='firebase-logo' />[Firebase Wrapper][firebase-wrapper] | Simplify interactions with Firebase services through an abstraction layer. |
| <img isIcon src='https://assets.timescale.com/docs/icons/stitch-logo.png' alt='stitch-logo' />[Stitch][stitch] | Extract, load, and transform data from various sources to data warehouses. |
## Data ingestion and streaming
| Name | Description |
|:-------------------------------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/spark-logo.png' alt='spark-logo' />[Apache Spark][apache-spark] | Process large-scale data workloads quickly using distributed computing. |
| <img isIcon src='https://assets.timescale.com/docs/icons/confluent-logo.png' alt='confluent-logo' />[Confluent][confluent] | Manage and scale Apache Kafka-based event streaming applications. You can also [set up Postgres as a source][confluent-source]. |
| <img isIcon src='https://assets.timescale.com/docs/icons/electric-sql-logo.png' alt='electric-sql-logo' />[ElectricSQL][electricsql] | Enable real-time synchronization between databases and frontend applications. |
| <img isIcon src='https://assets.timescale.com/docs/icons/emqx-logo.png' alt='emqx-logo' />[EMQX][emqx] | Deploy an enterprise-grade MQTT broker for IoT messaging. |
| <img isIcon src='https://assets.timescale.com/docs/icons/estuary-logo.png' alt='estuary-logo' />[Estuary][estuary] | Stream and synchronize data in real time between different systems. |
| <img isIcon src='https://assets.timescale.com/docs/icons/flink-logo.png' alt='flink-logo' />[Flink][flink] | Process real-time data streams with fault-tolerant distributed computing. |
| <img isIcon src='https://assets.timescale.com/docs/icons/fivetran-logo.png' alt='fivetran-logo' />[Fivetran][fivetran] | Sync data from multiple sources to your data warehouse. |
| <img isIcon src='https://assets.timescale.com/docs/icons/highbyte-logo.svg' alt='highbyte-logo' />[HighByte][highbyte] | Connect operational technology sources, model the data, and stream it into Postgres. |
| <img isIcon src='https://assets.timescale.com/docs/icons/red-panda-logo.png' alt='red-panda-logo' />[Redpanda][redpanda] | Stream and process real-time data as a Kafka-compatible platform. |
| <img isIcon src='https://assets.timescale.com/docs/icons/striim-logo.png' alt='strimm-logo' />[Striim][striim] | Ingest, process, and analyze real-time data streams. |
## Development tools
| Name | Description |
|:---------------------------------------:|--------------------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/deepnote-logo.png' alt='deepnote-logo' />[Deepnote][deepnote] | Collaborate on data science projects with a cloud-based notebook platform. |
| <img isIcon src='https://assets.timescale.com/docs/icons/django-logo.png' alt='django-logo' />[Django][django] | Develop scalable and secure web applications using a Python framework. |
| <img isIcon src='https://assets.timescale.com/docs/icons/long-chain-logo.png' alt='long-chain-logo' />[LangChain][langchain] | Build applications that integrate with language models like GPT. |
| <img isIcon src='https://assets.timescale.com/docs/icons/rust-logo.png' alt='rust-logo' />[Rust][rust] | Build high-performance, memory-safe applications with a modern programming language. |
| <img isIcon src='https://assets.timescale.com/docs/icons/streamlit-logo.png' alt='streamlit-logo' />[Streamlit][streamlit] | Create interactive data applications and dashboards using Python. |
## Language-specific integrations
| Name | Description |
|:------------------:|---------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/golang-logo.png' alt='golang-logo' />[Golang][golang] | Integrate Tiger Cloud with a Golang application. |
| <img isIcon src='https://assets.timescale.com/docs/icons/java-logo.png' alt='java-logo' />[Java][java] | Integrate Tiger Cloud with a Java application. |
| <img isIcon src='https://assets.timescale.com/docs/icons/node-logo.png' alt='node-logo' />[Node.js][node-js] | Integrate Tiger Cloud with a Node.js application. |
| <img isIcon src='https://assets.timescale.com/docs/icons/python-logo.png' alt='python-logo' />[Python][python] | Integrate Tiger Cloud with a Python application. |
| <img isIcon src='https://assets.timescale.com/docs/icons/ruby-logo.png' alt='ruby-logo' />[Ruby][ruby] | Integrate Tiger Cloud with a Ruby application. |
## Logging and system administration
| Name | Description |
|:----------------------:|---------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/rsyslog-logo.png' alt='rsyslog-logo' />[RSyslog][rsyslog] | Collect, filter, and forward system logs for centralized logging. |
| <img isIcon src='https://assets.timescale.com/docs/icons/schemaspy-logo.png' alt='schemaspy-logo' />[SchemaSpy][schemaspy] | Generate database schema documentation and visualization. |
## Observability and alerting
| Name | Description |
|:------------------------------------------------------:|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/cloudwatch-logo.png' alt='cloudwatch-logo' />[Amazon Cloudwatch][cloudwatch] | Collect, analyze, and act on data from applications, infrastructure, and services running in AWS and on-premises environments. |
| <img isIcon src='https://assets.timescale.com/docs/icons/skywalking-logo.png' alt='skywalking-logo' />[Apache SkyWalking][apache-skywalking] | Monitor, trace, and diagnose distributed applications for improved observability. You can also [set up Postgres as storage][apache-skywalking-storage]. |
| <img isIcon src='https://assets.timescale.com/docs/icons/azure-monitor-logo.png' alt='azure-monitor-logo' />[Azure Monitor][azure-monitor] | Collect and analyze telemetry data from cloud and on-premises environments.
| <img isIcon src='https://assets.timescale.com/docs/icons/dash0-logo.png' alt='dash0-logo' />[Dash0][dash0] | OpenTelemetry Native Observability, built on CNCF Open Standards like PromQL, Perses, and OTLP, and offering full cost control. |
| <img isIcon src='https://assets.timescale.com/docs/icons/datadog-logo.png' alt='datadog-logo' />[Datadog][datadog] | Gain comprehensive visibility into applications, infrastructure, and systems through real-time monitoring, logging, and analytics. |
| <img isIcon src='https://assets.timescale.com/docs/icons/grafana-logo.png' alt='grafana-logo' />[Grafana][grafana] | Query, visualize, alert on, and explore your metrics and logs. |
| <img isIcon src='https://assets.timescale.com/docs/icons/instana-logo.png' alt='instana-logo' />[IBM Instana][ibm-instana] | Monitor application performance and detect issues in real-time. |
| <img isIcon src='https://assets.timescale.com/docs/icons/jaeger-logo.png' alt='jaeger-logo' />[Jaeger][jaeger] | Trace and diagnose distributed transactions for observability. |
| <img isIcon src='https://assets.timescale.com/docs/icons/new-relic-logo.png' alt='new-relic-logo' />[New Relic][new-relic] | Monitor applications, infrastructure, and logs for performance insights. |
| <img isIcon src='https://assets.timescale.com/docs/icons/open-telemetery-logo.png' alt='open-telemetery-logo' />[OpenTelemetry Beta][opentelemetry] | Collect and analyze telemetry data for observability across systems. |
| <img isIcon src='https://assets.timescale.com/docs/icons/prometheus-logo.png' alt='prometheus-logo' />[Prometheus][prometheus] | Track the performance and health of systems, applications, and infrastructure. |
| <img isIcon src='https://assets.timescale.com/docs/icons/signoz-logo.png' alt='signoz-logo' />[SigNoz][signoz] | Monitor application performance with an open-source observability tool. |
| <img isIcon src='https://assets.timescale.com/docs/icons/tableau-logo.png' alt='tableau-logo' />[Tableau][tableau] | Connect to data sources, analyze data, and create interactive visualizations and dashboards. |
| <img isIcon src='https://assets.timescale.com/docs/icons/Influx-telegraf.svg' alt='telegraf-logo' />[Telegraf][telegraf] | Collect, process, and ship metrics and events into databases or monitoring platforms. |
## Query and administration
| Name | Description |
|:--------------------------------------------------------------------------------------------------------------------------------------------:|-------------------------------------------------------------------------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/azure-data-studio-logo.png' alt='azure-data-studio-logo' />[Azure Data Studio][ads] | Query, manage, visualize, and develop databases across SQL Server, Azure SQL, and Postgres. |
| <img isIcon src='https://assets.timescale.com/docs/icons/dbeaver-logo.png' alt='dbeaver-logo' />[DBeaver][dbeaver] | Connect to, manage, query, and analyze multiple database in a single interface with SQL editing, visualization, and administration tools. |
| <img isIcon src='https://assets.timescale.com/docs/icons/forest-admin-logo.png' alt='forest-admin-logo' />[Forest Admin][forest-admin] | Create admin panels and dashboards for business applications. |
| <img isIcon src='https://assets.timescale.com/docs/icons/hasura-logo.png' alt='hasura-logo' />[Hasura][hasura] | Instantly generate GraphQL APIs from databases with access control. |
| <img isIcon src='https://assets.timescale.com/docs/icons/mode-logo.png' alt='mode-logo' />[Mode Analytics][mode-analytics] | Analyze data, create reports, and share insights with teams. |
| <img isIcon src='https://assets.timescale.com/docs/icons/neon-logo.png' alt='neon-logo' />[Neon][neon] | Run a cloud-native, serverless Postgres database with automatic scaling. |
| <img isIcon src='https://assets.timescale.com/docs/icons/pgadmin-logo.png' alt='pgadmin-logo' />[pgAdmin][pgadmin] | Manage, query, and administer Postgres databases through a graphical interface. |
| <img isIcon src='https://assets.timescale.com/docs/icons/postgresql-logo.png' alt='postgresql-logo' />[Postgres][postgresql] | Access and query data from external sources as if they were regular Postgres tables. |
| <img isIcon src='https://assets.timescale.com/docs/icons/prisma-logo.png' alt='prisma-logo' />[Prisma][prisma] | Simplify database access with an open-source ORM for Node.js. |
| <img isIcon src='https://assets.timescale.com/docs/icons/psql-logo.png' alt='psql-logo' />[psql][psql] | Run SQL queries, manage databases, automate tasks, and interact directly with Postgres. |
| <img isIcon src='https://assets.timescale.com/docs/icons/qlik-logo.png' alt='qlik-logo' />[Qlik Replicate][qlik-replicate] | Move and synchronize data across multiple database platforms. You an also [set up Postgres as a source][qlik-source]. |
| <img isIcon src='https://assets.timescale.com/docs/icons/qstudio-logo.png' alt='qstudio-logo' />[qStudio][qstudio] | Write and execute SQL queries, manage database objects, and analyze data in a user-friendly interface. |
| <img isIcon src='https://assets.timescale.com/docs/icons/redash-logo.png' alt='redash-logo' />[Redash][redash] | Query, visualize, and share data from multiple sources. |
| <img isIcon src='https://assets.timescale.com/docs/icons/sql-alchemy-logo.png' alt='sqlalchemy-logo' />[SQLalchemy][sqlalchemy] | Manage database operations using a Python SQL toolkit and ORM. |
| <img isIcon src='https://assets.timescale.com/docs/icons/sequelize-logo.png' alt='sequelize-logo' />[Sequelize][sequelize] | Interact with SQL databases in Node.js using an ORM. |
| <img isIcon src='https://assets.timescale.com/docs/icons/stepzen-logo.png' alt='stepzen-logo' />[StepZen][stepzen] | Build and deploy GraphQL APIs with data from multiple sources. |
| <img isIcon src='https://assets.timescale.com/docs/icons/typeorm-logo.png' alt='typeorm-logo' />[TypeORM][typeorm] | Work with databases in TypeScript and JavaScript using an ORM. |
## Secure connectivity to Tiger Cloud
| Name | Description |
|:------------------------------------:|-----------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/aws-logo.png' alt='aws-logo' />[Amazon Web Services][aws] | Connect your other services and applications running in AWS to Tiger Cloud. |
| <img isIcon src='https://assets.timescale.com/docs/icons/corporate-data-center-logo.png' alt='corporate-data-center-logo' />[Corporate data center][data-center] | Connect your on-premise data center to Tiger Cloud.
| <img isIcon src='https://assets.timescale.com/docs/icons/google-cloud-logo.png' alt='google-cloud-logo' />[Google Cloud][google-cloud] | Connect your Google Cloud infrastructure to Tiger Cloud. |
| <img isIcon src='https://assets.timescale.com/docs/icons/azure-logo.png' alt='azure-logo' />[Microsoft Azure][azure] | Connect your Microsoft Azure infrastructure to Tiger Cloud. |
## Workflow automation and no-code tools
| Name | Description |
|:--------------------:|---------------------------------------------------------------------------|
| <img isIcon src='https://assets.timescale.com/docs/icons/appsmith-logo.png' alt='appsmith-logo' />[Appsmith][appsmith] | Create internal business applications with a low-code platform. |
| <img isIcon src='https://assets.timescale.com/docs/icons/n8n-logo.png' alt='n8n-logo' />[n8n][n8n] | Automate workflows and integrate services with a no-code platform. |
| <img isIcon src='https://assets.timescale.com/docs/icons/retool-logo.png' alt='retool-logo' />[Retool][retool] | Build custom internal tools quickly using a drag-and-drop interface. |
| <img isIcon src='https://assets.timescale.com/docs/icons/tooljet-logo.png' alt='tooljet-logo' />[Tooljet][tooljet] | Develop internal tools and business applications with a low-code builder. |
| <img isIcon src='https://assets.timescale.com/docs/icons/zapier-logo.png' alt='zapier-logo' />[Zapier][zapier] | Automate workflows by connecting different applications and services. |
===== PAGE: https://docs.tigerdata.com/integrations/aws-lambda/ =====
# Integrate AWS Lambda with Tiger Cloud
[AWS Lambda][AWS-Lambda] is a serverless computing service provided by Amazon Web Services (AWS) that allows you to run
code without provisioning or managing servers, scaling automatically as needed.
This page shows you how to integrate AWS Lambda with Tiger Cloud service to process and store time-series data efficiently.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
* Set up an [AWS Account][aws-sign-up].
* Install and configure [AWS CLI][install-aws-cli].
* Install [NodeJS v18.x or later][install-nodejs].
## Prepare your Tiger Cloud service to ingest data from AWS Lambda
Create a table in Tiger Cloud service to store time-series data.
1. **Connect to your Tiger Cloud service**
For Tiger Cloud, open an [SQL editor][run-queries] in [Tiger Cloud Console][open-console]. For self-hosted TimescaleDB, use [`psql`][psql].
1. **Create a hypertable to store sensor data**
[Hypertables][about-hypertables] are Postgres tables that automatically partition your data by time. You interact
with hypertables in the same way as regular Postgres tables, but with extra features that make managing your
time-series data much easier.
sql CREATE TABLE sensor_data (
time TIMESTAMPTZ NOT NULL,
sensor_id TEXT NOT NULL,
value DOUBLE PRECISION NOT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
## Create the code to inject data into a Tiger Cloud service
Write an AWS Lambda function in a Node.js project that processes and inserts time-series data into a Tiger Cloud service.
1. **Initialize a new Node.js project to hold your Lambda function**
shell mkdir lambda-timescale && cd lambda-timescale npm init -y
1. **Install the Postgres client library in your project**
shell npm install pg
1. **Write a Lambda Function that inserts data into your Tiger Cloud service**
Create a file named `index.js`, then add the following code:
javascript const {
Client
} = require('pg');
exports.handler = async (event) => {
const client = new Client({
host: process.env.TIMESCALE_HOST,
port: process.env.TIMESCALE_PORT,
user: process.env.TIMESCALE_USER,
password: process.env.TIMESCALE_PASSWORD,
database: process.env.TIMESCALE_DB,
});
try {
await client.connect();
//
const query = `
INSERT INTO sensor_data (time, sensor_id, value)
VALUES ($1, $2, $3);
`;
const data = JSON.parse(event.body);
const values = [new Date(), data.sensor_id, data.value];
await client.query(query, values);
return {
statusCode: 200,
body: JSON.stringify({
message: 'Data inserted successfully!'
}),
};
} catch (error) {
console.error('Error inserting data:', error);
return {
statusCode: 500,
body: JSON.stringify({
error: 'Failed to insert data.'
}),
};
} finally {
await client.end();
}
};
## Deploy your Node project to AWS Lambda
To create an AWS Lambda function that injects data into your Tiger Cloud service:
1. **Compress your code into a `.zip`**
shell zip -r lambda-timescale.zip .
1. **Deploy to AWS Lambda**
In the following example, replace `<IAM_ROLE_ARN>` with your [AWS IAM credentials][aws-iam-role], then use
AWS CLI to create a Lambda function for your project:
shell aws lambda create-function
--function-name TimescaleIntegration \
--runtime nodejs14.x \
--role <IAM_ROLE_ARN> \
--handler index.handler \
--zip-file fileb://lambda-timescale.zip
1. **Set up environment variables**
In the following example, use your [connection details][connection-info] to add your Tiger Cloud service connection settings to your Lambda function:
shell aws lambda update-function-configuration \ --function-name TimescaleIntegration \ --environment "Variables={TIMESCALE_HOST=,TIMESCALE_PORT=,
TIMESCALE_USER=<Username>,TIMESCALE_PASSWORD=<Password>, \
TIMESCALE_DB=<Database name>}"
1. **Test your AWS Lambda function**
1. Invoke the Lambda function and send some data to your Tiger Cloud service:
```shell
aws lambda invoke \
--function-name TimescaleIntegration \
--payload '{"body": "{\"sensor_id\": \"sensor-123\", \"value\": 42.5}"}' \
--cli-binary-format raw-in-base64-out \
response.json
```
1. Verify that the data is in your service.
Open an [SQL editor][run-queries] and check the `sensor_data` table:
```sql
SELECT * FROM sensor_data;
```
You see something like:
| time | sensor_id | value |
|-- |-- |--------|
| 2025-02-10 10:58:45.134912+00 | sensor-123 | 42.5 |
You can now seamlessly ingest time-series data from AWS Lambda into Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/postgresql/ =====
# Integrate with PostgreSQL
You use Postgres foreign data wrappers (FDWs) to query external data sources from a Tiger Cloud service. These external data sources can be one of the following:
- Other Tiger Cloud services
- Postgres databases outside of Tiger Cloud
If you are using VPC peering, you can create FDWs in your Customer VPC to query a service in your Tiger Cloud project. However, you can't create FDWs in your Tiger Cloud services to query a data source in your Customer VPC. This is because Tiger Cloud VPC peering uses AWS PrivateLink for increased security. See [VPC peering documentation][vpc-peering] for additional details.
Postgres FDWs are particularly useful if you manage multiple Tiger Cloud services with different capabilities, and need to seamlessly access and merge regular and time-series data.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Query another data source
To query another data source:
You create Postgres FDWs with the `postgres_fdw` extension, which is enabled by default in Tiger Cloud.
1. **Connect to your service**
See [how to connect][connect].
1. **Create a server**
Run the following command using your [connection details][connection-info]:
sql CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host '', dbname 'tsdb', port '');
1. **Create user mapping**
Run the following command using your [connection details][connection-info]:
sql CREATE USER MAPPING FOR tsdbadmin SERVER myserver OPTIONS (user 'tsdbadmin', password '');
1. **Import a foreign schema (recommended) or create a foreign table**
- Import the whole schema:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
FROM SERVER myserver
INTO foreign_stuff ;
```
- Alternatively, import a limited number of tables:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
LIMIT TO (table1, table2)
FROM SERVER myserver
INTO foreign_stuff;
```
- Create a foreign table. Skip if you are importing a schema:
```sql
CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
)
SERVER film_server;
```
A user with the `tsdbadmin` role assigned already has the required `USAGE` permission to create Postgres FDWs. You can enable another user, without the `tsdbadmin` role assigned, to query foreign data. To do so, explicitly grant the permission. For example, for a new `grafana` user:
sql CREATE USER grafana;
GRANT grafana TO tsdbadmin;
CREATE SCHEMA fdw AUTHORIZATION grafana;
CREATE SERVER db1 FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host '', dbname 'tsdb', port '');
CREATE USER MAPPING FOR grafana SERVER db1 OPTIONS (user 'tsdbadmin', password '');
GRANT USAGE ON FOREIGN SERVER db1 TO grafana;
SET ROLE grafana;
IMPORT FOREIGN SCHEMA public
FROM SERVER db1
INTO fdw;
You create Postgres FDWs with the `postgres_fdw` extension. See [documenation][enable-fdw-docs] on how to enable it.
1. **Connect to your database**
Use [`psql`][psql] to connect to your database.
1. **Create a server**
Run the following command using your [connection details][connection-info]:
sql CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host '', dbname '', port '');
1. **Create user mapping**
Run the following command using your [connection details][connection-info]:
sql CREATE USER MAPPING FOR postgres SERVER myserver OPTIONS (user 'postgres', password '');
1. **Import a foreign schema (recommended) or create a foreign table**
- Import the whole schema:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
FROM SERVER myserver
INTO foreign_stuff ;
```
- Alternatively, import a limited number of tables:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
LIMIT TO (table1, table2)
FROM SERVER myserver
INTO foreign_stuff;
```
- Create a foreign table. Skip if you are importing a schema:
```sql
CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
)
SERVER film_server;
```
===== PAGE: https://docs.tigerdata.com/integrations/power-bi/ =====
# Integrate Power BI with Tiger
[Power BI][power-bi] is a business analytics tool for visualizing data, creating interactive reports, and sharing insights across an organization.
This page explains how to integrate Power BI with Tiger Cloud using the Postgres ODBC driver, so that you can build interactive reports based on the data in your Tiger Cloud service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
- Download [Power BI Desktop][power-bi-install] on your Microsoft Windows machine.
- Install the [PostgreSQL ODBC driver][postgresql-odbc-driver].
## Add your Tiger Cloud service as an ODBC data source
Use the PostgreSQL ODBC driver to connect Power BI to Tiger Cloud.
1. **Open the ODBC data sources**
On your Windows machine, search for and select `ODBC Data Sources`.
1. **Connect to your Tiger Cloud service**
1. Under `User DSN`, click `Add`.
1. Choose `PostgreSQL Unicode` and click `Finish`.
1. Use your [connection details][connection-info] to configure the data source.
1. Click `Test` to ensure the connection works, then click `Save`.
## Import the data from your your Tiger Cloud service into Power BI
Establish a connection and import data from your Tiger Cloud service into Power BI:
1. **Connect Power BI to your Tiger Cloud service**
1. Open Power BI, then click `Get data from other sources`.
1. Search for and select `ODBC`, then click `Connect`.
1. In `Data source name (DSN)`, select the Tiger Cloud data source and click `OK`.
1. Use your [connection details][connection-info] to enter your `User Name` and `Password`, then click `Connect`.
After connecting, `Navigator` displays the available tables and schemas.
1. **Import your data into Power BI**
1. Select the tables to import and click `Load`.
The `Data` pane shows your imported tables.
1. To visualize your data and build reports, drag fields from the tables onto the canvas.
You have successfully integrated Power BI with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/tableau/ =====
# Integrate Tableau and Tiger
[Tableau][tableau] is a popular analytics platform that helps you gain greater intelligence about your business. You can use it to visualize
data stored in Tiger Cloud.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
* Install [Tableau Server][tableau-server] or sign up for [Tableau Cloud][tableau-cloud].
## Add your Tiger Cloud service as a virtual connection
To connect the data in your Tiger Cloud service to Tableau:
1. **Log in to Tableau**
- Tableau Cloud: [sign in][tableau-login], then click `Explore` and select a project.
- Tableau Desktop: sign in, then open a workbook.
1. **Configure Tableau to connect to your Tiger Cloud service**
1. Add a new data source:
- Tableau Cloud: click `New` > `Virtual Connection`.
- Tableau Desktop: click `Data` > `New Data Source`.
1. Search for and select `PostgreSQL`.
For Tableau Desktop download the driver and restart Tableau.
1. Configure the connection:
- `Server`, `Port`, `Database`, `Username`, `Password`: configure using your [connection details][connection-info].
- `Require SSL`: tick the checkbox.
1. **Click `Sign In` and connect Tableau to your service**
You have successfully integrated Tableau with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/apache-kafka/ =====
# Integrate Apache Kafka with Tiger Cloud
[Apache Kafka][apache-kafka] is a distributed event streaming platform used for high-performance data pipelines,
streaming analytics, and data integration. [Apache Kafka Connect][kafka-connect] is a tool to scalably and reliably
stream data between Apache Kafka® and other data systems. Kafka Connect is an ecosystem of pre-written and maintained
Kafka Producers (source connectors) and Kafka Consumers (sink connectors) for data products and platforms like
databases and message brokers.
This guide explains how to set up Kafka and Kafka Connect to stream data from a Kafka topic into your Tiger Cloud service.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
- [Java8 or higher][java-installers] to run Apache Kafka
## Install and configure Apache Kafka
To install and configure Apache Kafka:
1. **Extract the Kafka binaries to a local folder**
```bash
curl https://dlcdn.apache.org/kafka/3.9.0/kafka_2.13-3.9.0.tgz | tar -xzf -
cd kafka_2.13-3.9.0
```
From now on, the folder where you extracted the Kafka binaries is called `<KAFKA_HOME>`.
1. **Configure and run Apache Kafka**
bash KAFKA_CLUSTER_ID="$(bin/kafka-storage.sh random-uuid)" ./bin/kafka-storage.sh format --standalone -t $KAFKA_CLUSTER_ID -c config/kraft/reconfig-server.properties ./bin/kafka-server-start.sh config/kraft/reconfig-server.properties
Use the `-daemon` flag to run this process in the background.
1. **Create Kafka topics**
In another Terminal window, navigate to <KAFKA_HOME>, then call `kafka-topics.sh` and create the following topics:
- `accounts`: publishes JSON messages that are consumed by the timescale-sink connector and inserted into your Tiger Cloud service.
- `deadletter`: stores messages that cause errors and that Kafka Connect workers cannot process.
bash ./bin/kafka-topics.sh
--create \
--topic accounts \
--bootstrap-server localhost:9092 \
--partitions 10
./bin/kafka-topics.sh
--create \
--topic deadletter \
--bootstrap-server localhost:9092 \
--partitions 10
1. **Test that your topics are working correctly**
1. Run `kafka-console-producer` to send messages to the `accounts` topic:
```bash
bin/kafka-console-producer.sh --topic accounts --bootstrap-server localhost:9092
```
1. Send some events. For example, type the following:
```bash
>Tiger
>How Cool
```
1. In another Terminal window, navigate to <KAFKA_HOME>, then run `kafka-console-consumer` to consume the events you just sent:
```bash
bin/kafka-console-consumer.sh --topic accounts --from-beginning --bootstrap-server localhost:9092
```
You see
```bash
Tiger
How Cool
```
Keep these terminals open, you use them to test the integration later.
## Install the sink connector to communicate with Tiger Cloud
To set up Kafka Connect server, plugins, drivers, and connectors:
1. **Install the Postgres connector**
In another Terminal window, navigate to <KAFKA_HOME>, then download and configure the Postgres sink and driver.
bash
mkdir -p "plugins/camel-postgresql-sink-kafka-connector"
curl https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-postgresql-sink-kafka-connector/3.21.0/camel-postgresql-sink-kafka-connector-3.21.0-package.tar.gz \
| tar -xzf - -C "plugins/camel-postgresql-sink-kafka-connector" --strip-components=1
curl -H "Accept: application/zip" https://jdbc.postgresql.org/download/postgresql-42.7.5.jar -o "plugins/camel-postgresql-sink-kafka-connector/postgresql-42.7.5.jar"
echo "plugin.path=pwd/plugins/camel-postgresql-sink-kafka-connector" >> "config/connect-distributed.properties"
echo "plugin.path=pwd/plugins/camel-postgresql-sink-kafka-connector" >> "config/connect-standalone.properties"
1. **Start Kafka Connect**
```bash
export CLASSPATH=`pwd`/plugins/camel-postgresql-sink-kafka-connector/*
./bin/connect-standalone.sh config/connect-standalone.properties
Use the -daemon flag to run this process in the background.
Verify Kafka Connect is running
In yet another another Terminal window, run the following command:
curl http://localhost:8083
You see something like:
{"version":"3.9.0","commit":"a60e31147e6b01ee","kafka_cluster_id":"J-iy4IGXTbmiALHwPZEZ-A"}
To prepare your Tiger Cloud service for Kafka integration:
Connect to your Tiger Cloud service
Create a hypertable to ingest Kafka events
CREATE TABLE accounts (
created_at TIMESTAMPTZ DEFAULT NOW(),
name TEXT,
city TEXT
) WITH (
tsdb.hypertable,
tsdb.partition_column='created_at'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
To create a Tiger Cloud sink in Apache Kafka:
Create the connection configuration
In the terminal running Kafka Connect, stop the process by pressing Ctrl+C.
Write the following configuration to <KAFKA_HOME>/config/timescale-standalone-sink.properties, then update the <properties> with your connection details.
name=timescale-standalone-sink
connector.class=org.apache.camel.kafkaconnector.postgresqlsink.CamelPostgresqlsinkSinkConnector
errors.tolerance=all
errors.deadletterqueue.topic.name=deadletter
tasks.max=10
value.converter=org.apache.kafka.connect.storage.StringConverter
key.converter=org.apache.kafka.connect.storage.StringConverter
topics=accounts
camel.kamelet.postgresql-sink.databaseName=<dbname>
camel.kamelet.postgresql-sink.username=<user>
camel.kamelet.postgresql-sink.password=<password>
camel.kamelet.postgresql-sink.serverName=<host>
camel.kamelet.postgresql-sink.serverPort=<port>
camel.kamelet.postgresql-sink.query=INSERT INTO accounts (name,city) VALUES (:#name,:#city)
Restart Kafka Connect with the new configuration:
export CLASSPATH=`pwd`/plugins/camel-postgresql-sink-kafka-connector/*
./bin/connect-standalone.sh config/connect-standalone.properties config/timescale-standalone-sink.properties
Test the connection
To see your sink, query the /connectors route in a GET request:
curl -X GET http://localhost:8083/connectors
You see:
#["timescale-standalone-sink"]
To test this integration, send some messages onto the accounts topic. You can do this using the kafkacat or kcat utility.
In the terminal running kafka-console-producer.sh enter the following json strings
{"name":"Lola","city":"Copacabana"}
{"name":"Holly","city":"Miami"}
{"name":"Jolene","city":"Tennessee"}
{"name":"Barbara Ann ","city":"California"}
Look in your terminal running kafka-console-consumer to see the messages being processed.
Query your Tiger Cloud service for all rows in the accounts table
SELECT * FROM accounts;
You see something like:
| created_at | name | city | | -- | --| -- | |2025-02-18 13:55:05.147261+00 | Lola | Copacabana | |2025-02-18 13:55:05.216673+00 | Holly | Miami | |2025-02-18 13:55:05.283549+00 | Jolene | Tennessee | |2025-02-18 13:55:05.35226+00 | Barbara Ann | California |
You have successfully integrated Apache Kafka with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/apache-airflow/ =====
Apache Airflow® is a platform created by the community to programmatically author, schedule, and monitor workflows.
A DAG (Directed Acyclic Graph) is the core concept of Airflow, collecting Tasks together,
organized with dependencies and relationships to say how they should run. You declare a DAG in a Python file
in the $AIRFLOW_HOME/dags folder of your Airflow instance.
This page shows you how to use a Python connector in a DAG to integrate Apache Airflow with a Tiger Cloud service.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Ensure that your Airflow instance has network access to Tiger Cloud.
This example DAG uses the company table you create in Optimize time-series data in hypertables
To install the Python libraries required to connect to Tiger Cloud:
Enable Postgres connections between Airflow and Tiger Cloud
pip install psycopg2-binary
Enable Postgres connection types in the Airflow UI
pip install apache-airflow-providers-postgres
In your Airflow instance, securely connect to your Tiger Cloud service:
Run Airflow
On your development machine, run the following command:
airflow standalone
The username and password for Airflow UI are displayed in the standalone | Login with username
line in the output.
Add a connection from Airflow to your Tiger Cloud service
localhost:8080, then select Admin > Connections.+ (Add a new record), then use your connection info to fill in
the form. The Connection Type is Postgres.To exchange data between Airflow and your Tiger Cloud service:
To insert data in your Tiger Cloud service from Airflow:
In $AIRFLOW_HOME/dags/timescale_dag.py, add the following code:
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.hooks.postgres_hook import PostgresHook
from datetime import datetime
def insert_data_to_timescale():
hook = PostgresHook(postgres_conn_id='the ID of the connenction you created')
conn = hook.get_conn()
cursor = conn.cursor()
"""
This could be any query. This example inserts data into the table
you create in:
https://docs.tigerdata.com/getting-started/latest/try-key-features-timescale-products/#optimize-time-series-data-in-hypertables
"""
cursor.execute("INSERT INTO crypto_assets (symbol, name) VALUES (%s, %s)",
('NEW/Asset','New Asset Name'))
conn.commit()
cursor.close()
conn.close()
default_args = {
'owner': 'airflow',
'start_date': datetime(2023, 1, 1),
'retries': 1,
}
dag = DAG('timescale_dag', default_args=default_args, schedule_interval='@daily')
insert_task = PythonOperator(
task_id='insert_data',
python_callable=insert_data_to_timescale,
dag=dag,
)
This DAG uses the company table created in Create regular Postgres tables for relational data.
In your browser, refresh the Airflow UI.
In Search DAGS, type timescale_dag and press ENTER.
Verify that the data appears in Tiger Cloud
SQL editor.SELECT symbol, name FROM company;.You see the new rows inserted in the table.
You have successfully integrated Apache Airflow with Tiger Cloud and created a data pipeline.
===== PAGE: https://docs.tigerdata.com/integrations/amazon-sagemaker/ =====
Amazon SageMaker AI is a fully managed machine learning (ML) service. With SageMaker AI, data scientists and developers can quickly and confidently build, train, and deploy ML models into a production-ready hosted environment.
This page shows you how to integrate Amazon Sagemaker with a Tiger Cloud service.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
Create a table in Tiger Cloud service to store model predictions generated by SageMaker.
For Tiger Cloud, open an SQL editor in Tiger Cloud Console. For self-hosted TimescaleDB, use psql.
Hypertables are Postgres tables that automatically partition your data by time. You interact with hypertables in the same way as regular Postgres tables, but with extra features that makes managing your time-series data much easier.
CREATE TABLE model_predictions (
time TIMESTAMPTZ NOT NULL,
model_name TEXT NOT NULL,
prediction DOUBLE PRECISION NOT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Create a SageMaker Notebook instance
Create Notebook instance.Write a Notebook script that inserts data into your Tiger Cloud service
inService, click Open JupyterLab and click conda_python3.Update the following script with your connection details, then paste it in the Notebook.
import psycopg2
from datetime import datetime
def insert_prediction(model_name, prediction, host, port, user, password, dbname):
conn = psycopg2.connect(
host=host,
port=port,
user=user,
password=password,
dbname=dbname
)
cursor = conn.cursor()
query = """
INSERT INTO model_predictions (time, model_name, prediction)
VALUES (%s, %s, %s);
"""
values = (datetime.utcnow(), model_name, prediction)
cursor.execute(query, values)
conn.commit()
cursor.close()
conn.close()
insert_prediction(
model_name="example_model",
prediction=0.95,
host="<host>",
port="<port>",
user="<user>",
password="<password>",
dbname="<dbname>"
)
Test your SageMaker script
Open an SQL editor and check the sensor_data table:
SELECT * FROM model_predictions;
You see something like:
|time | model_name | prediction | | -- | -- | -- | |2025-02-06 16:56:34.370316+00| timescale-cloud-model| 0.95|
Now you can seamlessly integrate Amazon SageMaker with Tiger Cloud to store and analyze time-series data generated by machine learning models. You can also untegrate visualization tools like Grafana or Tableau with Tiger Cloud to create real-time dashboards of your model predictions.
===== PAGE: https://docs.tigerdata.com/integrations/aws/ =====
Amazon Web Services (AWS) is a comprehensive cloud computing platform that provides on-demand infrastructure, storage, databases, AI, analytics, and security services to help businesses build, deploy, and scale applications in the cloud.
This page explains how to integrate your AWS infrastructure with Tiger Cloud using AWS Transit Gateway.
To follow the steps on this page:
You need your connection details.
To connect to Tiger Cloud:
Create a Peering VPC in Tiger Cloud Console
Security > VPC, click Create a VPC:Create VPC:Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your pricing plan. If you need another Peering VPC, either contact support@tigerdata.com or change your plan in Tiger Cloud Console.
Accept and configure peering connection in your AWS account
Once your peering connection appears as Processing, you can accept and configure it in AWS:
Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as Connected in Tiger Cloud Console.
Configure at least the following in your AWS account networking:
Attach a Tiger Cloud service to the Peering VPC In Tiger Cloud Console
Operations > Security > VPC.Attach VPC.You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
You have successfully integrated your AWS infrastructure with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/grafana/ =====
Grafana enables you to query, visualize, alert on, and explore your metrics, logs, and traces wherever they’re stored.
This page shows you how to integrate Grafana with a Tiger Cloud service, create a dashboard and panel, then visualize geospatial data.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
To visualize the results of your queries, enable Grafana to read the data in your service:
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
Add your service as a data source
Connections > Data sources, then click Add new data source.PostgreSQL from the list.Configure the connection:
Host URL, Database name, Username, and PasswordConfigure using your connection details. Host URL is in the format <host>:<port>.
TLS/SSL Mode: select require.PostgreSQL options: enable TimescaleDB.Click Save & test.
Grafana checks that your details are set correctly.
Grafana is organized into dashboards and panels. A dashboard represents a view into the performance of a system, and each dashboard consists of one or more panels, which represent information about a specific metric related to that system.
To create a new dashboard:
On the Dashboards page, click New and select New dashboard
Click Add visualization
Select the data source
Select your service from the list of pre-configured data sources or configure a new one.
Select the visualization type. The type defines specific fields to configure in addition to standard ones, such as the panel name.
You can edit the queries directly or use the built-in query editor. If you are visualizing time-series data, select Time series in the Format drop-down.
Save dashboardYou now have a dashboard with one panel. Add more panels to a dashboard by clicking Add at the top right and selecting Visualization from the drop-down.
Grafana time-series panels include a time filter:
_timefilter() to link the user interface construct in a Grafana panel with the queryFor example, to set the pickup_datetime column as the filtering range for your visualizations:
```sql
SELECT
--1--
time_bucket('1 day', pickup_datetime) AS "time",
--2--
COUNT(*)
FROM rides
WHERE _timeFilter(pickup_datetime)
```
Group your visualizations and order the results by time buckets
In this case, the GROUP BY and ORDER BY statements reference time.
For example:
SELECT
--1--
time_bucket('1 day', pickup_datetime) AS time,
--2--
COUNT(*)
FROM rides
WHERE _timeFilter(pickup_datetime)
GROUP BY time
ORDER BY time
When you visualize this query in Grafana, you see this:
You can adjust the time_bucket function and compare the graphs:
SELECT
--1--
time_bucket('5m', pickup_datetime) AS time,
--2--
COUNT(*)
FROM rides
WHERE _timeFilter(pickup_datetime)
GROUP BY time
ORDER BY time
When you visualize this query, it looks like this:
Grafana includes a Geomap panel so you can see geospatial data overlaid on a map. This can be helpful to understand how data changes based on its location.
This section visualizes taxi rides in Manhattan, where the distance traveled was greater than 5 miles. It uses the same query as the NYC Taxi Cab tutorial as a starting point.
Add a geospatial visualization
In your Grafana dashboard, click Add > Visualization.
Select Geomap in the visualization type drop-down at the top right.
Configure the data format
In the Queries tab below, select your data source.
In the Format drop-down, select Table.
In the mode switcher, toggle Code and enter the query, then click Run.
For example:
SELECT time_bucket('5m', rides.pickup_datetime) AS time,
rides.trip_distance AS value,
rides.pickup_latitude AS latitude,
rides.pickup_longitude AS longitude
FROM rides
WHERE rides.trip_distance > 5
GROUP BY time,
rides.trip_distance,
rides.pickup_latitude,
rides.pickup_longitude
ORDER BY time
LIMIT 500;
Customize the Geomap settings
With default settings, the visualization uses green circles of the fixed size. Configure at least the following for a more representative view:
Map layers > Styles > Size > value.This changes the size of the circle depending on the value, with bigger circles representing bigger values.
Map layers > Styles > Color > value.
Thresholds > Add threshold.
Add thresholds for 7 and 10, to mark rides over 7 and 10 miles in different colors, respectively.
You now have a visualization that looks like this:
===== PAGE: https://docs.tigerdata.com/integrations/dbeaver/ =====
DBeaver is a free cross-platform database tool for developers, database administrators, analysts, and everyone working with data. DBeaver provides an SQL editor, administration features, data and schema migration, and the ability to monitor database connection sessions.
This page explains how to integrate DBeaver with your Tiger Cloud service.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
To connect to Tiger Cloud:
DBeaverConnect to a database search for TimescaleDBTimescaleDB, then click NextConfigure the connection
Use your connection details to add your connection settings.

If you configured your service to connect using a stricter SSL mode, in the SSL tab check
Use SSL and set SSL mode to the configured mode. Then, in the CA Certificate field type the location of the SSL
root CA certificate.
Click Test Connection. When the connection is successful, click Finish
Your connection is listed in the Database Navigator.
You have successfully integrated DBeaver with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/qstudio/ =====
qStudio is a modern free SQL editor that provides syntax highlighting, code-completion, excel export, charting, and much more. You can use it to run queries, browse tables, and create charts for your Tiger Cloud service.
This page explains how to integrate qStudio with Tiger Cloud.
To follow the steps on this page:
You need your connection details. This procedure also works for self-hosted TimescaleDB.
To connect to Tiger Cloud:
Server > Add ServerConfigure the connection
Server Type, select Postgres.Connect By, select Host.Host, Port, Database, Username, and Password, use
your connection details.Click Test
qStudio indicates whether the connection works.
Click Add
The server is listed in the Server Tree.
You have successfully integrated qStudio with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/integrations/microsoft-azure/ =====
Microsoft Azure is a cloud computing platform and services suite, offering infrastructure, AI, analytics, security, and developer tools to help businesses build, deploy, and manage applications.
This page explains how to integrate your Microsoft Azure infrastructure with Tiger Cloud using AWS Transit Gateway.
To follow the steps on this page:
You need your connection details.
To connect to Tiger Cloud:
Establish connectivity between Azure and AWS. See the AWS architectural documentation for details.
Create a Peering VPC in Tiger Cloud Console
Security > VPC, click Create a VPC:Create VPC:Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your pricing plan. If you need another Peering VPC, either contact support@tigerdata.com or change your plan in Tiger Cloud Console.
Accept and configure peering connection in your AWS account
Once your peering connection appears as Processing, you can accept and configure it in AWS:
Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as Connected in Tiger Cloud Console.
Configure at least the following in your AWS account networking:
Attach a Tiger Cloud service to the Peering VPC In Tiger Cloud Console
Operations > Security > VPC.Attach VPC.You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
You have successfully integrated your Microsoft Azure infrastructure with Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/migrate/index/ =====
In Tiger Cloud, you can easily add and sync data to your service from other sources.
This includes:
Tiger Cloud provides source connectors for Postgres, S3, and Kafka. You use them to synchronize all or some of your data to your Tiger Cloud service in real time. You run the connectors continuously, using your data as a primary database and your Tiger Cloud service as a logical replica. This enables you to leverage Tiger Cloud’s real-time analytics capabilities on your replica data.
| Connector options | Downtime requirements |
|---|---|
| Source Postgres connector | None |
| Source S3 connector | None |
| Source Kafka connector | None |
You can import individual files using Console, from your local machine or S3. This includes CSV, Parquet, TXT, and MD files. Alternatively, import files using the terminal.
Depending on the amount of data you need to migrate, and the amount of downtime you can afford, Tiger Data offers the following migration options:
| Migration strategy | Use when | Downtime requirements |
|---|---|---|
| Migrate with downtime | Use pg_dump and pg_restore to migrate when you can afford downtime. |
Some downtime |
| Live migration | Simplified end-to-end migration with almost zero downtime. | Minimal downtime |
| Dual-write and backfill | Append-only data, heavy insert workload (~20,000 inserts per second) when modifying your ingestion pipeline is not an issue. | Minimal downtime |
All strategies work to migrate from Postgres, TimescaleDB, AWS RDS, and Managed Service for TimescaleDB. Migration
assistance is included with Tiger Cloud support. If you encounter any difficulties while migrating your data,
consult the troubleshooting page, open a support request, or take your issue to the #migration channel
in the community slack, the developers of this migration method are there to help.
You can open a support request directly from Tiger Cloud Console, or by email to support@tigerdata.com.
If you're migrating your data from another source database type, best practice is export the data from your source database as a CSV file, then import to your Tiger Cloud service using timescaledb-parallel-copy.
===== PAGE: https://docs.tigerdata.com/migrate/dual-write-and-backfill/ =====
Dual-write and backfill is a migration strategy to move a large amount of time-series data (100 GB-10 TB+) with low downtime (on the order of minutes of downtime). It is significantly more complicated to execute than a migration with downtime using pg_dump/restore, and has some prerequisites on the data ingest patterns of your application, so it may not be universally applicable.
Dual-write and backfill can be used for any source database type, as long as it can provide data in csv format. It can be used to move data from a PostgresSQL source, and from TimescaleDB to TimescaleDB.
Dual-write and backfill works well when:
UPDATE or DELETE queries will be run on time-series data in the
source database during the migration process (or if they are, it happens in
a controlled manner, such that it's possible to either ignore, or
re-backfill).Best practice is to use an Ubuntu EC2 instance hosted in the same region as your Tiger Cloud service to move data. That is, the machine you run the commands on to move your data from your source database to your target Tiger Cloud service.
Before you move your data:
Each Tiger Cloud service has a single Postgres instance that supports the most popular extensions. Tiger Cloud services do not support tablespaces, and there is no superuser associated with a service. Best practice is to create a Tiger Cloud service with at least 8 CPUs for a smoother experience. A higher-spec instance can significantly reduce the overall migration window.
To move your data from a self-hosted database to a Tiger Cloud service:
===== PAGE: https://docs.tigerdata.com/getting-started/index/ =====
A Tiger Cloud service is a single optimised Postgres instance extended with innovations in the database engine such as TimescaleDB, in a cloud infrastructure that delivers speed without sacrifice.
A Tiger Cloud service is a radically faster Postgres database for transactional, analytical, and agentic workloads at scale.
It’s not a fork. It’s not a wrapper. It is Postgres—extended with innovations in the database engine and cloud infrastructure to deliver speed (10-1000x faster at scale) without sacrifice. A Tiger Cloud service brings together the familiarity and reliability of Postgres with the performance of purpose-built engines.
Tiger Cloud is the fastest Postgres cloud. It includes everything you need to run Postgres in a production-reliable, scalable, observable environment.
This section shows you how to:
What next? Try the key features offered by Tiger Data, see the tutorials, interact with the data in your Tiger Cloud service using your favorite programming language, integrate your Tiger Cloud service with a range of third-party tools, plain old Use Tiger Data products, or dive into the API reference.
===== PAGE: https://docs.tigerdata.com/ai/index/ =====
You can build and deploy AI Assistants that understand, analyze, and act on your organizational data using Tiger Data. Whether you're building semantic search applications, recommendation systems, or intelligent agents that answer complex business questions, Tiger Data provides the tools and infrastructure you need.
Tiger Data's AI ecosystem combines Postgres with advanced vector capabilities, intelligent agents, and seamless integrations. Your AI Assistants can:
Tiger Eon automatically integrates Tiger Agents for Work with your organizational data. You can:
Use Eon when you want to unlock knowledge from your communication and development tools.
Tiger Agents for Work provides enterprise-grade Slack-native AI agents. You get:
Use Tiger Agents for Work when you need reliable, customizable AI agents for high-volume conversations.
The Tiger Model Context Protocol Server integrates directly with popular AI Assistants. You can:
Use the Tiger MCP Server when you want to manage Tiger Data resources from your AI Assistant.
Pgvector is a popular open source extension for vector storage and similarity search in Postgres and pgvectorscale adds advanced indexing capabilities to pgvector. pgai on Tiger Cloud offers both extensions so you can use all the capabilities already available in pgvector (like HNSW and ivfflat indexes) and also make use of the StreamingDiskANN index in pgvectorscale to speed up vector search.
This makes it easy to migrate your existing pgvector deployment and take advantage of the additional performance features in pgvectorscale. You also have the flexibility to create different index types suited to your needs. See the vector search indexing section for more information.
Embeddings offer a way to represent the semantic essence of data and to allow comparing data according to how closely related it is in terms of meaning. In the database context, this is extremely powerful: think of this as full-text search on steroids. Vector databases allow storing embeddings associated with data and then searching for embeddings that are similar to a given query.
Semantic search: transcend the limitations of traditional keyword-driven search methods by creating systems that understand the intent and contextual meaning of a query, thereby returning more relevant results. Semantic search doesn't just seek exact word matches; it grasps the deeper intent behind a user's query. The result? Even if search terms differ in phrasing, relevant results are surfaced. Taking advantage of hybrid search, which marries lexical and semantic search methodologies, offers users a search experience that's both rich and accurate. It's not just about finding direct matches anymore; it's about tapping into contextually and conceptually similar content to meet user needs.
Recommendation systems: imagine a user who has shown interest in several articles on a singular topic. With embeddings, the recommendation engine can delve deep into the semantic essence of those articles, surfacing other database items that resonate with the same theme. Recommendations, thus, move beyond just the superficial layers like tags or categories and dive into the very heart of the content.
Retrieval augmented generation (RAG): supercharge generative AI by providing additional context to Large Language Models (LLMs) like OpenAI's GPT-4, Anthropic's Claude 2, and open source modes like Llama 2. When a user poses a query, relevant database content is fetched and used to supplement the query as additional information for the LLM. This helps reduce LLM hallucinations, as it ensures the model's output is more grounded in specific and relevant information, even if it wasn't part of the model's original training data.
Clustering: embeddings also offer a robust solution for clustering data. Transforming data into these vectorized forms allows for nuanced comparisons between data points in a high-dimensional space. Through algorithms like K-means or hierarchical clustering, data can be categorized into semantic categories, offering insights that surface-level attributes might miss. This surfaces inherent data patterns, enriching both exploration and decision-making processes.
On a high level, embeddings help a database to look for data that is similar to a given piece of information (similarity search). This process includes a few steps:
Under the hood, embeddings are represented as a vector (a list of numbers) that capture the essence of the data. To determine the similarity of two pieces of data, the database uses mathematical operations on vectors to get a distance measure (commonly Euclidean or cosine distance). During a search, the database should return those stored items where the distance between the query embedding and the stored embedding is as small as possible, suggesting the items are most similar.
pgai on Tiger Cloud works with the most popular embedding models that have output vectors of 2,000 dimensions or less.:
And here are some popular choices for image embeddings:
===== PAGE: https://docs.tigerdata.com/api/hyperfunctions/ =====
Hyperfunctions in TimescaleDB are a specialized set of functions that allow you to analyze time-series data. You can use hyperfunctions to analyze anything you have stored as time-series data, including IoT devices, IT systems, marketing analytics, user behavior, financial metrics, and cryptocurrency.
Some hyperfunctions are included by default in TimescaleDB. For additional hyperfunctions, you need to install the TimescaleDB Toolkit Postgres extension.
For more information, see the hyperfunctions documentation.
<HyperfunctionTable
includeExperimental
/>
===== PAGE: https://docs.tigerdata.com/api/time-weighted-averages/ =====
This section contains functions related to time-weighted averages and integrals. Time weighted averages and integrals are commonly used in cases where a time series is not evenly sampled, so a traditional average gives misleading results. For more information about these functions, see the hyperfunctions documentation.
Some hyperfunctions are included in the default TimescaleDB product. For additional hyperfunctions, you need to install the TimescaleDB Toolkit Postgres extension.
<HyperfunctionTable
hyperfunctionFamily='time-weighted averages'
includeExperimental
sortByType
/>
===== PAGE: https://docs.tigerdata.com/api/counter_aggs/ =====
This section contains functions related to counter and gauge aggregation. Counter aggregation functions are used to accumulate monotonically increasing data by treating any decrements as resets. Gauge aggregates are similar, but are used to track data which can decrease as well as increase. For more information about counter aggregation functions, see the hyperfunctions documentation.
Some hyperfunctions are included in the default TimescaleDB product. For additional hyperfunctions, you need to install the TimescaleDB Toolkit Postgres extension.
<HyperfunctionTable
hyperfunctionFamily='metric aggregation'
includeExperimental
sortByType
/>
All accessors can be used with CounterSummary, and all but num_resets
with GaugeSummary.
===== PAGE: https://docs.tigerdata.com/api/gapfilling-interpolation/ =====
This section contains functions related to gapfilling and interpolation. You can use a gapfilling function to create additional rows of data in any gaps, ensuring that the returned rows are in chronological order, and contiguous. For more information about gapfilling and interpolation functions, see the hyperfunctions documentation.
Some hyperfunctions are included in the default TimescaleDB product. For additional hyperfunctions, you need to install the TimescaleDB Toolkit Postgres extension.
<HyperfunctionTable
hyperfunctionFamily='gapfilling and interpolation'
includeExperimental
sortByType
/>
===== PAGE: https://docs.tigerdata.com/api/state-aggregates/ =====
This section includes functions used to measure the time spent in a relatively small number of states.
For these hyperfunctions, you need to install the TimescaleDB Toolkit Postgres extension.
state_agg supports all hyperfunctions that operate on CompactStateAggs, in addition
to some additional functions that need a full state timeline.
All compact_state_agg and state_agg hyperfunctions support both string (TEXT) and integer (BIGINT) states.
You can't mix different types of states within a single aggregate.
Integer states are useful when the state value is a foreign key representing a row in another table that stores all possible states.
<HyperfunctionTable
hyperfunctionFamily='state aggregates'
includeExperimental
sortByType
/>
===== PAGE: https://docs.tigerdata.com/api/index/ =====
TimescaleDB provides many SQL functions and views to help you interact with and manage your data. See a full list below or search by keyword to find reference documentation for a specific API.
Refer to the installation documentation for detailed setup instructions.
===== PAGE: https://docs.tigerdata.com/api/rollup/ =====
Combines multiple OpenHighLowClose aggregates. Using rollup, you can
reaggregate a continuous aggregate into larger time buckets.
rollup(
ohlc OpenHighLowClose
) RETURNS OpenHighLowClose
Experimental features could have bugs. They might not be backwards compatible, and could be removed in future releases. Use these features at your own risk, and do not use any experimental features in production.
|Name|Type|Description|
|-|-|-|
|ohlc|OpenHighLowClose|The aggregate to roll up|
|Column|Type|Description|
|-|-|-|
|ohlc|OpenHighLowClose|A new aggregate, which is an object storing (timestamp, value) pairs for each of the opening, high, low, and closing prices.|
Roll up your by-minute continuous aggregate into hourly buckets and return the OHLC prices:
SELECT time_bucket('1 hour'::interval, ts) AS hourly_bucket,
symbol,
toolkit_experimental.open(toolkit_experimental.rollup(ohlc)),
toolkit_experimental.high(toolkit_experimental.rollup(ohlc)),
toolkit_experimental.low(toolkit_experimental.rollup(ohlc)),
toolkit_experimental.close(toolkit_experimental.rollup(ohlc)),
FROM ohlc
GROUP BY hourly_bucket, symbol
;
Roll up your by-minute continuous aggregate into a daily aggregate and return the OHLC prices:
WITH ohlc AS (
SELECT time_bucket('1 minute'::interval, ts) AS minute_bucket,
symbol,
toolkit_experimental.ohlc(ts, price)
FROM crypto_ticks
GROUP BY minute_bucket, symbol
)
SELECT time_bucket('1 day'::interval , bucket) AS daily_bucket
symbol,
toolkit_experimental.open(toolkit_experimental.rollup(ohlc)),
toolkit_experimental.high(toolkit_experimental.rollup(ohlc)),
toolkit_experimental.low(toolkit_experimental.rollup(ohlc)),
toolkit_experimental.close(toolkit_experimental.rollup(ohlc))
FROM ohlc
GROUP BY daily_bucket, symbol
;
===== PAGE: https://docs.tigerdata.com/api/to_epoch/ =====
Given a timestamptz, returns the number of seconds since January 1, 1970 (the Unix epoch).
|Name|Type|Description|
|-|-|-|
|date|TIMESTAMPTZ|Timestamp to use to calculate epoch|
Convert a date to a Unix epoch time:
SELECT to_epoch('2021-01-01 00:00:00+03'::timestamptz);
The output looks like this:
to_epoch
------------
1609448400
===== PAGE: https://docs.tigerdata.com/tutorials/ingest-real-time-websocket-data/ =====
This tutorial shows you how to ingest real-time time-series data into TimescaleDB using a websocket connection. The tutorial sets up a data pipeline to ingest real-time data from our data partner, Twelve Data. Twelve Data provides a number of different financial APIs, including stock, cryptocurrencies, foreign exchanges, and ETFs. It also supports websocket connections in case you want to update your database frequently. With websockets, you need to connect to the server, subscribe to symbols, and you can start receiving data in real-time during market hours.
When you complete this tutorial, you'll have a data pipeline set up that ingests real-time financial data into your Tiger Cloud.
This tutorial uses Python and the API wrapper library provided by Twelve Data.
Before you begin, make sure you have:
<HOST>, <PORT>, and <PASSWORD>. Alternatively, you can find these
details in the Connection Info section for your service.
When you connect to the Twelve Data API through a websocket, you create a persistent connection between your computer and the websocket server. You set up a Python environment, and pass two arguments to create a websocket object and establish the connection.
Create a new Python virtual environment for this project and activate it. All the packages you need to complete for this tutorial are installed in this environment.
Create and activate a Python virtual environment:
virtualenv env
source env/bin/activate
Install the Twelve Data Python wrapper library with websocket support. This library allows you to make requests to the API and maintain a stable websocket connection.
pip install twelvedata websocket-client
Install Psycopg2 so that you can connect the TimescaleDB from your Python script:
pip install psycopg2-binary
A persistent connection between your computer and the websocket server is used to receive data for as long as the connection is maintained. You need to pass two arguments to create a websocket object and establish connection.
on_event
This argument needs to be a function that is invoked whenever there's a new data record is received from the websocket:
def on_event(event):
print(event) # prints out the data record (dictionary)
This is where you want to implement the ingestion logic so whenever there's new data available you insert it into the database.
symbols
This argument needs to be a list of stock ticker symbols (for example,
MSFT) or crypto trading pairs (for example, BTC/USD). When using a
websocket connection you always need to subscribe to the events you want to
receive. You can do this by using the symbols argument or if your
connection is already created you can also use the subscribe() function to
get data for additional symbols.
Create a new Python file called websocket_test.py and connect to the
Twelve Data servers using the <YOUR_API_KEY>:
import time
from twelvedata import TDClient
messages_history = []
def on_event(event):
print(event) # prints out the data record (dictionary)
messages_history.append(event)
td = TDClient(apikey="<YOUR_API_KEY>")
ws = td.websocket(symbols=["BTC/USD", "ETH/USD"], on_event=on_event)
ws.subscribe(['ETH/BTC', 'AAPL'])
ws.connect()
while True:
print('messages received: ', len(messages_history))
ws.heartbeat()
time.sleep(10)
Run the Python script:
python websocket_test.py
When you run the script, you receive a response from the server about the status of your connection:
{'event': 'subscribe-status',
'status': 'ok',
'success': [
{'symbol': 'BTC/USD', 'exchange': 'Coinbase Pro', 'mic_code': 'Coinbase Pro', 'country': '', 'type': 'Digital Currency'},
{'symbol': 'ETH/USD', 'exchange': 'Huobi', 'mic_code': 'Huobi', 'country': '', 'type': 'Digital Currency'}
],
'fails': None
}
When you have established a connection to the websocket server, wait a few seconds, and you can see data records, like this:
{'event': 'price', 'symbol': 'BTC/USD', 'currency_base': 'Bitcoin', 'currency_quote': 'US Dollar', 'exchange': 'Coinbase Pro', 'type': 'Digital Currency', 'timestamp': 1652438893, 'price': 30361.2, 'bid': 30361.2, 'ask': 30361.2, 'day_volume': 49153}
{'event': 'price', 'symbol': 'BTC/USD', 'currency_base': 'Bitcoin', 'currency_quote': 'US Dollar', 'exchange': 'Coinbase Pro', 'type': 'Digital Currency', 'timestamp': 1652438896, 'price': 30380.6, 'bid': 30380.6, 'ask': 30380.6, 'day_volume': 49157}
{'event': 'heartbeat', 'status': 'ok'}
{'event': 'price', 'symbol': 'ETH/USD', 'currency_base': 'Ethereum', 'currency_quote': 'US Dollar', 'exchange': 'Huobi', 'type': 'Digital Currency', 'timestamp': 1652438899, 'price': 2089.07, 'bid': 2089.02, 'ask': 2089.03, 'day_volume': 193818}
{'event': 'price', 'symbol': 'BTC/USD', 'currency_base': 'Bitcoin', 'currency_quote': 'US Dollar', 'exchange': 'Coinbase Pro', 'type': 'Digital Currency', 'timestamp': 1652438900, 'price': 30346.0, 'bid': 30346.0, 'ask': 30346.0, 'day_volume': 49167}
Each price event gives you multiple data points about the given trading pair
such as the name of the exchange, and the current price. You can also
occasionally see heartbeat events in the response; these events signal
the health of the connection over time.
At this point the websocket connection is working successfully to pass data.
To ingest the data into your Tiger Cloud service, you need to implement the
on_event function.
After the websocket connection is set up, you can use the on_event function
to ingest data into the database. This is a data pipeline that ingests real-time
financial data into your Tiger Cloud service.
Stock trades are ingested in real-time Monday through Friday, typically during normal trading hours of the New York Stock Exchange (9:30 AM to 4:00 PM EST).
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs the query on it, instead of going through the entire table.
Hypercore is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional databases force a trade-off between fast inserts (row-based storage) and efficient analytics (columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar to standard Postgres.
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a hypertable to store the real-time stock data
CREATE TABLE stocks_real_time (
time TIMESTAMPTZ NOT NULL,
symbol TEXT NOT NULL,
price DOUBLE PRECISION NULL,
day_volume INT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
Create an index to support efficient queries
Index on the symbol and time columns:
CREATE INDEX ix_symbol_time ON stocks_real_time (symbol, time DESC);
When you have other relational data that enhances your time-series data, you can
create standard Postgres tables just as you would normally. For this dataset,
there is one other table of data called company.
Add a table to store the company data
CREATE TABLE company (
symbol TEXT NOT NULL,
name TEXT NOT NULL
);
You now have two tables in your Tiger Cloud service. One hypertable
named stocks_real_time, and one regular Postgres table named company.
When you ingest data into a transactional database like Timescale, it is more efficient to insert data in batches rather than inserting data row-by-row. Using one transaction to insert multiple rows can significantly increase the overall ingest capacity and speed of your Tiger Cloud service.
A common practice to implement batching is to store new records in memory first, then after the batch reaches a certain size, insert all the records from memory into the database in one transaction. The perfect batch size isn't universal, but you can experiment with different batch sizes (for example, 100, 1000, 10000, and so on) and see which one fits your use case better. Using batching is a fairly common pattern when ingesting data into TimescaleDB from Kafka, Kinesis, or websocket connections.
You can implement a batching solution in Python with Psycopg2.
You can implement the ingestion logic within the on_event function that
you can then pass over to the websocket object.
This function needs to:
Update the Python script that prints out the current batch size, so you can
follow when data gets ingested from memory into your database. Use
the <HOST>, <PASSWORD>, and <PORT> details for the Tiger Cloud service
where you want to ingest the data and your API key from Twelve Data:
import time
import psycopg2
from twelvedata import TDClient
from psycopg2.extras import execute_values
from datetime import datetime
class WebsocketPipeline():
DB_TABLE = "stocks_real_time"
DB_COLUMNS=["time", "symbol", "price", "day_volume"]
MAX_BATCH_SIZE=100
def __init__(self, conn):
"""Connect to the Twelve Data web socket server and stream
data into the database.
Args:
conn: psycopg2 connection object
"""
self.conn = conn
self.current_batch = []
self.insert_counter = 0
def _insert_values(self, data):
if self.conn is not None:
cursor = self.conn.cursor()
sql = f"""
INSERT INTO {self.DB_TABLE} ({','.join(self.DB_COLUMNS)})
VALUES %s;"""
execute_values(cursor, sql, data)
self.conn.commit()
def _on_event(self, event):
"""This function gets called whenever there's a new data record coming
back from the server.
Args:
event (dict): data record
"""
if event["event"] == "price":
timestamp = datetime.utcfromtimestamp(event["timestamp"])
data = (timestamp, event["symbol"], event["price"], event.get("day_volume"))
self.current_batch.append(data)
print(f"Current batch size: {len(self.current_batch)}")
if len(self.current_batch) == self.MAX_BATCH_SIZE:
self._insert_values(self.current_batch)
self.insert_counter += 1
print(f"Batch insert #{self.insert_counter}")
self.current_batch = []
def start(self, symbols):
"""Connect to the web socket server and start streaming real-time data
into the database.
Args:
symbols (list of symbols): List of stock/crypto symbols
"""
td = TDClient(apikey="<YOUR_API_KEY")
ws = td.websocket(on_event=self._on_event)
ws.subscribe(symbols)
ws.connect()
while True:
ws.heartbeat()
time.sleep(10)
onn = psycopg2.connect(database="tsdb",
host="<HOST>",
user="tsdbadmin",
password="<PASSWORD>",
port="<PORT>")
symbols = ["BTC/USD", "ETH/USD", "MSFT", "AAPL"]
websocket = WebsocketPipeline(conn)
websocket.start(symbols=symbols)
```
1. Run the script:
bash python websocket_test.py
You can even create separate Python scripts to start multiple websocket
connections for different types of symbols, for example, one for stock, and
another one for cryptocurrency prices.
### Troubleshooting
If you see an error message similar to this:
bash
2022-05-13 18:51:41,976 - ws-twelvedata - ERROR - TDWebSocket ERROR: Handshake status 200 OK
Then check that you use a proper API key received from Twelve Data.
</Collapsible>
<Collapsible heading="Query the data" defaultExpanded={false}>
To look at OHLCV values, the most effective way is to create a continuous
aggregate. You can create a continuous aggregate to aggregate data
for each hour, then set the aggregate to refresh every hour, and aggregate
the last two hours' worth of data.
### Creating a continuous aggregate
1. Connect to the Tiger Cloud service `tsdb` that contains the Twelve Data
stocks dataset.
1. At the psql prompt, create the continuous aggregate to aggregate data every
minute:
```sql
CREATE MATERIALIZED VIEW one_hour_candle
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 hour', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM stocks_real_time
GROUP BY bucket, symbol;
```
When you create the continuous aggregate, it refreshes by default.
1. Set a refresh policy to update the continuous aggregate every hour,
if there is new data available in the hypertable for the last two hours:
```sql
SELECT add_continuous_aggregate_policy('one_hour_candle',
start_offset => INTERVAL '3 hours',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
## Query the continuous aggregate
When you have your continuous aggregate set up, you can query it to get the
OHLCV values.
### Querying the continuous aggregate
1. Connect to the Tiger Cloud service that contains the Twelve Data
stocks dataset.
1. At the psql prompt, use this query to select all `AAPL` OHLCV data for the
past 5 hours, by time bucket:
```sql
SELECT * FROM one_hour_candle
WHERE symbol = 'AAPL' AND bucket >= NOW() - INTERVAL '5 hours'
ORDER BY bucket;
```
The result of the query looks like this:
```sql
bucket | symbol | open | high | low | close | day_volume
------------------------+---------+---------+---------+---------+---------+------------
2023-05-30 08:00:00+00 | AAPL | 176.31 | 176.31 | 176 | 176.01 |
2023-05-30 08:01:00+00 | AAPL | 176.27 | 176.27 | 176.02 | 176.2 |
2023-05-30 08:06:00+00 | AAPL | 176.03 | 176.04 | 175.95 | 176 |
2023-05-30 08:07:00+00 | AAPL | 175.95 | 176 | 175.82 | 175.91 |
2023-05-30 08:08:00+00 | AAPL | 175.92 | 176.02 | 175.8 | 176.02 |
2023-05-30 08:09:00+00 | AAPL | 176.02 | 176.02 | 175.9 | 175.98 |
2023-05-30 08:10:00+00 | AAPL | 175.98 | 175.98 | 175.94 | 175.94 |
2023-05-30 08:11:00+00 | AAPL | 175.94 | 175.94 | 175.91 | 175.91 |
2023-05-30 08:12:00+00 | AAPL | 175.9 | 175.94 | 175.9 | 175.94 |
```
</Collapsible>
<Collapsible heading="Visualize the OHLCV data in Grafana" defaultExpanded={false}>
You can visualize the OHLCV data that you created using the queries in Grafana.
## Graph OHLCV data
When you have extracted the raw OHLCV data, you can use it to graph the result
in a candlestick chart, using Grafana. To do this, you need to have Grafana set
up to connect to your self-hosted TimescaleDB instance.
### Graphing OHLCV data
1. Ensure you have Grafana installed, and you are using the TimescaleDB
database that contains the Twelve Data dataset set up as a
data source.
1. In Grafana, from the `Dashboards` menu, click `New Dashboard`. In the
`New Dashboard` page, click `Add a new panel`.
1. In the `Visualizations` menu in the top right corner, select `Candlestick`
from the list. Ensure you have set the Twelve Data dataset as
your data source.
1. Click `Edit SQL` and paste in the query you used to get the OHLCV values.
1. In the `Format as` section, select `Table`.
1. Adjust elements of the table as required, and click `Apply` to save your
graph to the dashboard.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/Grafana_candlestick_1day.webp"
alt="Creating a candlestick graph in Grafana using 1-day OHLCV tick data"
/>
</Collapsible>
===== PAGE: https://docs.tigerdata.com/tutorials/index/ =====
# Tutorials
Tiger Data tutorials are designed to help you get up and running with Tiger Data products. They walk you through a variety of scenarios using example datasets, to
teach you how to construct interesting queries, find out what information your
database has hidden in it, and even give you options for visualizing and
graphing your results.
- **Real-time analytics**
- [Analytics on energy consumption][rta-energy]: make data-driven decisions using energy consumption data.
- [Analytics on transport and geospatial data][rta-transport]: optimize profits using geospatial transport data.
- **Cryptocurrency**
- [Query the Bitcoin blockchain][beginner-crypto]: do your own research on the Bitcoin blockchain.
- [Analyze the Bitcoin blockchain][intermediate-crypto]: discover the relationship between transactions, blocks, fees, and miner revenue.
- **Finance**
- [Analyze financial tick data][beginner-finance]: chart the trading highs and lows for your favorite stock.
- [Ingest real-time financial data using WebSocket][advanced-finance]: use a websocket connection to visualize the trading highs and lows for your favorite stock.
- **IoT**
- [Simulate an IoT sensor dataset][iot]: simulate an IoT sensor dataset and run simple queries on it.
- **Cookbooks**
- [Tiger community cookbook][cookbooks]: get suggestions from the Tiger community about how to resolve common issues.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/compression-dml-tuple-limit/ =====
# Tuple decompression limit exceeded by operation
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem?
Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same
action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When inserting, updating, or deleting tuples from chunks in the columnstore, it might be necessary to convert tuples to the rowstore. This happens either when you are updating existing tuples or have constraints that need to be verified during insert time. If you happen to trigger a lot of rowstore conversion with a single command, you may end up running out of storage space. For this reason, a limit has been put in place on the number of tuples you can decompress into the rowstore for a single command.
The limit can be increased or turned off (set to 0) like so:
sql -- set limit to a milion tuples SET timescaledb.max_tuples_decompressed_per_dml_transaction TO 1000000; -- disable limit by setting to 0 SET timescaledb.max_tuples_decompressed_per_dml_transaction TO 0;
===== PAGE: https://docs.tigerdata.com/_troubleshooting/caggs-queries-fail/ =====
# Queries fail when defining continuous aggregates but work on regular tables
Continuous aggregates do not work on all queries. For example, TimescaleDB does not support window functions on
continuous aggregates. If you use an unsupported function, you see the following error:
sql
ERROR: invalid continuous aggregate view
SQL state: 0A000
The following table summarizes the aggregate functions supported in continuous aggregates:
| Function, clause, or feature |TimescaleDB 2.6 and earlier|TimescaleDB 2.7, 2.8, and 2.9|TimescaleDB 2.10 and later|
|------------------------------------------------------------|-|-|-|
| Parallelizable aggregate functions |✅|✅|✅|
| [Non-parallelizable SQL aggregates][postgres-parallel-agg] |❌|✅|✅|
| `ORDER BY` |❌|✅|✅|
| Ordered-set aggregates |❌|✅|✅|
| Hypothetical-set aggregates |❌|✅|✅|
| `DISTINCT` in aggregate functions |❌|✅|✅|
| `FILTER` in aggregate functions |❌|✅|✅|
| `FROM` clause supports `JOINS` |❌|❌|✅|
DISTINCT works in aggregate functions, not in the query definition. For example, for the table:
sql CREATE TABLE public.candle( symbol_id uuid NOT NULL, symbol text NOT NULL, "time" timestamp with time zone NOT NULL, open double precision NOT NULL, high double precision NOT NULL, low double precision NOT NULL, close double precision NOT NULL, volume double precision NOT NULL );
- The following works:
sql CREATE MATERIALIZED VIEW candles_start_end WITH (timescaledb.continuous) AS SELECT time_bucket('1 hour', "time"), COUNT(DISTINCT symbol), first(time, time) as first_candle, last(time, time) as last_candle FROM candle GROUP BY 1;
- This does not:
sql CREATE MATERIALIZED VIEW candles_start_end WITH (timescaledb.continuous) AS SELECT DISTINCT ON (symbol) symbol,symbol_id, first(time, time) as first_candle, last(time, time) as last_candle FROM candle GROUP BY symbol_id;
===== PAGE: https://docs.tigerdata.com/_troubleshooting/caggs-real-time-previously-materialized-not-shown/ =====
# Updates to previously materialized regions aren't shown in real-time aggregates
Real-time aggregates automatically add the most recent data when you query your
continuous aggregate. In other words, they include data _more recent than_ your
last materialized bucket.
If you add new _historical_ data to an already-materialized bucket, it won't be
reflected in a real-time aggregate. You should wait for the next scheduled
refresh, or manually refresh by calling `refresh_continuous_aggregate`. You can
think of real-time aggregates as being eventually consistent for historical
data.
The following example shows how this works:
1. Create the hypertable:
sql CREATE TABLE conditions(
day DATE NOT NULL,
city text NOT NULL,
temperature INT NOT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='day',
tsdb.chunk_interval='1 day'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Add data to your hypertable:
sql INSERT INTO conditions (day, city, temperature) VALUES
('2021-06-14', 'Moscow', 26),
('2021-06-15', 'Moscow', 22),
('2021-06-16', 'Moscow', 24),
('2021-06-17', 'Moscow', 24),
('2021-06-18', 'Moscow', 27),
('2021-06-19', 'Moscow', 28),
('2021-06-20', 'Moscow', 30),
('2021-06-21', 'Moscow', 31),
('2021-06-22', 'Moscow', 34),
('2021-06-23', 'Moscow', 34),
('2021-06-24', 'Moscow', 34),
('2021-06-25', 'Moscow', 32),
('2021-06-26', 'Moscow', 32),
('2021-06-27', 'Moscow', 31);
1. Create a continuous aggregate but do not materialize any data:
1. Create the continuous aggregate:
```sql
CREATE MATERIALIZED VIEW conditions_summary
WITH (timescaledb.continuous) AS
SELECT city,
time_bucket('7 days', day) AS bucket,
MIN(temperature),
MAX(temperature)
FROM conditions
GROUP BY city, bucket
WITH NO DATA;
```
1. Check your data:
```sql
SELECT * FROM conditions_summary ORDER BY bucket;
```
The query on the continuous aggregate fetches data directly from the hypertable:
| city | bucket | min | max|
|--------|------------|-----|-----|
| Moscow | 2021-06-14 | 22 | 30 |
| Moscow | 2021-06-21 | 31 | 34 |
1. Materialize data into the continuous aggregate:
1. Add a refresh policy:
```sql
CALL refresh_continuous_aggregate('conditions_summary', '2021-06-14', '2021-06-21');
```
1. Check your data:
```sql
SELECT * FROM conditions_summary ORDER BY bucket;
```
The select query returns the same data, as expected, but this time the data is
fetched from the underlying materialized table
| city | bucket | min | max|
|--------|------------|-----|-----|
| Moscow | 2021-06-14 | 22 | 30 |
| Moscow | 2021-06-21 | 31 | 34 |
1. Update the data in the previously materialized bucket:
1. Update the data in your hypertable:
```sql
UPDATE conditions
SET temperature = 35
WHERE day = '2021-06-14' and city = 'Moscow';
```
1. Check your data:
```sql
SELECT * FROM conditions_summary ORDER BY bucket;
```
The updated data is not yet visible when you query the continuous aggregate. This
is because these changes have not been materialized. (Similarly, any
INSERTs or DELETEs would also not be visible).
| city | bucket | min | max |
|--------|------------|-----|-----|
| Moscow | 2021-06-14 | 22 | 30 |
| Moscow | 2021-06-21 | 31 | 34 |
1. Refresh the data again to update the previously materialized region:
1. Refresh the data:
```sql
CALL refresh_continuous_aggregate('conditions_summary', '2021-06-14', '2021-06-21');
```
1. Check your data:
```sql
SELECT * FROM conditions_summary ORDER BY bucket;
```
You see something like:
| city | bucket | min | max |
|--------|------------|-----|-----|
| Moscow | 2021-06-14 | 22 | 35 |
| Moscow | 2021-06-21 | 31 | 34 |
===== PAGE: https://docs.tigerdata.com/_troubleshooting/caggs-hierarchical-buckets/ =====
# Hierarchical continuous aggregate fails with incompatible bucket width
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
If you attempt to create a hierarchical continuous aggregate, you must use
compatible time buckets. You can't create a continuous aggregate with a
fixed-width time bucket on top of a continuous aggregate with a variable-width
time bucket. For more information, see the restrictions section in
[hierarchical continuous aggregates][h-caggs-restrictions].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/caggs-migrate-permissions/ =====
# Permissions error when migrating a continuous aggregate
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might get a permissions error when migrating a continuous aggregate from old
to new format using `cagg_migrate`. The user performing the migration must have
the following permissions:
* Select, insert, and update permissions on the tables
`_timescale_catalog.continuous_agg_migrate_plan` and
`_timescale_catalog.continuous_agg_migrate_plan_step`
* Usage permissions on the sequence
`_timescaledb_catalog.continuous_agg_migrate_plan_step_step_id_seq`
To solve the problem, change to a user capable of granting permissions, and
grant the following permissions to the user performing the migration:
sql GRANT SELECT, INSERT, UPDATE ON TABLE _timescaledb_catalog.continuous_agg_migrate_plan TO ; GRANT SELECT, INSERT, UPDATE ON TABLE _timescaledb_catalog.continuous_agg_migrate_plan_step TO ; GRANT USAGE ON SEQUENCE _timescaledb_catalog.continuous_agg_migrate_plan_step_step_id_seq TO ;
===== PAGE: https://docs.tigerdata.com/_troubleshooting/compression-high-cardinality/ =====
# Low compression rate
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem?
Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same
action is applied?
* Copy this comment at the top of every troubleshooting page
-->
Low compression rates are often caused by [high cardinality][cardinality-blog] of the segment key. This means that the column you selected for grouping the rows during compression has too many unique values. This makes it impossible to group a lot of rows in a batch. To achieve better compression results, choose a segment key with lower cardinality.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/dropping-chunks-times-out/ =====
# Dropping chunks times out
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When you drop a chunk, it requires an exclusive lock. If a chunk is being
accessed by another session, you cannot drop the chunk at the same time. If a
drop chunk operation can't get the lock on the chunk, then it times out and the
process fails. To resolve this problem, check what is locking the chunk. In some
cases, this could be caused by a continuous aggregate or other process accessing
the chunk. When the drop chunk operation can get an exclusive lock on the chunk,
it completes as expected.
For more information about locks, see the
[Postgres lock monitoring documentation][pg-lock-monitoring].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/hypertables-unique-index-partitioning/ =====
# Can't create unique index on hypertable, or can't create hypertable with unique index
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might get a unique index and partitioning column error in 2 situations:
* When creating a primary key or unique index on a hypertable
* When creating a hypertable from a table that already has a unique index or
primary key
For more information on how to fix this problem, see the
[section on creating unique indexes on hypertables][unique-indexes].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/explain/ =====
# A particular query executes more slowly than expected
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
To troubleshoot a query, you can examine its EXPLAIN plan.
Postgres's EXPLAIN feature allows users to understand the underlying query
plan that Postgres uses to execute a query. There are multiple ways that
Postgres can execute a query: for example, a query might be fulfilled using a
slow sequence scan or a much more efficient index scan. The choice of plan
depends on what indexes are created on the table, the statistics that Postgres
has about your data, and various planner settings. The EXPLAIN output let's you
know which plan Postgres is choosing for a particular query. Postgres has a
[in-depth explanation][using explain] of this feature.
To understand the query performance on a hypertable, we suggest first
making sure that the planner statistics and table maintenance is up-to-date on the hypertable
by running `VACUUM ANALYZE <your-hypertable>;`. Then, we suggest running the
following version of EXPLAIN:
sql EXPLAIN (ANALYZE on, BUFFERS on) ;
If you suspect that your performance issues are due to slow IOs from disk, you
can get even more information by enabling the
[track\_io\_timing][track_io_timing] variable with `SET track_io_timing = 'on';`
before running the above EXPLAIN.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/caggs-hypertable-retention-policy-not-applying/ =====
# Hypertable retention policy isn't applying to continuous aggregates
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
A retention policy set on a hypertable does not apply to any continuous
aggregates made from the hypertable. This allows you to set different retention
periods for raw and summarized data. To apply a retention policy to a continuous
aggregate, set the policy on the continuous aggregate itself.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/columnstore-backlog-ooms/ =====
# Out of memory errors after enabling the columnstore
By default, columnstore policies move all uncompressed chunks to the columnstore.
However, before converting a large backlog of chunks from the rowstore to the columnstore,
best practice is to set `maxchunks_to_compress` and limit to amount of chunks to be converted. For example:
sql SELECT alter_job(job_id, config.maxchunks_to_compress => 10);
When all chunks have been converted to the columnstore, set `maxchunks_to_compress` to `0`, unlimited.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/cloud-singledb/ =====
# Cannot create another database
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem?
Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same
action is applied?
* Copy this comment at the top of every troubleshooting page
-->
Each Tiger Cloud service hosts a single Postgres instance called `tsdb`. You see this error when you try
to create an additional database in a service. If you need another database,
[create a new service][create-service].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/caggs-inserted-historic-data-no-refresh/ =====
# Continuous aggregate doesn't refresh with newly inserted historical data
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
Materialized views are generally used with ordered data. If you insert historic
data, or data that is not related to the current time, you need to refresh
policies and reevaluate the values that are dragging from past to present.
You can set up an after insert rule for your hypertable or upsert to trigger
something that can validate what needs to be refreshed as the data is merged.
Let's say you inserted ordered timeframes named A, B, D, and F, and you already
have a continuous aggregation looking for this data. If you now insert E, you
need to refresh E and F. However, if you insert C we'll need to refresh C, D, E
and F.
For example:
1. A, B, D, and F are already materialized in a view with all data.
1. To insert C, split the data into `AB` and `DEF` subsets.
1. `AB` are consistent and the materialized data is too; you only need to
reuse it.
1. Insert C, `DEF`, and refresh policies after C.
This can use a lot of resources to process, especially if you have any important
data in the past that also needs to be brought to the present.
Consider an example where you have 300 columns on a single hypertable and use,
for example, five of them in a continuous aggregation. In this case, it could
be hard to refresh and would make more sense to isolate these columns in another
hypertable. Alternatively, you might create one hypertable per metric and
refresh them independently.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/locf-queries-null-values-not-missing/ =====
# Queries using `locf()` don't treat `NULL` values as missing
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When you have a query that uses a last observation carried forward (locf)
function, the query carries forward NULL values by default. If you want the
function to ignore NULL values instead, you can set `treat_null_as_missing=TRUE`
as the second parameter in the query. For example:
sql dev=# select * FROM (select time_bucket_gapfill(4, time,-5,13), locf(avg(v)::int,treat_null_as_missing:=true) FROM (VALUES (0,0),(8,NULL)) v(time, v) WHERE time BETWEEN 0 AND 10 GROUP BY 1) i ORDER BY 1 DESC; time_bucket_gapfill | locf ---------------------+------
12 | 0
8 | 0
4 | 0
0 | 0
-4 |
-8 |
(6 rows)
===== PAGE: https://docs.tigerdata.com/_troubleshooting/cagg-watermark-in-future/ =====
# Continuous aggregate watermark is in the future
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
Continuous aggregates use a watermark to indicate which time buckets have
already been materialized. When you query a continuous aggregate, your query
returns materialized data from before the watermark. It returns real-time,
non-materialized data from after the watermark.
In certain cases, the watermark might be in the future. If this happens, all
buckets, including the most recent bucket, are materialized and below the
watermark. No real-time data is returned.
This might happen if you refresh your continuous aggregate over the time window
`<START_TIME>, NULL`, which materializes all recent data. It might also happen
if you create a continuous aggregate using the `WITH DATA` option. This also
implicitly refreshes your continuous aggregate with a window of `NULL, NULL`.
To fix this, create a new continuous aggregate using the `WITH NO DATA` option.
Then use a policy to refresh this continuous aggregate over an explicit time
window.
### Creating a new continuous aggregate with an explicit refresh window
1. Create a continuous aggregate using the `WITH NO DATA` option:
```sql
CREATE MATERIALIZED VIEW <continuous_aggregate_name>
WITH (timescaledb.continuous)
AS SELECT time_bucket('<interval>', <partition_column>),
<other_columns_to_select>,
...
FROM <hypertable>
GROUP BY bucket,
WITH NO DATA;
```
1. Refresh the continuous aggregate using a policy with an explicit
`end_offset`. For example:
```sql
SELECT add_continuous_aggregate_policy('<continuous_aggregate_name>',
start_offset => INTERVAL '30 day',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. Check your new continuous aggregate's watermark to make sure it is in the
past, not the future.
Get the ID for the materialization hypertable that contains the actual
continuous aggregate data:
```sql
SELECT id FROM _timescaledb_catalog.hypertable
WHERE table_name=(
SELECT materialization_hypertable_name
FROM timescaledb_information.continuous_aggregates
WHERE view_name='<continuous_aggregate_name>'
);
```
1. Use the returned ID to query for the watermark's timestamp:
For TimescaleDB >= 2.12:
```sql
SELECT COALESCE(
_timescaledb_functions.to_timestamp(_timescaledb_functions.cagg_watermark(<ID>)),
'-infinity'::timestamp with time zone
);
```
For TimescaleDB < 2.12:
```sql
SELECT COALESCE(
_timescaledb_internal.to_timestamp(_timescaledb_internal.cagg_watermark(<ID>)),
'-infinity'::timestamp with time zone
);
```
If you choose to delete your old continuous aggregate after creating a new one,
beware of historical data loss. If your old continuous aggregate contained data
that you dropped from your original hypertable, for example through a data
retention policy, the dropped data is not included in your new continuous
aggregate.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/scheduled-jobs-stop-running/ =====
# Scheduled jobs stop running
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
Your scheduled jobs might stop running for various reasons. On self-hosted
TimescaleDB, you can fix this by restarting background workers:
= 2.12">
sql SELECT _timescaledb_functions.start_background_workers();
sql SELECT _timescaledb_internal.start_background_workers();
On Tiger Cloud and Managed Service for TimescaleDB, restart background workers by doing one of the following:
* Run `SELECT timescaledb_pre_restore()`, followed by `SELECT
timescaledb_post_restore()`.
* Power the service off and on again. This might cause a downtime of a few
minutes while the service restores from backup and replays the write-ahead
log.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/invalid-attribute-reindex-hypertable/ =====
# Reindex hypertables to fix large indexes
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might see this error if your hypertable indexes have become very large. To
resolve the problem, reindex your hypertables with this command:
sql reindex table _timescaledb_internal._hyper_2_1523284_chunk
For more information, see the [hypertable documentation][hypertables].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/compression-userperms/ =====
# User permissions do not allow chunks to be converted to columnstore or rowstore
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might get this error if you attempt to compress a chunk into the columnstore, or decompress it back into rowstore with a non-privileged user
account. To compress or decompress a chunk, your user account must have permissions that allow it to perform `CREATE INDEX` on the
chunk. You can check the permissions of the current user with this command at
the `psql` command prompt:
sql \dn+
To resolve this problem, grant your user account the appropriate privileges with
this command:
sql GRANT PRIVILEGES
ON TABLE
TO <ROLE_TYPE>;
For more information about the `GRANT` command, see the
[Postgres documentation][pg-grant].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/compression-inefficient-chunk-interval/ =====
# Inefficient `compress_chunk_time_interval` configuration
When you configure `compress_chunk_time_interval` but do not set the primary dimension as the first column in `compress_orderby`, TimescaleDB decompresses chunks before merging. This makes merging less efficient. Set the primary dimension of the chunk as the first column in `compress_orderby` to improve efficiency.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/cloud-jdbc-authentication-support/ =====
# JDBC authentication type is not supported
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When connecting to Tiger Cloud with a Java Database Connectivity (JDBC)
driver, you might get this error message.
Your Tiger Cloud authentication type doesn't match your JDBC driver's
supported authentication types. The recommended approach is to upgrade your JDBC
driver to a version that supports `scram-sha-256` encryption. If that isn't an
option, you can change the authentication type for your Tiger Cloud service
to `md5`. Note that `md5` is less secure, and is provided solely for
compatibility with older clients.
For information on changing your authentication type, see the documentation on
[resetting your service password][password-reset].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/chunk-temp-file-limit/ =====
# Temporary file size limit exceeded when converting chunks to the columnstore
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When you try to convert a chunk to the columnstore, especially if the chunk is very large, you
could get this error. Compression operations write files to a new compressed
chunk table, which is written in temporary memory. The maximum amount of
temporary memory available is determined by the `temp_file_limit` parameter. You
can work around this problem by adjusting the `temp_file_limit` and
`maintenance_work_mem` parameters.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/slow-tiering-chunks/ =====
# Slow tiering of chunks
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
Chunks are tiered asynchronously. Chunks are selected to be tiered to the object storage tier one at a time ordered by their enqueue time.
To see the chunks waiting to be tiered query the `timescaledb_osm.chunks_queued_for_tiering` view
sql select count(*) from timescaledb_osm.chunks_queued_for_tiering
Processing all the chunks in the queue may take considerable time if a large quantity of data is being migrated to the object storage tier.
===== PAGE: https://docs.tigerdata.com/self-hosted/index/ =====
# Self-hosted TimescaleDB
TimescaleDB is an extension for Postgres that enables time-series workloads,
increasing ingest, query, storage and analytics performance.
Best practice is to run TimescaleDB in a [Tiger Cloud service](https://console.cloud.timescale.com/signup), but if you want to
self-host you can run TimescaleDB yourself.
Deploy a Tiger Cloud service. We tune your database for performance and handle scalability, high availability, backups and management so you can relax.
Self-hosted TimescaleDB is community supported. For additional help
check out the friendly [Tiger Data community][community].
If you'd prefer to pay for support then check out our [self-managed support][support].
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/about-configuration/ =====
# About configuration in TimescaleDB
By default, TimescaleDB uses the default Postgres server configuration
settings. However, in some cases, these settings are not appropriate, especially
if you have larger servers that use more hardware resources such as CPU, memory,
and storage. This section explains some of the settings you are most likely to
need to adjust.
Some of these settings are Postgres settings, and some are TimescaleDB
specific settings. For most changes, you can use the [tuning tool][tstune-conf]
to adjust your configuration. For more advanced configuration settings, or to
change settings that aren't included in the `timescaledb-tune` tool, you can
[manually adjust][postgresql-conf] the `postgresql.conf` configuration file.
## Memory
Settings:
* `shared_buffers`
* `effective_cache_size`
* `work_mem`
* `maintenance_work_mem`
* `max_connections`
You can adjust each of these to match the machine's available memory. To make it
easier, you can use the [PgTune][pgtune] site to work out what settings to use:
enter your machine details, and select the `data warehouse` DB type to see the
suggested parameters.
You can adjust these settings with `timescaledb-tune`.
## Workers
Settings:
* `timescaledb.max_background_workers`
* `max_parallel_workers`
* `max_worker_processes`
Postgres uses worker pools to provide workers for live queries and background
jobs. If you do not configure these settings, your queries and background jobs
could run more slowly.
TimescaleDB background workers are configured with
`timescaledb.max_background_workers`. Each database needs a background worker
allocated to schedule jobs. Additional workers run background jobs as required.
This setting should be the sum of the total number of databases and the total
number of concurrent background workers you want running at any one time. By
default, `timescaledb-tune` sets `timescaledb.max_background_workers` to 16.
You can change this setting directly, use the `--max-bg-workers` flag, or adjust
the `TS_TUNE_MAX_BG_WORKERS`
[Docker environment variable][docker-conf].
TimescaleDB parallel workers are configured with `max_parallel_workers`. For
larger queries, Postgres automatically uses parallel workers if they are
available. Increasing this setting can improve query performance for large
queries that trigger the use of parallel workers. By default, this setting
corresponds to the number of CPUs available. You can change this parameter
directly, by adjusting the `--cpus` flag, or by using the `TS_TUNE_NUM_CPUS`
[Docker environment variable][docker-conf].
The `max_worker_processes` setting defines the total pool of workers available
to both background and parallel workers, as well a small number of built-in
Postgres workers. It should be at least the sum of
`timescaledb.max_background_workers` and `max_parallel_workers`.
You can adjust these settings with `timescaledb-tune`.
## Disk writes
Settings:
* `synchronous_commit`
By default, disk writes are performed synchronously, so each transaction must be
completed and a success message sent, before the next transaction can begin. You
can change this to asynchronous to increase write throughput by setting
`synchronous_commit = 'off'`. Note that disabling synchronous commits could
result in some committed transactions being lost. To help reduce the risk, do
not also change `fsync` setting. For more information about asynchronous commits
and disk write speed, see the [Postgres documentation][async-commit].
You can adjust these settings in the `postgresql.conf` configuration
file.
## Transaction locks
Settings:
* `max_locks_per_transaction`
TimescaleDB relies on table partitioning to scale time-series workloads. A
hypertable needs to acquire locks on many chunks during queries, which can
exhaust the default limits for the number of allowed locks held. In some cases,
you might see a warning like this:
sql psql: FATAL: out of shared memory HINT: You might need to increase max_locks_per_transaction.
To avoid this issue, you can increase the `max_locks_per_transaction` setting
from the default value, which is usually 64. This parameter limits the average
number of object locks used by each transaction; individual transactions can lock
more objects as long as the locks of all transactions fit in the lock table.
For most workloads, choose a number equal to double the maximum number of chunks
you expect to have in a hypertable divided by `max_connections`.
This takes into account that the number of locks used by a hypertable query is
roughly equal to the number of chunks in the hypertable if you need to access
all chunks in a query, or double that number if the query uses an index.
You can see how many chunks you currently have using the
[`timescaledb_information.hypertables`][timescaledb_information-hypertables] view.
Changing this parameter requires a database restart, so make sure you pick a larger
number to allow for some growth. For more information about lock management,
see the [Postgres documentation][lock-management].
You can adjust these settings in the `postgresql.conf` configuration
file.
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/timescaledb-config/ =====
# TimescaleDB configuration and tuning
Just as you can tune settings in Postgres, TimescaleDB provides a number of configuration
settings that may be useful to your specific installation and performance needs. These can
also be set within the `postgresql.conf` file or as command-line parameters
when starting Postgres.
when starting Postgres.
Just as you can tune settings in Postgres, TimescaleDB provides a number of configuration
settings that may be useful to your specific installation and performance needs. These can
also be set within the `postgresql.conf` file or as command-line parameters
when starting Postgres.
## Query Planning and Execution
### `timescaledb.enable_chunkwise_aggregation (bool)`
If enabled, aggregations are converted into partial aggregations during query
planning. The first part of the aggregation is executed on a per-chunk basis.
Then, these partial results are combined and finalized. Splitting aggregations
decreases the size of the created hash tables and increases data locality, which
speeds up queries.
### `timescaledb.vectorized_aggregation (bool)`
Enables or disables the vectorized optimizations in the query executor. For
example, the `sum()` aggregation function on compressed chunks can be optimized
in this way.
### `timescaledb.enable_merge_on_cagg_refresh (bool)`
Set to `ON` to dramatically decrease the amount of data written on a continuous aggregate
in the presence of a small number of changes, reduce the i/o cost of refreshing a
[continuous aggregate][continuous-aggregates], and generate fewer Write-Ahead Logs (WAL). Only works for continuous aggregates that don't have compression enabled.
Please refer to the [Grand Unified Configuration (GUC) parameters][gucs] for a complete list.
## Policies
### `timescaledb.max_background_workers (int)`
Max background worker processes allocated to TimescaleDB. Set to at least 1 +
the number of databases loaded with the TimescaleDB extension in a Postgres instance. Default value is 16.
## Tiger Cloud service tuning
### `timescaledb.disable_load (bool)`
Disable the loading of the actual extension
## Administration
### `timescaledb.restoring (bool)`
Set TimescaleDB in restoring mode. It is disabled by default.
### `timescaledb.license (string)`
Change access to features based on the TimescaleDB license in use. For example,
setting `timescaledb.license` to `apache` limits TimescaleDB to features that
are implemented under the Apache 2 license. The default value is `timescale`,
which allows access to all features.
### `timescaledb.telemetry_level (enum)`
Telemetry settings level. Level used to determine which telemetry to
send. Can be set to `off` or `basic`. Defaults to `basic`.
### `timescaledb.last_tuned (string)`
Records last time `timescaledb-tune` ran.
### `timescaledb.last_tuned_version (string)`
Version of `timescaledb-tune` used to tune when it runs.
## Distributed hypertables
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
### `timescaledb.enable_2pc (bool)`
Enables two-phase commit for distributed hypertables. If disabled, it
uses a one-phase commit instead, which is faster but can result in
inconsistent data. It is by default enabled.
### `timescaledb.enable_per_data_node_queries`
If enabled, TimescaleDB combines different chunks belonging to the
same hypertable into a single query per data node. It is by default enabled.
### `timescaledb.max_insert_batch_size (int)`
When acting as a access node, TimescaleDB splits batches of inserted
tuples across multiple data nodes. It batches up to
`max_insert_batch_size` tuples per data node before flushing. Setting
this to 0 disables batching, reverting to tuple-by-tuple inserts. The
default value is 1000.
### `timescaledb.enable_connection_binary_data (bool)`
Enables binary format for data exchanged between nodes in the
cluster. It is by default enabled.
### `timescaledb.enable_client_ddl_on_data_nodes (bool)`
Enables DDL operations on data nodes by a client and do not restrict
execution of DDL operations only by access node. It is by default disabled.
### `timescaledb.enable_async_append (bool)`
Enables optimization that runs remote queries asynchronously across
data nodes. It is by default enabled.
### `timescaledb.enable_remote_explain (bool)`
Enable getting and showing `EXPLAIN` output from remote nodes. This
requires sending the query to the data node, so it can be affected
by the network connection and availability of data nodes. It is by default disabled.
### `timescaledb.remote_data_fetcher (enum)`
Pick data fetcher type based on type of queries you plan to run, which
can be either `copy`, `cursor`, or `auto`. The default is `auto`.
### `timescaledb.ssl_dir (string)`
Specifies the path used to search user certificates and keys when
connecting to data nodes using certificate authentication. Defaults to
`timescaledb/certs` under the Postgres data directory.
### `timescaledb.passfile (string)` [
Specifies the name of the file where passwords are stored and when
connecting to data nodes using password authentication.
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/docker-config/ =====
# Configuration with Docker
If you are running TimescaleDB in a [Docker container][docker], there are two
different ways to modify your Postgres configuration. You can edit the
Postgres configuration file inside the Docker container, or you can set
parameters at the command prompt.
## Edit the Postgres configuration file inside Docker
You can start the Dockert container, and then use a text editor to edit the
Postgres configuration file directly. The configuration file requires one
parameter per line. Blank lines are ignored, and you can use a `#` symbol at the
beginning of a line to denote a comment.
### Editing the Postgres configuration file inside Docker
1. Start your Docker instance:
```bash
docker start timescaledb
```
1. Open a shell:
```bash
docker exec -i -t timescaledb /bin/bash
```
1. Open the configuration file in `Vi` editor or your preferred text editor.
```bash
vi /var/lib/postgresql/data/postgresql.conf
```
1. Restart the container to reload the configuration:
```bash
docker restart timescaledb
```
## Setting parameters at the command prompt
If you don't want to open the configuration file to make changes, you can also
set parameters directly from the command prompt inside your Docker container,
using the `-c` option. For example:
bash docker run -i -t timescale/timescaledb:latest-pg10 postgres -c max_wal_size=2GB
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/configuration/ =====
# Configuring TimescaleDB
TimescaleDB works with the default Postgres server configuration settings.
However, we find that these settings are typically too conservative and
can be limiting when using larger servers with more resources (CPU, memory,
disk, etc). Adjusting these settings, either
[automatically with our tool `timescaledb-tune`][tstune] or manually editing
your machine's `postgresql.conf`, can improve performance.
You can determine the location of `postgresql.conf` by running
`SHOW config_file;` from your Postgres client (for example, `psql`).
In addition, other TimescaleDB specific settings can be modified through the
`postgresql.conf` file as covered in the [TimescaleDB settings][ts-settings] section.
## Using `timescaledb-tune`
To streamline the configuration process, use [`timescaledb-tune`][tstune] that
handles setting the most common parameters to appropriate values based on your
system, accounting for memory, CPU, and Postgres version. `timescaledb-tune`
is packaged along with the binary releases as a dependency, so if you installed
one of the binary releases (including Docker), you should have access to the
tool. Alternatively, with a standard Go environment, you can also `go get` the
repository to install it.
`timescaledb-tune` reads your system's `postgresql.conf` file and offers
interactive suggestions for updating your settings:
bash Using postgresql.conf at this path: /usr/local/var/postgres/postgresql.conf
Is this correct? [(y)es/(n)o]: y Writing backup to: /var/folders/cr/zpgdkv194vz1g5smxl_5tggm0000gn/T/timescaledb_tune.backup201901071520
shared_preload_libraries needs to be updated Current: #shared_preload_libraries = 'timescaledb' Recommended: shared_preload_libraries = 'timescaledb' Is this okay? [(y)es/(n)o]: y success: shared_preload_libraries will be updated
Tune memory/parallelism/WAL and other settings? [(y)es/(n)o]: y Recommendations based on 8.00 GB of available memory and 4 CPUs for PostgreSQL 11
Memory settings recommendations Current: shared_buffers = 128MB #effective_cache_size = 4GB #maintenance_work_mem = 64MB #work_mem = 4MB Recommended: shared_buffers = 2GB effective_cache_size = 6GB maintenance_work_mem = 1GB work_mem = 26214kB Is this okay? [(y)es/(s)kip/(q)uit]:
These changes are then written to your `postgresql.conf` and take effect
on the next (re)start. If you are starting on fresh instance and don't feel
the need to approve each group of changes, you can also automatically accept
and append the suggestions to the end of your `postgresql.conf` like so:
bash timescaledb-tune --quiet --yes --dry-run >> /path/to/postgresql.conf
## Postgres configuration and tuning
If you prefer to tune the settings yourself, or are curious about the
suggestions that `timescaledb-tune` makes, then check these. However,
`timescaledb-tune` does not cover all settings that you need to adjust.
### Memory settings
All of these settings are handled by `timescaledb-tune`.
The settings `shared_buffers`, `effective_cache_size`, `work_mem`, and
`maintenance_work_mem` need to be adjusted to match the machine's available
memory. Get the configuration values from the [PgTune][pgtune]
website (suggested DB Type: Data warehouse). You should also adjust the
`max_connections` setting to match the ones given by PgTune since there is a
connection between `max_connections` and memory settings. Other settings from
PgTune may also be helpful.
### Worker settings
All of these settings are handled by `timescaledb-tune`.
Postgres utilizes worker pools to provide the required workers needed to
support both live queries and background jobs. If you do not configure these
settings, you may observe performance degradation on both queries and
background jobs.
TimescaleDB background workers are configured using the
`timescaledb.max_background_workers` setting. You should configure this
setting to the sum of your total number of databases and the
total number of concurrent background workers you want running at any given
point in time. You need a background worker allocated to each database to run
a lightweight scheduler that schedules jobs. On top of that, any additional
workers you allocate here run background jobs when needed.
For larger queries, Postgres automatically uses parallel workers if
they are available. To configure this use the `max_parallel_workers` setting.
Increasing this setting improves query performance for
larger queries. Smaller queries may not trigger parallel workers. By default,
this setting corresponds to the number of CPUs available. Use the `--cpus` flag
or the `TS_TUNE_NUM_CPUS` docker environment variable to change it.
Finally, you must configure `max_worker_processes` to be at least the sum of
`timescaledb.max_background_workers` and `max_parallel_workers`.
`max_worker_processes` is the total pool of workers available to both
background and parallel workers (as well as a handful of built-in Postgres
workers).
By default, `timescaledb-tune` sets `timescaledb.max_background_workers` to 16.
In order to change this setting, use the `--max-bg-workers` flag or the
`TS_TUNE_MAX_BG_WORKERS` docker environment variable. The `max_worker_processes`
setting is automatically adjusted as well.
### Disk-write settings
In order to increase write throughput, there are
[multiple settings][async-commit] to adjust the behavior that Postgres uses
to write data to disk. In tests, performance is good with the default, or safest,
settings. If you want a bit of additional performance, you can set
`synchronous_commit = 'off'`([Postgres docs][synchronous-commit]).
Please note that when disabling
`synchronous_commit` in this way, an operating system or database crash might
result in some recent allegedly committed transactions being lost. We actively
discourage changing the `fsync` setting.
### Lock settings
TimescaleDB relies heavily on table partitioning for scaling
time-series workloads, which has implications for [lock
management][lock-management]. A hypertable needs to acquire locks on
many chunks (sub-tables) during queries, which can exhaust the default
limits for the number of allowed locks held. This might result in a
warning like the following:
sql psql: FATAL: out of shared memory HINT: You might need to increase max_locks_per_transaction.
To avoid this issue, it is necessary to increase the
`max_locks_per_transaction` setting from the default value (which is
typically 64). Since changing this parameter requires a database
restart, it is advisable to estimate a good setting that also allows
some growth. For most use cases we recommend the following setting:
max_locks_per_transaction = 2 * num_chunks / max_connections
where `num_chunks` is the maximum number of chunks you expect to have in a
hypertable and `max_connections` is the number of connections configured for
Postgres.
This takes into account that the number of locks used by a hypertable query is
roughly equal to the number of chunks in the hypertable if you need to access
all chunks in a query, or double that number if the query uses an index.
You can see how many chunks you currently have using the
[`timescaledb_information.hypertables`][timescaledb_information-hypertables] view.
Changing this parameter requires a database restart, so make sure you pick a larger
number to allow for some growth. For more information about lock management,
see the [Postgres documentation][lock-management].
## TimescaleDB configuration and tuning
Just as you can tune settings in Postgres, TimescaleDB provides a number of
configuration settings that may be useful to your specific installation and
performance needs. These can also be set within the `postgresql.conf` file or as
command-line parameters when starting Postgres.
### Policies
#### `timescaledb.max_background_workers (int)`
Max background worker processes allocated to TimescaleDB. Set to at
least 1 + number of databases in Postgres instance to use background
workers. Default value is 8.
### Distributed hypertables
#### `timescaledb.hypertable_distributed_default (enum)`
Set default policy to create local or distributed hypertables for
`create_hypertable()` command, when the `distributed` argument is not provided.
Supported values are `auto`, `local` or `distributed`.
#### `timescaledb.hypertable_replication_factor_default (int)`
Global default value for replication factor to use with hypertables
when the `replication_factor` argument is not provided. Defaults to 1.
#### `timescaledb.enable_2pc (bool)`
Enables two-phase commit for distributed hypertables. If disabled, it
uses a one-phase commit instead, which is faster but can result in
inconsistent data. It is by default enabled.
#### `timescaledb.enable_per_data_node_queries (bool)`
If enabled, TimescaleDB combines different chunks belonging to the
same hypertable into a single query per data node. It is by default enabled.
#### `timescaledb.max_insert_batch_size (int)`
When acting as a access node, TimescaleDB splits batches of inserted
tuples across multiple data nodes. It batches up to
`max_insert_batch_size` tuples per data node before flushing. Setting
this to 0 disables batching, reverting to tuple-by-tuple inserts. The
default value is 1000.
#### `timescaledb.enable_connection_binary_data (bool)`
Enables binary format for data exchanged between nodes in the
cluster. It is by default enabled.
#### `timescaledb.enable_client_ddl_on_data_nodes (bool)`
Enables DDL operations on data nodes by a client and do not restrict
execution of DDL operations only by access node. It is by default disabled.
#### `timescaledb.enable_async_append (bool)`
Enables optimization that runs remote queries asynchronously across
data nodes. It is by default enabled.
#### `timescaledb.enable_remote_explain (bool)`
Enable getting and showing `EXPLAIN` output from remote nodes. This
requires sending the query to the data node, so it can be affected
by the network connection and availability of data nodes. It is by default disabled.
#### `timescaledb.remote_data_fetcher (enum)`
Pick data fetcher type based on type of queries you plan to run, which
can be either `rowbyrow` or `cursor`. The default is `rowbyrow`.
#### `timescaledb.ssl_dir (string)`
Specifies the path used to search user certificates and keys when
connecting to data nodes using certificate authentication. Defaults to
`timescaledb/certs` under the Postgres data directory.
#### `timescaledb.passfile (string)`
Specifies the name of the file where passwords are stored and when
connecting to data nodes using password authentication.
### Administration
#### `timescaledb.restoring (bool)`
Set TimescaleDB in restoring mode. It is by default disabled.
#### `timescaledb.license (string)`
TimescaleDB license type. Determines which features are enabled. The
variable can be set to `timescale` or `apache`. Defaults to `timescale`.
#### `timescaledb.telemetry_level (enum)`
Telemetry settings level. Level used to determine which telemetry to
send. Can be set to `off` or `basic`. Defaults to `basic`.
#### `timescaledb.last_tuned (string)`
Records last time `timescaledb-tune` ran.
#### `timescaledb.last_tuned_version (string)`
Version of `timescaledb-tune` used to tune when it ran.
## Changing configuration with Docker
When running TimescaleDB in a [Docker container][docker], there are
two approaches to modifying your Postgres configuration. In the
following example, we modify the size of the database instance's
write-ahead-log (WAL) from 1 GB to 2 GB in a Docker container named
`timescaledb`.
#### Modifying postgres.conf inside Docker
1. Open a shell in Docker to change the configuration on a running
container.
bash docker start timescaledb docker exec -i -t timescaledb /bin/bash
1. Edit and then save the config file, modifying the setting for the desired
configuration parameter (for example, `max_wal_size`).
bash vi /var/lib/postgresql/data/postgresql.conf
1. Restart the container so the config gets reloaded.
bash docker restart timescaledb
1. Test to see if the change worked.
bash
docker exec -it timescaledb psql -U postgres
postgres=# show max_wal_size;
max_wal_size
--------------
2GB
#### Specify configuration parameters as boot options
Alternatively, one or more parameters can be passed in to the `docker run`
command via a `-c` option, as in the following.
bash docker run -i -t timescale/timescaledb:latest-pg10 postgres -cmax_wal_size=2GB
Additional examples of passing in arguments at boot can be found in our
[discussion about using WAL-E][wale] for incremental backup.
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/telemetry/ =====
# Telemetry and version checking
TimescaleDB collects anonymous usage data to help us better understand and assist
our users. It also helps us provide some services, such as automated version
checking. Your privacy is the most important thing to us, so we do not collect
any personally identifying information. In particular, the `UUID` (user ID)
fields contain no identifying information, but are randomly generated by
appropriately seeded random number generators.
This is an example of the JSON data file that is sent for a specific
deployment:
<Collapsible heading="Example JSON telemetry data file" defaultExpanded={false}>
json
{
"db_uuid": "860c2be4-59a3-43b5-b895-5d9e0dd445",
"license": {
"edition": "community"
}, "os_name": "Linux", "relations": {
"views": {
"num_relations": 0
},
"tables": {
"heap_size": 32768,
"toast_size": 16384,
"indexes_size": 98304,
"num_relations": 4,
"num_reltuples": 12
},
"hypertables": {
"heap_size": 3522560,
"toast_size": 23379968,
"compression": {
"compressed_heap_size": 3522560,
"compressed_row_count": 4392,
"compressed_toast_size": 20365312,
"num_compressed_chunks": 366,
"uncompressed_heap_size": 41951232,
"uncompressed_row_count": 421368,
"compressed_indexes_size": 11993088,
"uncompressed_toast_size": 2998272,
"uncompressed_indexes_size": 42696704,
"num_compressed_hypertables": 1
},
"indexes_size": 18022400,
"num_children": 366,
"num_relations": 2,
"num_reltuples": 421368
},
"materialized_views": {
"heap_size": 0,
"toast_size": 0,
"indexes_size": 0,
"num_relations": 0,
"num_reltuples": 0
},
"partitioned_tables": {
"heap_size": 0,
"toast_size": 0,
"indexes_size": 0,
"num_children": 0,
"num_relations": 0,
"num_reltuples": 0
},
"continuous_aggregates": {
"heap_size": 122404864,
"toast_size": 6225920,
"compression": {
"compressed_heap_size": 0,
"compressed_row_count": 0,
"num_compressed_caggs": 0,
"compressed_toast_size": 0,
"num_compressed_chunks": 0,
"uncompressed_heap_size": 0,
"uncompressed_row_count": 0,
"compressed_indexes_size": 0,
"uncompressed_toast_size": 0,
"uncompressed_indexes_size": 0
},
"indexes_size": 165044224,
"num_children": 760,
"num_relations": 24,
"num_reltuples": 914704,
"num_caggs_on_distributed_hypertables": 0,
"num_caggs_using_real_time_aggregation": 24
},
"distributed_hypertables_data_node": {
"heap_size": 0,
"toast_size": 0,
"compression": {
"compressed_heap_size": 0,
"compressed_row_count": 0,
"compressed_toast_size": 0,
"num_compressed_chunks": 0,
"uncompressed_heap_size": 0,
"uncompressed_row_count": 0,
"compressed_indexes_size": 0,
"uncompressed_toast_size": 0,
"uncompressed_indexes_size": 0,
"num_compressed_hypertables": 0
},
"indexes_size": 0,
"num_children": 0,
"num_relations": 0,
"num_reltuples": 0
},
"distributed_hypertables_access_node": {
"heap_size": 0,
"toast_size": 0,
"compression": {
"compressed_heap_size": 0,
"compressed_row_count": 0,
"compressed_toast_size": 0,
"num_compressed_chunks": 0,
"uncompressed_heap_size": 0,
"uncompressed_row_count": 0,
"compressed_indexes_size": 0,
"uncompressed_toast_size": 0,
"uncompressed_indexes_size": 0,
"num_compressed_hypertables": 0
},
"indexes_size": 0,
"num_children": 0,
"num_relations": 0,
"num_reltuples": 0,
"num_replica_chunks": 0,
"num_replicated_distributed_hypertables": 0
}
}, "os_release": "5.10.47-linuxkit", "os_version": "#1 SMP Sat Jul 3 21:51:47 UTC 2021", "data_volume": 381903727, "db_metadata": {}, "build_os_name": "Linux", "functions_used": {
"pg_catalog.int8(integer)": 8,
"pg_catalog.count(pg_catalog.\"any\")": 20,
"pg_catalog.int4eq(integer,integer)": 7,
"pg_catalog.textcat(pg_catalog.text,pg_catalog.text)": 10,
"pg_catalog.chareq(pg_catalog.\"char\",pg_catalog.\"char\")": 6,
},
"install_method": "docker",
"installed_time": "2022-02-17T19:55:14+00",
"os_name_pretty": "Alpine Linux v3.15",
"last_tuned_time": "2022-02-17T19:55:14Z",
"build_os_version": "5.11.0-1028-azure",
"exported_db_uuid": "5730161f-0d18-42fb-a800-45df33494c",
"telemetry_version": 2,
"build_architecture": "x86_64",
"distributed_member": "none",
"last_tuned_version": "0.12.0",
"postgresql_version": "12.10",
"related_extensions": {
"postgis": false,
"pg_prometheus": false,
"timescale_analytics": false,
"timescaledb_toolkit": false
}, "timescaledb_version": "2.6.0", "num_reorder_policies": 0, "num_retention_policies": 0, "num_compression_policies": 1, "num_user_defined_actions": 1, "build_architecture_bit_size": 64, "num_continuous_aggs_policies": 24 }
</Collapsible>
If you want to see the exact JSON data file that is sent, use the
[`get_telemetry_report`][get_telemetry_report] API call.
Telemetry reports are different if you are using an open source or community
version of TimescaleDB. For these versions, the report includes an `edition`
field, with a value of either `apache_only` or `community`.
## Change what is included the telemetry report
If you want to adjust which metadata is included or excluded from the telemetry
report, you can do so in the `_timescaledb_catalog.metadata` table. Metadata
which has `include_in_telemetry` set to `true`, and a value of
`timescaledb_telemetry.cloud`, is included in the telemetry report.
## Version checking
Telemetry reports are sent periodically in the background. In response to the
telemetry report, the database receives the most recent version of TimescaleDB
available for installation. This version is recorded in your server logs, along
with any applicable out-of-date version warnings. You do not have to update
immediately to the newest release, but we highly recommend that you do so, to
take advantage of performance improvements and bug fixes.
## Disable telemetry
It is highly recommend that you leave telemetry enabled, as it provides useful
features for you, and helps to keep improving Timescale. However, you can turn
off telemetry if you need to for a specific database, or for an entire instance.
If you turn off telemetry, the version checking feature is also turned off.
### Disabling telemetry
1. Open your Postgres configuration file, and locate
the `timescaledb.telemetry_level` parameter. See the
[Postgres configuration file][postgres-config] instructions for locating
and opening the file.
1. Change the parameter setting to `off`:
```yaml
timescaledb.telemetry_level=off
```
1. Reload the configuration file:
```bash
pg_ctl
```
1. Alternatively, you can use this command at the `psql` prompt, as the root
user:
```sql
ALTER [SYSTEM | DATABASE | USER] { *db_name* | *role_specification* } SET timescaledb.telemetry_level=off
```
This command disables telemetry for the specified system, database, or user.
### Enabling telemetry
1. Open your Postgres configuration file, and locate the
'timescaledb.telemetry_level' parameter. See the
[Postgres configuration file][postgres-config]
instructions for locating and opening the file.
1. Change the parameter setting to 'off':
```yaml
timescaledb.telemetry_level=basic
```
1. Reload the configuration file:
```bash
pg_ctl
```
1. Alternatively, you can use this command at the `psql` prompt, as the root user:
```sql
ALTER [SYSTEM | DATABASE | USER] { *db_name* | *role_specification* } SET timescaledb.telemetry_level=basic
```
This command enables telemetry for the specified system, database, or user.
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/timescaledb-tune/ =====
# TimescaleDB tuning tool
To help make configuring TimescaleDB a little easier, you can use the [`timescaledb-tune`][tstune]
tool. This tool handles setting the most common parameters to good values based
on your system. It accounts for memory, CPU, and Postgres version.
`timescaledb-tune` is packaged with the TimescaleDB binary releases as a
dependency, so if you installed TimescaleDB from a binary release (including
Docker), you should already have access to the tool. Alternatively, you can use
the `go install` command to install it:
bash go install github.com/timescale/timescaledb-tune/cmd/timescaledb-tune@latest
The `timescaledb-tune` tool reads your system's `postgresql.conf` file and
offers interactive suggestions for your settings. Here is an example of the tool
running:
bash Using postgresql.conf at this path: /usr/local/var/postgres/postgresql.conf
Is this correct? [(y)es/(n)o]: y Writing backup to: /var/folders/cr/example/T/timescaledb_tune.backup202101071520
shared_preload_libraries needs to be updated Current: #shared_preload_libraries = 'timescaledb' Recommended: shared_preload_libraries = 'timescaledb' Is this okay? [(y)es/(n)o]: y success: shared_preload_libraries will be updated
Tune memory/parallelism/WAL and other settings? [(y)es/(n)o]: y Recommendations based on 8.00 GB of available memory and 4 CPUs for PostgreSQL 12
Memory settings recommendations Current: shared_buffers = 128MB #effective_cache_size = 4GB #maintenance_work_mem = 64MB #work_mem = 4MB Recommended: shared_buffers = 2GB effective_cache_size = 6GB maintenance_work_mem = 1GB work_mem = 26214kB Is this okay? [(y)es/(s)kip/(q)uit]:
When you have answered the questions, the changes are written to your
`postgresql.conf` and take effect when you next restart.
If you are starting on a fresh instance and don't want to approve each group of
changes, you can automatically accept and append the suggestions to the end of
your `postgresql.conf` by using some additional flags when you run the tool:
bash timescaledb-tune --quiet --yes --dry-run >> /path/to/postgresql.conf
===== PAGE: https://docs.tigerdata.com/self-hosted/configuration/postgres-config/ =====
# Manual Postgres configuration and tuning
If you prefer to tune settings yourself, or for settings not covered by
`timescaledb-tune`, you can manually configure your installation using the
Postgres configuration file.
For some common configuration settings you might want to adjust, see the
[about-configuration][about-configuration] page.
For more information about the Postgres configuration page, see the
[Postgres documentation][pg-config].
## Edit the Postgres configuration file
The location of the Postgres configuration file depends on your operating
system and installation.
1. **Find the location of the config file for your Postgres instance**
1. Connect to your database:
```shell
psql -d "postgres://<username>:<password>@<host>:<port>/<database-name>"
```
1. Retrieve the database file location from the database internal configuration.
```sql
SHOW config_file;
```
Postgres returns the path to your configuration file. For example:
```sql
--------------------------------------------
/home/postgres/pgdata/data/postgresql.conf
(1 row)
```
1. **Open the config file, then [edit your Postgres configuration][pg-config]**
shell vi /home/postgres/pgdata/data/postgresql.conf
1. **Save your updated configuration**
When you have saved the changes you make to the configuration file, the new configuration is
not applied immediately. The configuration file is automatically reloaded when the server
receives a `SIGHUP` signal. To manually reload the file, use the `pg_ctl` command.
## Setting parameters at the command prompt
If you don't want to open the configuration file to make changes, you can also
set parameters directly from the command prompt, using the `postgres` command.
For example:
sql postgres -c log_connections=yes -c log_destination='syslog'
===== PAGE: https://docs.tigerdata.com/self-hosted/tooling/install-toolkit/ =====
# Install and update TimescaleDB Toolkit
Some hyperfunctions are included by default in TimescaleDB. For additional
hyperfunctions, you need to install the TimescaleDB Toolkit Postgres
extension.
If you're using [Tiger Cloud][cloud], the TimescaleDB Toolkit is already installed. If you're hosting the TimescaleDB extension on your self-hosted database, you can install Toolkit by:
* Using the TimescaleDB high-availability Docker image
* Using a package manager such as `yum`, `apt`, or `brew` on platforms where
pre-built binaries are available
* Building from source. For more information, see the [Toolkit developer documentation][toolkit-gh-docs]
## Prerequisites
To follow this procedure:
- [Install TimescaleDB][debian-install].
- Add the TimescaleDB repository and the GPG key.
## Install TimescaleDB Toolkit
These instructions use the `apt` package manager.
1. Update your local repository list:
```bash
sudo apt update
```
1. Install TimescaleDB Toolkit:
```bash
sudo apt install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use Toolkit.
1. Create the Toolkit extension in the database:
```sql
CREATE EXTENSION timescaledb_toolkit;
```
## Update TimescaleDB Toolkit
Update Toolkit by installing the latest version and running `ALTER EXTENSION`.
1. Update your local repository list:
```bash
apt update
```
1. Install the latest version of TimescaleDB Toolkit:
```bash
apt install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use the new version of Toolkit.
1. Update the Toolkit extension in the database:
```sql
ALTER EXTENSION timescaledb_toolkit UPDATE;
```
For some Toolkit versions, you might need to disconnect and reconnect active
sessions.
## Prerequisites
To follow this procedure:
- [Install TimescaleDB][debian-install].
- Add the TimescaleDB repository and the GPG key.
## Install TimescaleDB Toolkit
These instructions use the `apt` package manager.
1. Update your local repository list:
```bash
sudo apt update
```
1. Install TimescaleDB Toolkit:
```bash
sudo apt install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use Toolkit.
1. Create the Toolkit extension in the database:
```sql
CREATE EXTENSION timescaledb_toolkit;
```
## Update TimescaleDB Toolkit
Update Toolkit by installing the latest version and running `ALTER EXTENSION`.
1. Update your local repository list:
```bash
apt update
```
1. Install the latest version of TimescaleDB Toolkit:
```bash
apt install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use the new version of Toolkit.
1. Update the Toolkit extension in the database:
```sql
ALTER EXTENSION timescaledb_toolkit UPDATE;
```
For some Toolkit versions, you might need to disconnect and reconnect active
sessions.
## Prerequisites
To follow this procedure:
- [Install TimescaleDB][red-hat-install].
- Create a TimescaleDB repository in your `yum` `repo.d` directory.
## Install TimescaleDB Toolkit
These instructions use the `yum` package manager.
1. Set up the repository:
```bash
curl -s https://packagecloud.io/install/repositories/timescale/timescaledb/script.deb.sh | sudo bash
```
1. Update your local repository list:
```bash
yum update
```
1. Install TimescaleDB Toolkit:
```bash
yum install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use Toolkit.
1. Create the Toolkit extension in the database:
```sql
CREATE EXTENSION timescaledb_toolkit;
```
## Update TimescaleDB Toolkit
Update Toolkit by installing the latest version and running `ALTER EXTENSION`.
1. Update your local repository list:
```bash
yum update
```
1. Install the latest version of TimescaleDB Toolkit:
```bash
yum install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use the new version of Toolkit.
1. Update the Toolkit extension in the database:
```sql
ALTER EXTENSION timescaledb_toolkit UPDATE;
```
For some Toolkit versions, you might need to disconnect and reconnect active
sessions.
## Prerequisites
To follow this procedure:
- [Install TimescaleDB][red-hat-install].
- Create a TimescaleDB repository in your `yum` `repo.d` directory.
## Install TimescaleDB Toolkit
These instructions use the `yum` package manager.
1. Set up the repository:
```bash
curl -s https://packagecloud.io/install/repositories/timescale/timescaledb/script.deb.sh | sudo bash
```
1. Update your local repository list:
```bash
yum update
```
1. Install TimescaleDB Toolkit:
```bash
yum install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use Toolkit.
1. Create the Toolkit extension in the database:
```sql
CREATE EXTENSION timescaledb_toolkit;
```
## Update TimescaleDB Toolkit
Update Toolkit by installing the latest version and running `ALTER EXTENSION`.
1. Update your local repository list:
```bash
yum update
```
1. Install the latest version of TimescaleDB Toolkit:
```bash
yum install timescaledb-toolkit-postgresql-17
```
1. [Connect to the database][connect] where you want to use the new version of Toolkit.
1. Update the Toolkit extension in the database:
```sql
ALTER EXTENSION timescaledb_toolkit UPDATE;
```
For some Toolkit versions, you might need to disconnect and reconnect active
sessions.
## Install TimescaleDB Toolkit
Best practice for Toolkit installation is to use the
[TimescaleDB Docker image](https://github.com/timescale/timescaledb-docker-ha).
To get Toolkit, use the high availability image, `timescaledb-ha`:
bash docker pull timescale/timescaledb-ha:pg17
For more information on running TimescaleDB using Docker, see
[Install TimescaleDB from a Docker container][docker-install].
## Update TimescaleDB Toolkit
To get the latest version of Toolkit, [update][update-docker] the TimescaleDB HA docker image.
## Prerequisites
To follow this procedure:
- [Install TimescaleDB][macos-install].
## Install TimescaleDB Toolkit
These instructions use the `brew` package manager. For more information on
installing or using Homebrew, see [the `brew` homepage][brew-install].
1. Tap the Tiger Data formula repository, which also contains formulae for
TimescaleDB and `timescaledb-tune`.
```bash
brew tap timescale/tap
```
1. Update your local brew installation:
```bash
brew update
```
1. Install TimescaleDB Toolkit:
```bash
brew install timescaledb-toolkit
```
1. [Connect to the database][connect] where you want to use Toolkit.
1. Create the Toolkit extension in the database:
```sql
CREATE EXTENSION timescaledb_toolkit;
```
## Update TimescaleDB Toolkit
Update Toolkit by installing the latest version and running `ALTER EXTENSION`.
1. Update your local repository list:
```bash
brew update
```
1. Install the latest version of TimescaleDB Toolkit:
```bash
brew upgrade timescaledb-toolkit
```
1. [Connect to the database][connect] where you want to use the new version of Toolkit.
1. Update the Toolkit extension in the database:
```sql
ALTER EXTENSION timescaledb_toolkit UPDATE;
```
For some Toolkit versions, you might need to disconnect and reconnect active
sessions.
===== PAGE: https://docs.tigerdata.com/self-hosted/tooling/about-timescaledb-tune/ =====
# About timescaledb-tune
Get better performance by tuning your TimescaleDB database to match your system
resources and Postgres version. `timescaledb-tune` is an open source command
line tool that analyzes and adjusts your database settings.
## Install timescaledb-tune
`timescaledb-tune` is packaged with binary releases of TimescaleDB. If you
installed TimescaleDB from any binary release, including Docker, you already
have access. For more install instructions, see the
[GitHub repository][github-tstune].
## Tune your database with timescaledb-tune
Run `timescaledb-tune` from the command line. The tool analyzes your
`postgresql.conf` file to provide recommendations for memory, parallelism,
write-ahead log, and other settings. These changes are written to your
`postgresql.conf`. They take effect on the next restart.
1. At the command line, run `timescaledb-tune`. To accept all recommendations
automatically, include the `--yes` flag.
```bash
timescaledb-tune
```
1. If you didn't use the `--yes` flag, respond to each prompt to accept or
reject the recommendations.
1. The changes are written to your `postgresql.conf`.
For detailed instructions and other options, see the documentation in the
[Github repository](https://github.com/timescale/timescaledb-tune).
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-windows/ =====
# Install TimescaleDB on Windows
TimescaleDB is a [Postgres extension](https://www.postgresql.org/docs/current/external-extensions.html) for
time series and demanding workloads that ingest and query high volumes of data.
This section shows you how to:
* [Install and configure TimescaleDB on Postgres][install-timescaledb]: set up
a self-hosted Postgres instance to efficiently run TimescaleDB.
* [Add the TimescaleDB extension to your database][add-timescledb-extension]: enable TimescaleDB features and
performance improvements on a database.
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
### Prerequisites
To install TimescaleDB on your Windows device, you need:
* OpenSSL v3.x
For TimescaleDB v2.14.1 only, you need to install OpenSSL v1.1.1.
* [Visual C++ Redistributable for Visual Studio 2015][ms-download]
## Install and configure TimescaleDB on Postgres
This section shows you how to install the latest version of Postgres and
TimescaleDB on a [supported platform][supported-platforms] using the packages supplied by Tiger Data.
If you have previously installed Postgres without a package manager, you may encounter errors
following these install instructions. Best practice is to full remove any existing Postgres
installations before you begin.
To keep your current Postgres installation, [Install from source][install-from-source].
1. **Install the latest version of Postgres and psql**
1. Download [Postgres][pg-download], then run the installer.
1. In the `Select Components` dialog, check `Command Line Tools`, along with any other components
you want to install, and click `Next`.
1. Complete the installation wizard.
1. Check that you can run `pg_config`.
If you cannot run `pg_config` from the command line, in the Windows
Search tool, enter `system environment variables`.
The path should be `C:\Program Files\PostgreSQL\<version>\bin`.
1. **Install TimescaleDB**
1. Unzip the [TimescaleDB installer][supported-platforms] to `<install_dir>`, that is, your selected directory.
Best practice is to use the latest version.
1. In `<install_dir>\timescaledb`, right-click `setup.exe`, then choose `Run as Administrator`.
1. Complete the installation wizard.
If you see an error like `could not load library "C:/Program Files/PostgreSQL/17/lib/timescaledb-2.17.2.dll": The specified module could not be found.`, use
[Dependencies][dependencies] to ensure that your system can find the compatible DLLs for this release of TimescaleDB.
1. **Tune your Postgres instance for TimescaleDB**
Run the `timescaledb-tune` script included in the `timescaledb-tools` package with TimescaleDB. For more
information, see [configuration][config].
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
## Add the TimescaleDB extension to your database
For improved performance, you enable TimescaleDB on each database on your self-hosted Postgres instance.
This section shows you how to enable TimescaleDB for a new database in Postgres using `psql` from the command line.
<Procedure >
1. **Connect to a database on your Postgres instance**
In Postgres, the default user and database are both `postgres`. To use a
different database, set `<database-name>` to the name of that database:
bash psql -d "postgres://:@:/"
1. **Add TimescaleDB to the database**
```sql
CREATE EXTENSION IF NOT EXISTS timescaledb;
```
1. **Check that TimescaleDB is installed**
```sql
\dx
```
You see the list of installed extensions:
```sql
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
Press q to exit the list of extensions.
And that is it! You have TimescaleDB running on a database on a self-hosted instance of Postgres.
## Supported platforms
The latest TimescaleDB releases for Postgres are:
*
[Postgres 17: TimescaleDB release](https://github.com/timescale/timescaledb/releases/download/2.21.2/timescaledb-postgresql-17-windows-amd64.zip)
*
[Postgres 16: TimescaleDB release](https://github.com/timescale/timescaledb/releases/download/2.21.2/timescaledb-postgresql-16-windows-amd64.zip)
*
[Postgres 15: TimescaleDB release](https://github.com/timescale/timescaledb/releases/download/2.21.2/timescaledb-postgresql-15-windows-amd64.zip)
You can deploy TimescaleDB on the following systems:
| Operation system | Version |
|---------------------------------------------|------------|
| Microsoft Windows | 10, 11 |
| Microsoft Windows Server | 2019, 2020 |
For release information, see the [GitHub releases page][gh-releases] and the [release notes][release-notes].
## Where to next
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-cloud-image/ =====
# Install TimescaleDB from cloud image
You can install TimescaleDB on a cloud hosting provider,
from a pre-built, publicly available machine image. These instructions show you
how to use a pre-built Amazon machine image (AMI), on Amazon Web Services (AWS).
The currently available pre-built cloud image is:
* Ubuntu 20.04 Amazon EBS-backed AMI
The TimescaleDB AMI uses Elastic Block Store (EBS) attached volumes. This allows
you to store image snapshots, dynamic IOPS configuration, and provides some
protection of your data if the EC2 instance goes down. Choose an EC2 instance
type that is optimized for EBS attached volumes. For information on choosing the
right EBS optimized EC2 instance type, see the AWS
[instance configuration documentation][aws-instance-config].
This section shows how to use the AMI from within the AWS EC2 dashboard.
However, you can also use the AMI to build an instance using tools like
Cloudformation, Terraform, the AWS CLI, or any other AWS deployment tool that
supports public AMIs.
## Installing TimescaleDB from a pre-build cloud image
1. Make sure you have an [Amazon Web Services account][aws-signup], and are
signed in to [your EC2 dashboard][aws-dashboard].
1. Navigate to `Images → AMIs`.
1. In the search bar, change the search to `Public images` and type _Timescale_
search term to find all available TimescaleDB images.
1. Select the image you want to use, and click `Launch instance from image`.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/aws_launch_ami.webp"
alt="Launch an AMI in AWS EC2"/>
After you have completed the installation, connect to your instance and
configure your database. For information about connecting to the instance, see
the AWS [accessing instance documentation][aws-connect]. The easiest way to
configure your database is to run the `timescaledb-tune` script, which is included
with the `timescaledb-tools` package. For more information, see the
[configuration][config] section.
After running the `timescaledb-tune` script, you need to restart the Postgres
service for the configuration changes to take effect. To restart the service,
run `sudo systemctl restart postgresql.service`.
## Set up the TimescaleDB extension
When you have Postgres and TimescaleDB installed, connect to your instance and
set up the TimescaleDB extension.
1. On your instance, at the command prompt, connect to the Postgres
instance as the `postgres` superuser:
```bash
sudo -u postgres psql
```
1. At the prompt, create an empty database. For example, to create a database
called `tsdb`:
```sql
CREATE database tsdb;
```
1. Connect to the database you created:
```sql
\c tsdb
```
1. Add the TimescaleDB extension:
```sql
CREATE EXTENSION IF NOT EXISTS timescaledb;
```
You can check that the TimescaleDB extension is installed by using the `\dx`
command at the command prompt. It looks like this:
sql tsdb=# \dx
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+------------------------------------------------------------------- plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language timescaledb | 2.1.1 | public | Enables scalable inserts and complex queries for time-series data (2 rows)
(END)
## Where to next
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-macos/ =====
# Install TimescaleDB on macOS
TimescaleDB is a [Postgres extension](https://www.postgresql.org/docs/current/external-extensions.html) for
time series and demanding workloads that ingest and query high volumes of data. You can host TimescaleDB on
macOS device.
This section shows you how to:
* [Install and configure TimescaleDB on Postgres](#install-and-configure-timescaledb-on-postgresql) - set up
a self-hosted Postgres instance to efficiently run TimescaleDB.
* [Add the TimescaleDB extension to your database](#add-the-timescaledb-extension-to-your-database) - enable TimescaleDB
features and performance improvements on a database.
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
### Prerequisites
To install TimescaleDB on your MacOS device, you need:
* [Postgres][install-postgresql]: for the latest functionality, install Postgres v16
If you have already installed Postgres using a method other than Homebrew or MacPorts, you may encounter errors
following these install instructions. Best practice is to full remove any existing Postgres
installations before you begin.
To keep your current Postgres installation, [Install from source][install-from-source].
## Install and configure TimescaleDB on Postgres
This section shows you how to install the latest version of Postgres and
TimescaleDB on a [supported platform](#supported-platforms) using the packages supplied by Tiger Data.
1. Install Homebrew, if you don't already have it:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
For more information about Homebrew, including installation instructions,
see the [Homebrew documentation][homebrew].
1. At the command prompt, add the TimescaleDB Homebrew tap:
```bash
brew tap timescale/tap
```
1. Install TimescaleDB and psql:
```bash
brew install timescaledb libpq
```
1. Update your path to include psql.
```bash
brew link --force libpq
```
On Intel chips, the symbolic link is added to `/usr/local/bin`. On Apple
Silicon, the symbolic link is added to `/opt/homebrew/bin`.
1. Run the `timescaledb-tune` script to configure your database:
bash timescaledb-tune --quiet --yes
1. Change to the directory where the setup script is located. It is typically,
located at `/opt/homebrew/Cellar/timescaledb/<VERSION>/bin/`, where
`<VERSION>` is the version of `timescaledb` that you installed:
bash cd /opt/homebrew/Cellar/timescaledb//bin/
1. Run the setup script to complete installation.
```bash
./timescaledb_move.sh
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
1. Install MacPorts by downloading and running the package installer.
For more information about MacPorts, including installation instructions,
see the [MacPorts documentation][macports].
1. Install TimescaleDB and psql:
```bash
sudo port install timescaledb libpqxx
```
To view the files installed, run:
```bash
port contents timescaledb libpqxx
```
MacPorts does not install the `timescaledb-tools` package or run the `timescaledb-tune`
script. For more information about tuning your database, see the [TimescaleDB tuning tool][timescale-tuner].
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
## Add the TimescaleDB extension to your database
For improved performance, you enable TimescaleDB on each database on your self-hosted Postgres instance.
This section shows you how to enable TimescaleDB for a new database in Postgres using `psql` from the command line.
<Procedure >
1. **Connect to a database on your Postgres instance**
In Postgres, the default user and database are both `postgres`. To use a
different database, set `<database-name>` to the name of that database:
bash psql -d "postgres://:@:/"
1. **Add TimescaleDB to the database**
```sql
CREATE EXTENSION IF NOT EXISTS timescaledb;
```
1. **Check that TimescaleDB is installed**
```sql
\dx
```
You see the list of installed extensions:
```sql
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
Press q to exit the list of extensions.
And that is it! You have TimescaleDB running on a database on a self-hosted instance of Postgres.
## Supported platforms
You can deploy TimescaleDB on the following systems:
| Operation system | Version |
|-------------------------------|----------------------------------|
| macOS | From 10.15 Catalina to 14 Sonoma |
For the latest functionality, install MacOS 14 Sonoma.
## Where to next
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-kubernetes/ =====
# Install TimescaleDB on Kubernetes
You can run TimescaleDB inside Kubernetes using the TimescaleDB Docker container images.
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
## Prerequisites
To follow the steps on this page:
- Install [self-managed Kubernetes][kubernetes-install] or sign up for a Kubernetes [Turnkey Cloud Solution][kubernetes-managed].
- Install [kubectl][kubectl] for command-line interaction with your cluster.
## Integrate TimescaleDB in a Kubernetes cluster
Running TimescaleDB on Kubernetes is similar to running Postgres. This procedure outlines the steps for a non-distributed system.
To connect your Kubernetes cluster to self-hosted TimescaleDB running in the cluster:
1. **Create a default namespace for Tiger Data components**
1. Create the Tiger Data namespace:
```shell
kubectl create namespace timescale
```
1. Set this namespace as the default for your session:
```shell
kubectl config set-context --current --namespace=timescale
```
For more information, see [Kubernetes Namespaces][kubernetes-namespace].
1. **Set up a persistent volume claim (PVC) storage**
To manually set up a persistent volume and claim for self-hosted Kubernetes, run the following command:
yaml kubectl apply -f - <<EOF apiVersion: v1 kind: PersistentVolumeClaim metadata:
name: timescale-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
EOF
1. **Deploy TimescaleDB as a StatefulSet**
By default, the [TimescaleDB Docker image][timescale-docker-image] you are installing on Kubernetes uses the
default Postgres database, user and password. To deploy TimescaleDB on Kubernetes, run the following command:
```yaml
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: timescaledb
spec:
serviceName: timescaledb
replicas: 1
selector:
matchLabels:
app: timescaledb
template:
metadata:
labels:
app: timescaledb
spec:
containers:
- name: timescaledb
image: 'timescale/timescaledb:latest-pg17'
env:
- name: POSTGRES_USER
value: postgres
- name: POSTGRES_PASSWORD
value: postgres
- name: POSTGRES_DB
value: postgres
- name: PGDATA
value: /var/lib/postgresql/data/pgdata
ports:
- containerPort: 5432
volumeMounts:
- mountPath: /var/lib/postgresql/data
name: timescale-storage
volumes:
- name: timescale-storage
persistentVolumeClaim:
claimName: timescale-pvc
EOF
```
1. **Allow applications to connect by exposing TimescaleDB within Kubernetes**
yaml kubectl apply -f - <<EOF apiVersion: v1 kind: Service metadata:
name: timescaledb
spec:
selector:
app: timescaledb
ports:
- protocol: TCP
port: 5432
targetPort: 5432
type: ClusterIP
EOF
1. **Create a Kubernetes secret to store the database credentials**
shell kubectl create secret generic timescale-secret \ --from-literal=PGHOST=timescaledb \ --from-literal=PGPORT=5432 \ --from-literal=PGDATABASE=postgres \ --from-literal=PGUSER=postgres \ --from-literal=PGPASSWORD=postgres
1. **Deploy an application that connects to TimescaleDB**
```shell
kubectl apply -f - <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: timescale-app
spec:
replicas: 1
selector:
matchLabels:
app: timescale-app
template:
metadata:
labels:
app: timescale-app
spec:
containers:
- name: timescale-container
image: postgres:latest
envFrom:
- secretRef:
name: timescale-secret
EOF
```
1. **Test the database connection**
1. Create and run a pod to verify database connectivity using your [connection details][connection-info] saved in `timescale-secret`:
```shell
kubectl run test-pod --image=postgres --restart=Never \
--env="PGHOST=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGHOST}' | base64 --decode)" \
--env="PGPORT=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPORT}' | base64 --decode)" \
--env="PGDATABASE=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGDATABASE}' | base64 --decode)" \
--env="PGUSER=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGUSER}' | base64 --decode)" \
--env="PGPASSWORD=$(kubectl get secret timescale-secret -o=jsonpath='{.data.PGPASSWORD}' | base64 --decode)" \
-- sleep infinity
```
1. Launch the Postgres interactive shell within the created `test-pod`:
```shell
kubectl exec -it test-pod -- bash -c "psql -h \$PGHOST -U \$PGUSER -d \$PGDATABASE"
```
You see the Postgres interactive terminal.
## Install with Postgres Kubernetes operators
You can also use Postgres Kubernetes operators to simplify installation, configuration, and life cycle. The operators which our community members have
told us work well are:
- [StackGres][stackgres] (includes TimescaleDB images)
- [Postgres Operator (Patroni)][patroni]
- [PGO][pgo]
- [CloudNativePG][cnpg]
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-source/ =====
# Install TimescaleDB from source
TimescaleDB is a [Postgres extension](https://www.postgresql.org/docs/current/external-extensions.html) for
time series and demanding workloads that ingest and query high volumes of data. You can install a TimescaleDB
instance on any local system, from source.
This section shows you how to:
* [Install and configure TimescaleDB on Postgres](#install-and-configure-timescaledb-on-postgres) - set up
a self-hosted Postgres instance to efficiently run TimescaleDB1.
* [Add the TimescaleDB extension to your database](#add-the-timescaledb-extension-to-your-database) - enable TimescaleDB features and
performance improvements on a database.
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
### Prerequisites
To install TimescaleDB from source, you need the following on your developer environment:
* **Postgres**:
Install a [supported version of Postgres][compatibility-matrix] using the [Postgres installation instructions][postgres-download].
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21.
These minor versions [introduced a breaking binary interface change][postgres-breaking-change] that,
once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22.
When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher.
Users of [Tiger Cloud](https://console.cloud.timescale.com/) and Platform packages built and
distributed by Tiger Data are unaffected.
* **Build tools**:
* [CMake version 3.11 or later][cmake-download]
* C language compiler for your operating system, such as `gcc` or `clang`.
If you are using a Microsoft Windows system, you can install Visual Studio 2015
or later instead of CMake and a C language compiler. Ensure you install the
Visual Studio components for CMake and Git when you run the installer.
## Install and configure TimescaleDB on Postgres
This section shows you how to install the latest version of Postgres and
TimescaleDB on a supported platform using source supplied by Tiger Data.
1. **Install the latest Postgres source**
1. At the command prompt, clone the TimescaleDB GitHub repository:
```bash
git clone https://github.com/timescale/timescaledb
```
1. Change into the cloned directory:
```bash
cd timescaledb
```
1. Checkout the latest release. You can find the latest release tag on
our [Releases page][gh-releases]:
```bash
git checkout 2.17.2
```
This command produces an error that you are now in `detached head` state. It
is expected behavior, and it occurs because you have checked out a tag, and
not a branch. Continue with the steps in this procedure as normal.
1. **Build the source**
1. Bootstrap the build system:
<Terminal persistKey="os">
```bash
./bootstrap
```
```powershell
bootstrap.bat
```
</Terminal>
For installation on Microsoft Windows, you might need to add the `pg_config`
and `cmake` file locations to your path. In the Windows Search tool, search
for `system environment variables`. The path for `pg_config` should be
`C:\Program Files\PostgreSQL\<version>\bin`. The path for `cmake` is within
the Visual Studio directory.
1. Build the extension:
<Terminal persistKey="os">
```bash
cd build && make
```
```powershell
cmake --build ./build --config Release
```
</Terminal>
1. **Install TimescaleDB**
<Terminal persistKey="os">
```bash
make install
```
```powershell
cmake --build ./build --config Release --target install
```
</Terminal>
1. **Configure Postgres**
If you have more than one version of Postgres installed, TimescaleDB can only
be associated with one of them. The TimescaleDB build scripts use `pg_config` to
find out where Postgres stores its extension files, so you can use `pg_config`
to find out which Postgres installation TimescaleDB is using.
1. Locate the `postgresql.conf` configuration file:
```bash
psql -d postgres -c "SHOW config_file;"
```
1. Open the `postgresql.conf` file and update `shared_preload_libraries` to:
```bash
shared_preload_libraries = 'timescaledb'
```
If you use other preloaded libraries, make sure they are comma separated.
1. Tune your Postgres instance for TimescaleDB
```bash
sudo timescaledb-tune
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. Restart the Postgres instance:
<Terminal persistKey="os">
```bash
service postgresql restart
```
```powershell
pg_ctl restart
```
</Terminal>
1. **Set the user password**
1. Log in to Postgres as `postgres`
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. Set the password for `postgres`
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
## Add the TimescaleDB extension to your database
For improved performance, you enable TimescaleDB on each database on your self-hosted Postgres instance.
This section shows you how to enable TimescaleDB for a new database in Postgres using `psql` from the command line.
<Procedure >
1. **Connect to a database on your Postgres instance**
In Postgres, the default user and database are both `postgres`. To use a
different database, set `<database-name>` to the name of that database:
bash psql -d "postgres://:@:/"
1. **Add TimescaleDB to the database**
```sql
CREATE EXTENSION IF NOT EXISTS timescaledb;
```
1. **Check that TimescaleDB is installed**
```sql
\dx
```
You see the list of installed extensions:
```sql
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
Press q to exit the list of extensions.
And that is it! You have TimescaleDB running on a database on a self-hosted instance of Postgres.
## Where to next
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-linux/ =====
# Install TimescaleDB on Linux
TimescaleDB is a [Postgres extension](https://www.postgresql.org/docs/current/external-extensions.html) for
time series and demanding workloads that ingest and query high volumes of data.
This section shows you how to:
* [Install and configure TimescaleDB on Postgres](#install-and-configure-timescaledb-on-postgresql) - set up
a self-hosted Postgres instance to efficiently run TimescaleDB.
* [Add the TimescaleDB extension to your database](#add-the-timescaledb-extension-to-your-database) - enable TimescaleDB
features and performance improvements on a database.
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
## Install and configure TimescaleDB on Postgres
This section shows you how to install the latest version of Postgres and
TimescaleDB on a [supported platform](#supported-platforms) using the packages supplied by Tiger Data.
If you have previously installed Postgres without a package manager, you may encounter errors
following these install instructions. Best practice is to fully remove any existing Postgres
installations before you begin.
To keep your current Postgres installation, [Install from source][install-from-source].
1. **Install the latest Postgres packages**
```bash
sudo apt install gnupg postgresql-common apt-transport-https lsb-release wget
```
1. **Run the Postgres package setup script**
```bash
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
```
1. **Add the TimescaleDB package**
```bash
echo "deb https://packagecloud.io/timescale/timescaledb/debian/ $(lsb_release -c -s) main" | sudo tee /etc/apt/sources.list.d/timescaledb.list
```
1. **Install the TimescaleDB GPG key**
```bash
wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/timescaledb.gpg
```
1. **Update your local repository list**
```bash
sudo apt update
```
1. **Install TimescaleDB**
```bash
sudo apt install timescaledb-2-postgresql-17 postgresql-client-17
```
To install a specific TimescaleDB [release][releases-page], set the version. For example:
`sudo apt-get install timescaledb-2-postgresql-14='2.6.0*' timescaledb-2-loader-postgresql-14='2.6.0*'`
Older versions of TimescaleDB may not support all the OS versions listed on this page.
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
By default, this script is included with the `timescaledb-tools` package when you install TimescaleDB. Use the prompts to tune your development or production environment. For more information on manual configuration, see [Configuration][config]. If you have an issue, run `sudo apt install timescaledb-tools`.
1. **Restart Postgres**
```bash
sudo systemctl restart postgresql
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
1. **Install the latest Postgres packages**
```bash
sudo apt install gnupg postgresql-common apt-transport-https lsb-release wget
```
1. **Run the Postgres package setup script**
```bash
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
```
```bash
echo "deb https://packagecloud.io/timescale/timescaledb/ubuntu/ $(lsb_release -c -s) main" | sudo tee /etc/apt/sources.list.d/timescaledb.list
```
1. **Install the TimescaleDB GPG key**
```bash
wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/timescaledb.gpg
```
For Ubuntu 21.10 and earlier use the following command:
`wget --quiet -O - https://packagecloud.io/timescale/timescaledb/gpgkey | sudo apt-key add -`
1. **Update your local repository list**
```bash
sudo apt update
```
1. **Install TimescaleDB**
```bash
sudo apt install timescaledb-2-postgresql-17 postgresql-client-17
```
To install a specific TimescaleDB [release][releases-page], set the version. For example:
`sudo apt-get install timescaledb-2-postgresql-14='2.6.0*' timescaledb-2-loader-postgresql-14='2.6.0*'`
Older versions of TimescaleDB may not support all the OS versions listed on this page.
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
By default, this script is included with the `timescaledb-tools` package when you install TimescaleDB. Use the prompts to tune your development or production environment. For more information on manual configuration, see [Configuration][config]. If you have an issue, run `sudo apt install timescaledb-tools`.
1. **Restart Postgres**
```bash
sudo systemctl restart postgresql
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
1. **Install the latest Postgres packages**
```bash
sudo yum install https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm
```
1. **Add the TimescaleDB repository**
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/$(rpm -E %{rhel})/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
1. **Update your local repository list**
```bash
sudo yum update
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo yum install timescaledb-2-postgresql-17 postgresql17
```
<!-- hack until we have bandwidth to rewrite this linting rule -->
<!-- markdownlint-disable TS007 -->
On Red Hat Enterprise Linux 8 and later, disable the built-in Postgres module:
`sudo dnf -qy module disable postgresql`
<!-- markdownlint-enable TS007 -->
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-17/bin/postgresql-17-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-17/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-17
sudo systemctl start postgresql-17
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
1. **Install the latest Postgres packages**
```bash
sudo yum install https://download.postgresql.org/pub/repos/yum/reporpms/F-$(rpm -E %{fedora})-x86_64/pgdg-fedora-repo-latest.noarch.rpm
```
1. **Add the TimescaleDB repository**
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/9/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
1. **Update your local repository list**
```bash
sudo yum update
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo yum install timescaledb-2-postgresql-17 postgresql17
```
<!-- hack until we have bandwidth to rewrite this linting rule -->
<!-- markdownlint-disable TS007 -->
On Red Hat Enterprise Linux 8 and later, disable the built-in Postgres module:
`sudo dnf -qy module disable postgresql`
<!-- markdownlint-enable TS007 -->
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-17/bin/postgresql-17-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-17/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-17
sudo systemctl start postgresql-17
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
Tiger Data supports Rocky Linux 8 and 9 on amd64 only.
1. **Update your local repository list**
```bash
sudo dnf update -y
sudo dnf install -y epel-release
```
1. **Install the latest Postgres packages**
```bash
sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-9-x86_64/pgdg-redhat-repo-latest.noarch.rpm
```
1. **Add the TimescaleDB repository**
```bash
sudo tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL
[timescale_timescaledb]
name=timescale_timescaledb
baseurl=https://packagecloud.io/timescale/timescaledb/el/9/\$basearch
repo_gpgcheck=1
gpgcheck=0
enabled=1
gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey
sslverify=1
sslcacert=/etc/pki/tls/certs/ca-bundle.crt
metadata_expire=300
EOL
```
1. **Disable the built-in PostgreSQL module**
This is for Rocky Linux 9 only.
```bash
sudo dnf module disable postgresql -y
```
1. **Install TimescaleDB**
To avoid errors, **do not** install TimescaleDB Apache 2 Edition and TimescaleDB Community Edition at the same time.
```bash
sudo dnf install -y postgresql16-server postgresql16-contrib timescaledb-2-postgresql-16
```
1. **Initialize the Postgres instance**
```bash
sudo /usr/pgsql-16/bin/postgresql-16-setup initdb
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune --pg-config=/usr/pgsql-16/bin/pg_config
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB.
For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql-16
sudo systemctl start postgresql-16
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are now in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
ArchLinux packages are built by the community.
1. **Install the latest Postgres and TimescaleDB packages**
```bash
sudo pacman -Syu timescaledb timescaledb-tune postgresql-libs
```
1. **Initalize your Postgres instance**
```bash
sudo -u postgres initdb --locale=en_US.UTF-8 --encoding=UTF8 -D /var/lib/postgres/data --data-checksums
```
1. **Tune your Postgres instance for TimescaleDB**
```bash
sudo timescaledb-tune
```
This script is included with the `timescaledb-tools` package when you install TimescaleDB. For more information, see [configuration][config].
1. **Enable and start Postgres**
```bash
sudo systemctl enable postgresql.service
sudo systemctl start postgresql.service
```
1. **Log in to Postgres as `postgres`**
```bash
sudo -u postgres psql
```
You are in the psql shell.
1. **Set the password for `postgres`**
```bash
\password postgres
```
When you have set the password, type `\q` to exit psql.
Job jobbed, you have installed Postgres and TimescaleDB.
## Add the TimescaleDB extension to your database
For improved performance, you enable TimescaleDB on each database on your self-hosted Postgres instance.
This section shows you how to enable TimescaleDB for a new database in Postgres using `psql` from the command line.
<Procedure >
1. **Connect to a database on your Postgres instance**
In Postgres, the default user and database are both `postgres`. To use a
different database, set `<database-name>` to the name of that database:
bash psql -d "postgres://:@:/"
1. **Add TimescaleDB to the database**
```sql
CREATE EXTENSION IF NOT EXISTS timescaledb;
```
1. **Check that TimescaleDB is installed**
```sql
\dx
```
You see the list of installed extensions:
```sql
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
Press q to exit the list of extensions.
And that is it! You have TimescaleDB running on a database on a self-hosted instance of Postgres.
## Supported platforms
You can deploy TimescaleDB on the following systems:
| Operation system | Version |
|---------------------------------|-----------------------------------------------------------------------|
| Debian | 13 Trixe, 12 Bookworm, 11 Bullseye |
| Ubuntu | 24.04 Noble Numbat, 22.04 LTS Jammy Jellyfish |
| Red Hat Enterprise | Linux 9, Linux 8 |
| Fedora | Fedora 35, Fedora 34, Fedora 33 |
| Rocky Linux | Rocky Linux 9 (x86_64), Rocky Linux 8 |
| ArchLinux (community-supported) | Check the [available packages][archlinux-packages] |
## Where to next
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/self-hosted/install/self-hosted/ =====
# Install self-hosted TimescaleDB
## Installation
Refer to the installation documentation for detailed setup instructions.
===== PAGE: https://docs.tigerdata.com/self-hosted/install/installation-docker/ =====
# Install TimescaleDB on Docker
TimescaleDB is a [Postgres extension](https://www.postgresql.org/docs/current/external-extensions.html) for
time series and demanding workloads that ingest and query high volumes of data. You can install a TimescaleDB
instance on any local system from a pre-built Docker container.
This section shows you how to
[Install and configure TimescaleDB on Postgres](#install-and-configure-timescaledb-on-postgresql).
The following instructions are for development and testing installations. For a production environment, we strongly recommend
that you implement the following, many of which you can achieve using Postgres tooling:
- Incremental backup and database snapshots, with efficient point-in-time recovery.
- High availability replication, ideally with nodes across multiple availability zones.
- Automatic failure detection with fast restarts, for both non-replicated and replicated deployments.
- Asynchronous replicas for scaling reads when needed.
- Connection poolers for scaling client connections.
- Zero-down-time minor version and extension upgrades.
- Forking workflows for major version upgrades and other feature testing.
- Monitoring and observability.
Deploying for production? With a Tiger Cloud service we tune your database for performance and handle scalability, high
availability, backups, and management, so you can relax.
### Prerequisites
To run, and connect to a Postgres installation on Docker, you need to install:
- [Docker][docker-install]
- [psql][install-psql]
## Install and configure TimescaleDB on Postgres
This section shows you how to install the latest version of Postgres and
TimescaleDB on a [supported platform](#supported-platforms) using containers supplied by Tiger Data.
1. **Run the TimescaleDB Docker image**
The [TimescaleDB HA](https://hub.docker.com/r/timescale/timescaledb-ha) Docker image offers the most complete
TimescaleDB experience. It uses [Ubuntu][ubuntu], includes
[TimescaleDB Toolkit](https://github.com/timescale/timescaledb-toolkit), and support for PostGIS and Patroni.
To install the latest release based on Postgres 17:
```
docker pull timescale/timescaledb-ha:pg17
```
TimescaleDB is pre-created in the default Postgres database and is added by default to any new database you create in this image.
1. **Run the container**
Replace `</a/local/data/folder>` with the path to the folder you want to keep your data in the following command.
```
docker run -d --name timescaledb -p 5432:5432 -v </a/local/data/folder>:/pgdata -e PGDATA=/pgdata -e POSTGRES_PASSWORD=password timescale/timescaledb-ha:pg17
```
If you are running multiple container instances, change the port each Docker instance runs on.
On UNIX-based systems, Docker modifies Linux IP tables to bind the container. If your system uses Linux Uncomplicated Firewall (UFW), Docker may
[override your UFW port binding settings][override-binding]. To prevent this, add `DOCKER_OPTS="--iptables=false"` to `/etc/default/docker`.
1. **Connect to a database on your Postgres instance**
The default user and database are both `postgres`. You set the password in `POSTGRES_PASSWORD` in the previous step. The default command to connect to Postgres is:
```bash
psql -d "postgres://postgres:password@localhost/postgres"
```
1. **Check that TimescaleDB is installed**
```sql
\dx
```
You see the list of installed extensions:
```sql
Name | Version | Schema | Description
---------------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.20.3 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
timescaledb_toolkit | 1.21.0 | public | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities
(3 rows)
```
Press `q` to exit the list of extensions.
## More Docker options
If you want to access the container from the host but avoid exposing it to the
outside world, you can bind to `127.0.0.1` instead of the public interface, using this command:
bash docker run -d --name timescaledb -p 127.0.0.1:5432:5432 \ -v
:/pgdata -e PGDATA=/pgdata -e POSTGRES_PASSWORD=password timescale/timescaledb-ha:pg17
If you don't want to install `psql` and other Postgres client tools locally,
or if you are using a Microsoft Windows host system, you can connect using the
version of `psql` that is bundled within the container with this command:
bash docker exec -it timescaledb psql -U postgres
When you install TimescaleDB using a Docker container, the Postgres settings
are inherited from the container. In most cases, you do not need to adjust them.
However, if you need to change a setting, you can add `-c setting=value` to your
Docker `run` command. For more information, see the
[Docker documentation][docker-postgres].
The link provided in these instructions is for the latest version of TimescaleDB
on Postgres 17. To find other Docker tags you can use, see the [Dockerhub repository][dockerhub].
## View logs in Docker
If you have TimescaleDB installed in a Docker container, you can view your logs
using Docker, instead of looking in `/var/lib/logs` or `/var/logs`. For more
information, see the [Docker documentation on logs][docker-logs].
1. **Run the TimescaleDB Docker image**
The light-weight [TimescaleDB](https://hub.docker.com/r/timescale/timescaledb) Docker image uses [Alpine][alpine] and does not contain [TimescaleDB Toolkit](https://github.com/timescale/timescaledb-toolkit) or support for PostGIS and Patroni.
To install the latest release based on Postgres 17:
```
docker pull timescale/timescaledb:latest-pg17
```
TimescaleDB is pre-created in the default Postgres database and added by default to any new database you create in this image.
1. **Run the container**
```
docker run -v </a/local/data/folder>:/pgdata -e PGDATA=/pgdata \
-d --name timescaledb -p 5432:5432 -e POSTGRES_PASSWORD=password timescale/timescaledb:latest-pg17
```
If you are running multiple container instances, change the port each Docker instance runs on.
On UNIX-based systems, Docker modifies Linux IP tables to bind the container. If your system uses Linux Uncomplicated Firewall (UFW), Docker may [override your UFW port binding settings][override-binding]. To prevent this, add `DOCKER_OPTS="--iptables=false"` to `/etc/default/docker`.
1. **Connect to a database on your Postgres instance**
The default user and database are both `postgres`. You set the password in `POSTGRES_PASSWORD` in the previous step. The default command to connect to Postgres in this image is:
```bash
psql -d "postgres://postgres:password@localhost/postgres"
```
1. **Check that TimescaleDB is installed**
```sql
\dx
```
You see the list of installed extensions:
```sql
Name | Version | Schema | Description
---------------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.20.3 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
Press `q` to exit the list of extensions.
## More Docker options
If you want to access the container from the host but avoid exposing it to the
outside world, you can bind to `127.0.0.1` instead of the public interface, using this command:
bash docker run -v
:/pgdata -e PGDATA=/pgdata \ -d --name timescaledb -p 127.0.0.1:5432:5432 \ -e POSTGRES_PASSWORD=password timescale/timescaledb:latest-pg17
If you don't want to install `psql` and other Postgres client tools locally,
or if you are using a Microsoft Windows host system, you can connect using the
version of `psql` that is bundled within the container with this command:
bash docker exec -it timescaledb psql -U postgres
Existing containers can be stopped using `docker stop` and started again with
`docker start` while retaining their volumes and data. When you create a new
container using the `docker run` command, by default you also create a new data
volume. When you remove a Docker container with `docker rm`, the data volume
persists on disk until you explicitly delete it. You can use the `docker volume
ls` command to list existing docker volumes. If you want to store the data from
your Docker container in a host directory, or you want to run the Docker image
on top of an existing data directory, you can specify the directory to mount a
data volume using the `-v` flag:
bash docker run -d --name timescaledb -p 5432:5432 \ -v
:/pgdata -e PGDATA=/pgdata \ -e POSTGRES_PASSWORD=password timescale/timescaledb:latest-pg17
When you install TimescaleDB using a Docker container, the Postgres settings
are inherited from the container. In most cases, you do not need to adjust them.
However, if you need to change a setting, you can add `-c setting=value` to your
Docker `run` command. For more information, see the
[Docker documentation][docker-postgres].
The link provided in these instructions is for the latest version of TimescaleDB
on Postgres 16. To find other Docker tags you can use, see the [Dockerhub repository][dockerhub].
## View logs in Docker
If you have TimescaleDB installed in a Docker container, you can view your logs
using Docker, instead of looking in `/var/log`. For more
information, see the [Docker documentation on logs][docker-logs].
And that is it! You have TimescaleDB running on a database on a self-hosted instance of Postgres.
## Where to next
What next? [Try the key features offered by Tiger Data][try-timescale-features], see the [tutorials][tutorials],
interact with the data in your Tiger Cloud service using [your favorite programming language][connect-with-code], integrate
your Tiger Cloud service with a range of [third-party tools][integrations], plain old [Use Tiger Data products][use-timescale], or dive
into the [API reference][use-the-api].
===== PAGE: https://docs.tigerdata.com/self-hosted/replication-and-ha/configure-replication/ =====
# Configure replication
This section outlines how to set up asynchronous streaming replication on one or
more database replicas.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
Before you begin, make sure you have at least two separate instances of
TimescaleDB running. If you installed TimescaleDB using a Docker container, use
a [Postgres entry point script][docker-postgres-scripts] to run the
configuration. For more advanced examples, see the
[TimescaleDB Helm Charts repository][timescale-streamrep-helm].
To configure replication on self-hosted TimescaleDB, you need to perform these
procedures:
1. [Configure the primary database][configure-primary-db]
1. [Configure replication parameters][configure-params]
1. [Create replication slots][create-replication-slots]
1. [Configure host-based authentication parameters][configure-pghba]
1. [Create a base backup on the replica][create-base-backup]
1. [Configure replication and recovery settings][configure-replication]
1. [Verify that the replica is working][verify-replica]
## Configure the primary database
To configure the primary database, you need a Postgres user with a role that
allows it to initialize streaming replication. This is the user each replica
uses to stream from the primary database.
### Configuring the primary database
1. On the primary database, as a user with superuser privileges, such as the
`postgres` user, set the password encryption level to `scram-sha-256`:
```sql
SET password_encryption = 'scram-sha-256';
```
1. Create a new user called `repuser`:
```sql
CREATE ROLE repuser WITH REPLICATION PASSWORD '<PASSWORD>' LOGIN;
```
The [scram-sha-256](https://www.postgresql.org/docs/current/sasl-authentication.html#SASL-SCRAM-SHA-256) encryption level is the most secure
password-based authentication available in Postgres. It is only available in Postgres 10 and later.
## Configure replication parameters
There are several replication settings that need to be added or edited in the
`postgresql.conf` configuration file.
### Configuring replication parameters
1. Set the `synchronous_commit` parameter to `off`.
1. Set the `max_wal_senders` parameter to the total number of concurrent
connections from replicas or backup clients. As a minimum, this should equal
the number of replicas you intend to have.
1. Set the `wal_level` parameter to the amount of information written to the
Postgres write-ahead log (WAL). For replication to work, there needs to be
enough data in the WAL to support archiving and replication. The default
value is usually appropriate.
1. Set the `max_replication_slots` parameter to the total number of replication
slots the primary database can support.
1. Set the `listen_addresses` parameter to the address of the primary database.
Do not leave this parameter as the local loopback address, because the
remote replicas must be able to connect to the primary to stream the WAL.
1. Restart Postgres to pick up the changes. This must be done before you
create replication slots.
The most common streaming replication use case is asynchronous replication with
one or more replicas. In this example, the WAL is streamed to the replica, but
the primary server does not wait for confirmation that the WAL has been written
to disk on either the primary or the replica. This is the most performant
replication configuration, but it does carry the risk of a small amount of data
loss in the event of a system failure. It also makes no guarantees that the
replica is fully up to date with the primary, which could cause inconsistencies
between read queries on the primary and the replica. The example configuration
for this use case:
yaml listen_addresses = '*' wal_level = replica max_wal_senders = 2 max_replication_slots = 2 synchronous_commit = off
If you need stronger consistency on the replicas, or if your query load is heavy
enough to cause significant lag between the primary and replica nodes in
asynchronous mode, consider a synchronous replication configuration instead. For
more information about the different replication modes, see the
[replication modes section][replication-modes].
## Create replication slots
When you have configured `postgresql.conf` and restarted Postgres, you can
create a [replication slot][postgres-rslots-docs] for each replica. Replication
slots ensure that the primary does not delete segments from the WAL until they
have been received by the replicas. This is important in case a replica goes
down for an extended time. The primary needs to verify that a WAL segment has
been consumed by a replica, so that it can safely delete data. You can use
[archiving][postgres-archive-docs] for this purpose, but replication slots
provide the strongest protection for streaming replication.
### Creating replication slots
1. At the `psql` slot, create the first replication slot. The name of the slot
is arbitrary. In this example, it is called `replica_1_slot`:
```sql
SELECT * FROM pg_create_physical_replication_slot('replica_1_slot', true);
```
1. Repeat for each required replication slot.
## Configure host-based authentication parameters
There are several replication settings that need to be added or edited to the
`pg_hba.conf` configuration file. In this example, the settings restrict
replication connections to traffic coming from `REPLICATION_HOST_IP` as the
Postgres user `repuser` with a valid password. `REPLICATION_HOST_IP` can
initiate streaming replication from that machine without additional credentials.
You can change the `address` and `method` values to match your security and
network settings.
For more information about `pg_hba.conf`, see the
[`pg_hba` documentation][pg-hba-docs].
### Configuring host-based authentication parameters
1. Open the `pg_hba.conf` configuration file and add or edit this line:
```yaml
TYPE DATABASE USER ADDRESS METHOD AUTH_METHOD
host replication repuser <REPLICATION_HOST_IP>/32 scram-sha-256
```
1. Restart Postgres to pick up the changes.
## Create a base backup on the replica
Replicas work by streaming the primary server's WAL log and replaying its
transactions in Postgres recovery mode. To do this, the replica needs to be in
a state where it can replay the log. You can do this by restoring the replica
from a base backup of the primary instance.
### Creating a base backup on the replica
1. Stop Postgres services.
1. If the replica database already contains data, delete it before you run the
backup, by removing the Postgres data directory:
```bash
rm -rf <DATA_DIRECTORY>/*
```
If you don't know the location of the data directory, find it with the
`show data_directory;` command.
1. Restore from the base backup, using the IP address of the primary database
and the replication username:
```bash
pg_basebackup -h <PRIMARY_IP> \
-D <DATA_DIRECTORY> \
-U repuser -vP -W
```
The -W flag prompts you for a password. If you are using this command in an
automated setup, you might need to use a [pgpass file][pgpass-file].
1. When the backup is complete, create a
[standby.signal][postgres-recovery-docs] file in your data directory. When
Postgres finds a `standby.signal` file in its data directory, it starts in
recovery mode and streams the WAL through the replication protocol:
```bash
touch <DATA_DIRECTORY>/standby.signal
```
## Configure replication and recovery settings
When you have successfully created a base backup and a `standby.signal` file, you
can configure the replication and recovery settings.
## Configuring replication and recovery settings
1. In the replica's `postgresql.conf` file, add details for communicating with the
primary server. If you are using streaming replication, the
`application_name` in `primary_conninfo` should be the same as the name used
in the primary's `synchronous_standby_names` settings:
```yaml
primary_conninfo = 'host=<PRIMARY_IP> port=5432 user=repuser
password=<POSTGRES_USER_PASSWORD> application_name=r1'
primary_slot_name = 'replica_1_slot'
```
1. Add details to mirror the configuration of the primary database. If you are
using asynchronous replication, use these settings:
```yaml
hot_standby = on
wal_level = replica
max_wal_senders = 2
max_replication_slots = 2
synchronous_commit = off
```
The `hot_standby` parameter must be set to `on` to allow read-only queries
on the replica. In Postgres 10 and later, this setting is `on` by default.
1. Restart Postgres to pick up the changes.
## Verify that the replica is working
At this point, your replica should be fully synchronized with the primary
database and prepared to stream from it. You can verify that it is working
properly by checking the logs on the replica, which should look like this:
txt LOG: database system was shut down in recovery at 2018-03-09 18:36:23 UTC LOG: entering standby mode LOG: redo starts at 0/2000028 LOG: consistent recovery state reached at 0/3000000 LOG: database system is ready to accept read only connections LOG: started streaming WAL from primary at 0/3000000 on timeline 1
Any client can perform reads on the replica. You can verify this by running
inserts, updates, or other modifications to your data on the primary database,
and then querying the replica to ensure they have been properly copied over.
## Replication modes
In most cases, asynchronous streaming replication is sufficient. However, you
might require greater consistency between the primary and replicas, especially
if you have a heavy workload. Under heavy workloads, replicas can lag far behind
the primary, providing stale data to clients reading from the replicas.
Additionally, in cases where any data loss is fatal, asynchronous replication
might not provide enough of a durability guarantee. The Postgres
[`synchronous_commit`][postgres-synchronous-commit-docs] feature has several
options with varying consistency and performance tradeoffs.
In the `postgresql.conf` file, set the `synchronous_commit` parameter to:
* `on`: This is the default value. The server does not return `success` until
the WAL transaction has been written to disk on the primary and any
replicas.
* `off`: The server returns `success` when the WAL transaction has been sent
to the operating system to write to the WAL on disk on the primary, but
does not wait for the operating system to actually write it. This can cause
a small amount of data loss if the server crashes when some data has not
been written, but it does not result in data corruption. Turning
`synchronous_commit` off is a well-known Postgres optimization for
workloads that can withstand some data loss in the event of a system crash.
* `local`: Enforces `on` behavior only on the primary server.
* `remote_write`: The database returns `success` to a client when the WAL
record has been sent to the operating system for writing to the WAL on the
replicas, but before confirmation that the record has actually been
persisted to disk. This is similar to asynchronous commit, except it waits
for the replicas as well as the primary. In practice, the extra wait time
incurred waiting for the replicas significantly decreases replication lag.
* `remote_apply`: Requires confirmation that the WAL records have been written
to the WAL and applied to the databases on all replicas. This provides the
strongest consistency of any of the `synchronous_commit` options. In this
mode, replicas always reflect the latest state of the primary, and
replication lag is nearly non-existent.
If `synchronous_standby_names` is empty, the settings `on`, `remote_apply`,
`remote_write` and `local` all provide the same synchronization level, and
transaction commits wait for the local flush to disk.
This matrix shows the level of consistency provided by each mode:
|Mode|WAL Sent to OS (Primary)|WAL Persisted (Primary)|WAL Sent to OS (Primary & Replicas)|WAL Persisted (Primary & Replicas)|Transaction Applied (Primary & Replicas)|
|-|-|-|-|-|-|
|Off|✅|❌|❌|❌|❌|
|Local|✅|✅|❌|❌|❌|
|Remote Write|✅|✅|✅|❌|❌|
|On|✅|✅|✅|✅|❌|
|Remote Apply|✅|✅|✅|✅|✅|
The `synchronous_standby_names` setting is a complementary setting to
`synchronous_commit`. It lists the names of all replicas the primary database
supports for synchronous replication, and configures how the primary database
waits for them. The `synchronous_standby_names` setting supports these formats:
* `FIRST num_sync (replica_name_1, replica_name_2)`: This waits for
confirmation from the first `num_sync` replicas before returning `success`.
The list of `replica_names` determines the relative priority of
the replicas. Replica names are determined by the `application_name` setting
on the replicas.
* `ANY num_sync (replica_name_1, replica_name_2)`: This waits for confirmation
from `num_sync` replicas in the provided list, regardless of their priority
or position in the list. This is works as a quorum function.
Synchronous replication modes force the primary to wait until all required
replicas have written the WAL, or applied the database transaction, depending on
the `synchronous_commit` level. This could cause the primary to hang
indefinitely if a required replica crashes. When the replica reconnects, it
replays any of the WAL it needs to catch up. Only then is the primary able to
resume writes. To mitigate this, provision more than the amount of nodes
required under the `synchronous_standby_names` setting and list them in the
`FIRST` or `ANY` clauses. This allows the primary to move forward as long as a
quorum of replicas have written the most recent WAL transaction. Replicas that
were out of service are able to reconnect and replay the missed WAL transactions
asynchronously.
## Replication diagnostics
The Postgres [pg_stat_replication][postgres-pg-stat-replication-docs] view
provides information about each replica. This view is particularly useful for
calculating replication lag, which measures how far behind the primary the
current state of the replica is. The `replay_lag` field gives a measure of the
seconds between the most recent WAL transaction on the primary, and the last
reported database commit on the replica. Coupled with `write_lag` and
`flush_lag`, this provides insight into how far behind the replica is. The
`*_lsn` fields also provide helpful information. They allow you to compare WAL locations between
the primary and the replicas. The `state` field is useful for determining
exactly what each replica is currently doing; the available modes are `startup`,
`catchup`, `streaming`, `backup`, and `stopping`.
To see the data, on the primary database, run this command:
sql SELECT * FROM pg_stat_replication;
The output looks like this:
sql -[ RECORD 1 ]----+------------------------------ pid | 52343 usesysid | 16384 usename | repuser application_name | r2 client_addr | 10.0.13.6 client_hostname | client_port | 59610 backend_start | 2018-02-07 19:07:15.261213+00 backend_xmin | state | streaming sent_lsn | 16B/43DB36A8 write_lsn | 16B/43DB36A8 flush_lsn | 16B/43DB36A8 replay_lsn | 16B/43107C28 write_lag | 00:00:00.009966 flush_lag | 00:00:00.03208 replay_lag | 00:00:00.43537 sync_priority | 2 sync_state | sync -[ RECORD 2 ]----+------------------------------ pid | 54498 usesysid | 16384 usename | repuser application_name | r1 client_addr | 10.0.13.5 client_hostname | client_port | 43402 backend_start | 2018-02-07 19:45:41.410929+00 backend_xmin | state | streaming sent_lsn | 16B/43DB36A8 write_lsn | 16B/43DB36A8 flush_lsn | 16B/43DB36A8 replay_lsn | 16B/42C3B9C8 write_lag | 00:00:00.019736 flush_lag | 00:00:00.044073 replay_lag | 00:00:00.644004 sync_priority | 1 sync_state | sync
## Failover
Postgres provides some failover functionality, where the replica is promoted
to primary in the event of a failure. This is provided using the
[pg_ctl][pgctl-docs] command or the `trigger_file`. However, Postgres does
not provide support for automatic failover. For more information, see the
[Postgres failover documentation][failover-docs]. If you require a
configurable high availability solution with automatic failover functionality,
check out [Patroni][patroni-github].
===== PAGE: https://docs.tigerdata.com/self-hosted/replication-and-ha/about-ha/ =====
# High availability
High availability (HA) is achieved by increasing redundancy and
resilience. To increase redundancy, parts of the system are replicated, so that
they are on standby in the event of a failure. To increase resilience, recovery
processes switch between these standby resources as quickly as possible.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
## Backups
For some systems, recovering from backup alone can be a suitable availability
strategy.
For more information about backups in self-hosted TimescaleDB, see the
[backup and restore section][db-backup] in the TimescaleDB documentation.
## Storage redundancy
Storage redundancy refers to having multiple copies of a database's data files.
If the storage currently attached to a Postgres instance corrupts or otherwise
becomes unavailable, the system can replace its current storage with one of the
copies.
## Instance redundancy
Instance redundancy refers to having replicas of your database running
simultaneously. In the case of a database failure, a replica is an up-to-date,
running database that can take over immediately.
## Zonal redundancy
While the public cloud is highly reliable, entire portions of the cloud can be
unavailable at times. TimescaleDB does not protect against Availability Zone
failures unless the user is using HA replicas. We do not currently offer
multi-cloud solutions or protection from an AWS Regional failure.
## Replication
TimescaleDB supports replication using Postgres's built-in
[streaming replication][postgres-streaming-replication-docs]. Using
[logical replication][postgres-logrep-docs] with TimescaleDB is not recommended,
as it requires schema synchronization between the primary and replica nodes and
replicating partition root tables, which are
[not currently supported][postgres-partition-limitations].
Postgres achieves streaming replication by having replicas continuously stream
the WAL from the primary database. See the official
[replication documentation](https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION)
for details. For more information about how Postgres implements Write-Ahead
Logging, see their
[WAL Documentation](https://www.postgresql.org/docs/current/wal-intro.html).
## Failover
Postgres offers failover functionality where a replica is promoted to primary
in the event of a failure on the primary. This is done using
[pg_ctl][pgctl-docs] or the `trigger_file`, but it does not provide
out-of-the-box support for automatic failover. Read more in the Postgres
[failover documentation][failover-docs]. [Patroni][patroni-github] offers a
configurable high availability solution with automatic failover functionality.
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/insert/ =====
# Insert data
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
You can insert data into a distributed hypertable with an `INSERT` statement.
The syntax looks the same as for a standard hypertable or Postgres table. For
example:
sql INSERT INTO conditions(time, location, temperature, humidity) VALUES (NOW(), 'office', 70.0, 50.0);
## Optimize data insertion
Distributed hypertables have higher network load than standard hypertables,
because they must push inserts from the access node to the data nodes. You can
optimize your insertion patterns to reduce load.
### Insert data in batches
Reduce load by batching your `INSERT` statements over many rows of data, instead
of performing each insertion as a separate transaction.
The access node first splits the batched data into smaller batches by
determining which data node each row should belong to. It then writes each batch
to the correct data node.
### Optimize insert batch size
When inserting to a distributed hypertable, the access node tries to convert
`INSERT` statements into more efficient [`COPY`][postgresql-copy] operations
between the access and data nodes. But this doesn't work if:
* The `INSERT` statement has a `RETURNING` clause _and_
* The hypertable has triggers that could alter the returned data
In this case, the planner uses a multi-row prepared statement to insert into
each data node. It splits the original insert statement across these
sub-statements. You can view the plan by running an
[`EXPLAIN`][postgresql-explain] on your `INSERT` statement.
In the prepared statement, the access node can buffer a number of rows before
flushing them to the data node. By default, the number is 1000. You can optimize
this by changing the `timescaledb.max_insert_batch_size` setting, for example to
reduce the number of separate batches that must be sent.
The maximum batch size has a ceiling. This is equal to the maximum number of
parameters allowed in a prepared statement, which is currently 32,767
parameters, divided by the number of columns in each row. For example, if you
have a distributed hypertable with 10 columns, the highest you can set the batch
size is 3276.
For more information on changing `timescaledb.max_insert_batch_size`, see the
section on [configuration][config].
### Use a copy statement instead
[`COPY`][postgresql-copy] can perform better than `INSERT` on a distributed
hypertable. But it doesn't support some features, such as conflict handling
using the `ON CONFLICT` clause.
To copy from a file to your hypertable, run:
sql COPY FROM '';
When doing a [`COPY`][postgresql-copy], the access node switches each data node
to copy mode. It then streams each row to the correct data node.
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/alter-drop-distributed-hypertables/ =====
# Alter and drop distributed hypertables
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
You can alter and drop distributed hypertables in the same way as standard
hypertables. To learn more, see:
* [Altering hypertables][alter]
* [Dropping hypertables][drop]
When you alter a distributed hypertable, or set privileges on it, the commands
are automatically applied across all data nodes. For more information, see the
section on
[multi-node administration][multinode-admin].
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/create-distributed-hypertables/ =====
# Create distributed hypertables
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
If you have a [multi-node environment][multi-node], you can create a distributed
hypertable across your data nodes. First create a standard Postgres table, and
then convert it into a distributed hypertable.
You need to set up your multi-node cluster before creating a distributed
hypertable. To set up multi-node, see the
[multi-node section](https://docs.tigerdata.com/self-hosted/latest/multinode-timescaledb/).
### Creating a distributed hypertable
1. On the access node of your multi-node cluster, create a standard
[Postgres table][postgres-createtable]:
```sql
CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL
);
```
1. Convert the table to a distributed hypertable. Specify the name of the table
you want to convert, the column that holds its time values, and a
space-partitioning parameter.
```sql
SELECT create_distributed_hypertable('conditions', 'time', 'location');
```
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/foreign-keys/ =====
# Create foreign keys in a distributed hypertable
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Tables and values referenced by a distributed hypertable must be present on the
access node and all data nodes. To create a foreign key from a distributed
hypertable, use [`distributed_exec`][distributed_exec] to first create the
referenced table on all nodes.
## Creating foreign keys in a distributed hypertable
1. Create the referenced table on the access node.
1. Use [`distributed_exec`][distributed_exec] to create the same table on all
data nodes and update it with the correct data.
1. Create a foreign key from your distributed hypertable to your referenced
table.
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/triggers/ =====
# Use triggers on distributed hypertables
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Triggers on distributed hypertables work in much the same way as triggers on
standard hypertables, and have the same limitations. But there are some
differences due to the data being distributed across multiple nodes:
* Row-level triggers fire on the data node where the row is inserted. The
triggers must fire where the data is stored, because `BEFORE` and `AFTER`
row triggers need access to the stored data. The chunks on the access node
do not contain any data, so they have no triggers.
* Statement-level triggers fire once on each affected node, including the
access node. For example, if a distributed hypertable includes 3 data nodes,
inserting 2 rows of data executes a statement-level trigger on the access
node and either 1 or 2 data nodes, depending on whether the rows go to the
same or different nodes.
* A replication factor greater than 1 further causes
the trigger to fire on multiple nodes. Each replica node fires the trigger.
## Create a trigger on a distributed hypertable
Create a trigger on a distributed hypertable by using [`CREATE
TRIGGER`][create-trigger] as usual. The trigger, and the function it executes,
is automatically created on each data node. If the trigger function references
any other functions or objects, they need to be present on all nodes before you
create the trigger.
### Creating a trigger on a distributed hypertable
1. If your trigger needs to reference another function or object, use
[`distributed_exec`][distributed_exec] to create the function or object on
all nodes.
1. Create the trigger function on the access node. This example creates a dummy
trigger that raises the notice 'trigger fired':
```sql
CREATE OR REPLACE FUNCTION my_trigger_func()
RETURNS TRIGGER LANGUAGE PLPGSQL AS
body$
BEGIN
RAISE NOTICE 'trigger fired';
RETURN NEW;
END
body$;
```
1. Create the trigger itself on the access node. This example causes the
trigger to fire whenever a row is inserted into the hypertable `hyper`. Note
that you don't need to manually create the trigger on the data nodes. This is
done automatically for you.
```sql
CREATE TRIGGER my_trigger
AFTER INSERT ON hyper
FOR EACH ROW
EXECUTE FUNCTION my_trigger_func();
```
## Avoid processing a trigger multiple times
If you have a statement-level trigger, or a replication factor greater than 1,
the trigger fires multiple times. To avoid repetitive firing, you can set the
trigger function to check which data node it is executing on.
For example, write a trigger function that raises a different notice on the
access node compared to a data node:
sql CREATE OR REPLACE FUNCTION my_trigger_func()
RETURNS TRIGGER LANGUAGE PLPGSQL AS
body$ DECLARE
is_access_node boolean;
BEGIN
SELECT is_distributed INTO is_access_node
FROM timescaledb_information.hypertables
WHERE hypertable_name =
AND hypertable_schema = ;
IF is_access_node THEN
RAISE NOTICE 'trigger fired on the access node';
ELSE
RAISE NOTICE 'trigger fired on a data node';
END IF;
RETURN NEW;
END body$;
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/query/ =====
# Query data in distributed hypertables
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
You can query a distributed hypertable just as you would query a standard
hypertable or Postgres table. For more information, see the section on
[writing data][write].
Queries perform best when the access node can push transactions down to the data
nodes. To ensure that the access node can push down transactions, check that the
[`enable_partitionwise_aggregate`][enable_partitionwise_aggregate] setting is
set to `on` for the access node. By default, it is `off`.
If you want to use continuous aggregates on your distributed hypertable, see the
[continuous aggregates][caggs] section for more information.
===== PAGE: https://docs.tigerdata.com/self-hosted/distributed-hypertables/about-distributed-hypertables/ =====
# About distributed hypertables
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Distributed hypertables are hypertables that span multiple nodes. With
distributed hypertables, you can scale your data storage across multiple
machines. The database can also parallelize some inserts and queries.
A distributed hypertable still acts as if it were a single table. You can work
with one in the same way as working with a standard hypertable. To learn more
about hypertables, see the [hypertables section][hypertables].
Certain nuances can affect distributed hypertable performance. This section
explains how distributed hypertables work, and what you need to consider before
adopting one.
## Architecture of a distributed hypertable
Distributed hypertables are used with multi-node clusters. Each cluster has an
access node and multiple data nodes. You connect to your database using the
access node, and the data is stored on the data nodes. For more information
about multi-node, see the [multi-node section][multi-node].
You create a distributed hypertable on your access node. Its chunks are stored
on the data nodes. When you insert data or run a query, the access node
communicates with the relevant data nodes and pushes down any processing if it
can.
## Space partitioning
Distributed hypertables are always partitioned by time, just like standard
hypertables. But unlike standard hypertables, distributed hypertables should
also be partitioned by space. This allows you to balance inserts and queries
between data nodes, similar to traditional sharding. Without space partitioning,
all data in the same time range would write to the same chunk on a single node.
By default, TimescaleDB creates as many space partitions as there are data
nodes. You can change this number, but having too many space partitions degrades
performance. It increases planning time for some queries, and leads to poorer
balancing when mapping items to partitions.
Data is assigned to space partitions by hashing. Each hash bucket in the space
dimension corresponds to a data node. One data node may hold many buckets, but
each bucket may belong to only one node for each time interval.
When space partitioning is on, 2 dimensions are used to divide data into chunks:
the time dimension and the space dimension. You can specify the number of
partitions along the space dimension. Data is assigned to a partition by hashing
its value on that dimension.
For example, say you use `device_id` as a space partitioning column. For each
row, the value of the `device_id` column is hashed. Then the row is inserted
into the correct partition for that hash value.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/hypertable-time-space-partition.webp"
alt="A hypertable visualized as a rectangular plane carved into smaller rectangles, which are chunks. One dimension of the rectangular plane is time and the other is space. Data enters the hypertable and flows to a chunk based on its time and space values." />
### Closed and open dimensions for space partitioning
Space partitioning dimensions can be open or closed. A closed dimension has a
fixed number of partitions, and usually uses some hashing to match values to
partitions. An open dimension does not have a fixed number of partitions, and
usually has each chunk cover a certain range. In most cases the time dimension
is open and the space dimension is closed.
If you use the `create_hypertable` command to create your hypertable, then the
space dimension is open, and there is no way to adjust this. To create a
hypertable with a closed space dimension, create the hypertable with only the
time dimension first. Then use the `add_dimension` command to explicitly add an
open device. If you set the range to `1`, each device has its own chunks. This
can help you work around some limitations of regular space dimensions, and is
especially useful if you want to make some chunks readily available for
exclusion.
### Repartitioning distributed hypertables
You can expand distributed hypertables by adding additional data nodes. If you
now have fewer space partitions than data nodes, you need to increase the
number of space partitions to make use of your new nodes. The new partitioning
configuration only affects new chunks. In this diagram, an extra data node
was added during the third time interval. The fourth time interval now includes
four chunks, while the previous time intervals still include three:
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/repartitioning.webp"
alt="Diagram showing repartitioning on a distributed hypertable"
/>
This can affect queries that span the two different partitioning configurations.
For more information, see the section on
[limitations of query push down][limitations].
## Replicating distributed hypertables
To replicate distributed hypertables at the chunk level, configure the
hypertables to write each chunk to multiple data nodes. This native replication
ensures that a distributed hypertable is protected against data node failures
and provides an alternative to fully replicating each data node using streaming
replication to provide high availability. Only the data nodes are replicated
using this method. The access node is not replicated.
For more information about replication and high availability, see the
[multi-node HA section][multi-node-ha].
## Performance of distributed hypertables
A distributed hypertable horizontally scales your data storage, so you're not
limited by the storage of any single machine. It also increases performance for
some queries.
Whether, and by how much, your performance increases depends on your query
patterns and data partitioning. Performance increases when the access node can
push down query processing to data nodes. For example, if you query with a
`GROUP BY` clause, and the data is partitioned by the `GROUP BY` column, the
data nodes can perform the processing and send only the final results to the
access node.
If processing can't be done on the data nodes, the access node needs to pull in
raw or partially processed data and do the processing locally. For more
information, see the [limitations of pushing down
queries][limitations-pushing-down].
## Query push down
The access node can use a full or a partial method to push down queries.
Computations that can be pushed down include sorts and groupings. Joins on data
nodes aren't currently supported.
To see how a query is pushed down to a data node, use `EXPLAIN VERBOSE` to
inspect the query plan and the remote SQL statement sent to each data node.
### Full push down
In the full push-down method, the access node offloads all computation to the
data nodes. It receives final results from the data nodes and appends them. To
fully push down an aggregate query, the `GROUP BY` clause must include either:
* All the partitioning columns _or_
* Only the first space-partitioning column
For example, say that you want to calculate the `max` temperature for each
location:
sql SELECT location, max(temperature) FROM conditions GROUP BY location;
If `location` is your only space partition, each data node can compute the
maximum on its own subset of the data.
### Partial push down
In the partial push-down method, the access node offloads most of the
computation to the data nodes. It receives partial results from the data nodes
and calculates a final aggregate by combining the partials.
For example, say that you want to calculate the `max` temperature across all
locations. Each data node computes a local maximum, and the access node computes
the final result by computing the maximum of all the local maximums:
sql SELECT max(temperature) FROM conditions;
### Limitations of query push down
Distributed hypertables get improved performance when they can push down queries
to the data nodes. But the query planner might not be able to push down every
query. Or it might only be able to partially push down a query. This can occur
for several reasons:
* You changed the partitioning configuration. For example, you added new data
nodes and increased the number of space partitions to match. This can cause
chunks for the same space value to be stored on different nodes. For
instance, say you partition by `device_id`. You start with 3 partitions, and
data for `device_B` is stored on node 3. You later increase to 4 partitions.
New chunks for `device_B` are now stored on node 4. If you query across the
repartitioning boundary, a final aggregate for `device_B` cannot be
calculated on node 3 or node 4 alone. Partially processed data must be sent
to the access node for final aggregation. The TimescaleDB query planner
dynamically detects such overlapping chunks and reverts to the appropriate
partial aggregation plan. This means that you can add data nodes and
repartition your data to achieve elasticity without worrying about query
results. In some cases, your query could be slightly less performant, but
this is rare and the affected chunks usually move quickly out of your
retention window.
* The query includes [non-immutable functions][volatility] and expressions.
The function cannot be pushed down to the data node, because by definition,
it isn't guaranteed to have a consistent result across each node. An example
non-immutable function is [`random()`][random-func], which depends on the
current seed.
* The query includes a job function. The access node assumes the
function doesn't exist on the data nodes, and doesn't push it down.
TimescaleDB uses several optimizations to avoid these limitations, and push down
as many queries as possible. For example, `now()` is a non-immutable function.
The database converts it to a constant on the access node and pushes down the
constant timestamp to the data nodes.
## Combine distributed hypertables and standard hypertables
You can use distributed hypertables in the same database as standard hypertables
and standard Postgres tables. This mostly works the same way as having
multiple standard tables, with a few differences. For example, if you `JOIN` a
standard table and a distributed hypertable, the access node needs to fetch the
raw data from the data nodes and perform the `JOIN` locally.
## Limitations
All the limitations of regular hypertables also apply to distributed
hypertables. In addition, the following limitations apply specifically
to distributed hypertables:
* Distributed scheduling of background jobs is not supported. Background jobs
created on an access node are scheduled and executed on this access node
without distributing the jobs to data nodes.
* Continuous aggregates can aggregate data distributed across data nodes, but
the continuous aggregate itself must live on the access node. This could
create a limitation on how far you can scale your installation, but because
continuous aggregates are downsamples of the data, this does not usually
create a problem.
* Reordering chunks is not supported.
* Tablespaces cannot be attached to a distributed hypertable on the access
node. It is still possible to attach tablespaces on data nodes.
* Roles and permissions are assumed to be consistent across the nodes of a
distributed database, but consistency is not enforced.
* Joins on data nodes are not supported. Joining a distributed hypertable with
another table requires the other table to reside on the access node. This
also limits the performance of joins on distributed hypertables.
* Tables referenced by foreign key constraints in a distributed hypertable
must be present on the access node and all data nodes. This applies also to
referenced values.
* Parallel-aware scans and appends are not supported.
* Distributed hypertables do not natively provide a consistent restore point
for backup and restore across nodes. Use the
[`create_distributed_restore_point`][create_distributed_restore_point]
command, and make sure you take care when you restore individual backups to
access and data nodes.
* For native replication limitations, see the
[native replication section][native-replication].
* User defined functions have to be manually installed on the data nodes so
that the function definition is available on both access and data nodes.
This is particularly relevant for functions that are registered with
`set_integer_now_func`.
Note that these limitations concern usage from the access node. Some
currently unsupported features might still work on individual data nodes,
but such usage is neither tested nor officially supported. Future versions
of TimescaleDB might remove some of these limitations.
===== PAGE: https://docs.tigerdata.com/self-hosted/backup-and-restore/logical-backup/ =====
# Logical backup with pg_dump and pg_restore
You back up and restore each self-hosted Postgres database with TimescaleDB enabled using the native
Postgres [`pg_dump`][pg_dump] and [`pg_restore`][pg_restore] commands. This also works for compressed hypertables,
you don't have to decompress the chunks before you begin.
If you are using `pg_dump` to backup regularly, make sure you keep
track of the versions of Postgres and TimescaleDB you are running. For more
information, see [Versions are mismatched when dumping and restoring a database][troubleshooting-version-mismatch].
This page shows you how to:
- [Back up and restore an entire database][backup-entire-database]
- [Back up and restore individual hypertables][backup-individual-tables]
You can also [upgrade between different versions of TimescaleDB][timescaledb-upgrade].
## Prerequisites
- A source database to backup from, and a target database to restore to.
- Install the `psql` and `pg_dump` Postgres client tools on your migration machine.
## Back up and restore an entire database
You backup and restore an entire database using `pg_dump` and `psql`.
In terminal:
1. **Set your connection strings**
These variables hold the connection information for the source database to backup from and
the target database to restore to:
bash export SOURCE=postgres://:@:/ export TARGET=postgres://:@:
1. **Backup your database**
bash pg_dump -d "source"
-Fc -f <db_name>.bak
You may see some errors while `pg_dump` is running. See [Troubleshooting self-hosted TimescaleDB][troubleshooting]
to check if they can be safely ignored.
1. **Restore your database from the backup**
1. Connect to your target database:
```bash
psql -d "target"
```
1. Create a new database and enable TimescaleDB:
```sql
CREATE DATABASE <restoration database>;
\c <restoration database>
CREATE EXTENSION IF NOT EXISTS timescaledb;
```
1. Put your database in the right state for restoring:
```sql
SELECT timescaledb_pre_restore();
```
1. Restore the database:
```sql
pg_restore -Fc -d <restoration database> <db_name>.bak
```
1. Return your database to normal operations:
```sql
SELECT timescaledb_post_restore();
```
Do not use `pg_restore` with the `-j` option. This option does not correctly restore the
TimescaleDB catalogs.
## Back up and restore individual hypertables
`pg_dump` provides flags that allow you to specify tables or schemas
to back up. However, using these flags means that the dump lacks necessary
information that TimescaleDB requires to understand the relationship between
them. Even if you explicitly specify both the hypertable and all of its
constituent chunks, the dump would still not contain all the information it
needs to recreate the hypertable on restore.
To backup individual hypertables, backup the database schema, then backup only the tables
you need. You also use this method to backup individual plain tables.
In Terminal:
1. **Set your connection strings**
These variables hold the connection information for the source database to backup from and
the target database to restore to:
bash export SOURCE=postgres://:@:/ export TARGET=postgres://:@:/
1. **Backup the database schema and individual tables**
1. Back up the hypertable schema:
```bash
pg_dump -s -d source --table > schema.sql
```
1. Backup hypertable data to a CSV file:
For each hypertable to backup:
```bash
psql -d source \
-c "\COPY (SELECT * FROM ) TO .csv DELIMITER ',' CSV"
```
1. **Restore the schema to the target database**
```bash
psql -d target < schema.sql
```
1. **Restore hypertables from the backup**
For each hypertable to backup:
1. Recreate the hypertable:
```bash
psql -d target -c "SELECT create_hypertable(, <partition>)"
```
When you [create the new hypertable][create_hypertable], you do not need to use the
same parameters as existed in the source database. This
can provide a good opportunity for you to re-organize your hypertables if
you need to. For example, you can change the partitioning key, the number of
partitions, or the chunk interval sizes.
1. Restore the data:
```bash
psql -d target -c "\COPY FROM .csv CSV"
```
The standard `COPY` command in Postgres is single threaded. If you have a
lot of data, you can speed up the copy using the [timescaledb-parallel-copy][parallel importer].
Best practice is to backup and restore a database at a time. However, if you have superuser access to
Postgres instance with TimescaleDB installed, you can use `pg_dumpall` to back up all Postgres databases in a
cluster, including global objects that are common to all databases, namely database roles, tablespaces,
and privilege grants. You restore the Postgres instance using `psql`. For more information, see the
[Postgres documentation][postgres-docs].
===== PAGE: https://docs.tigerdata.com/self-hosted/backup-and-restore/physical/ =====
# Physical backups
For full instance physical backups (which are especially useful for starting up
new [replicas][replication-tutorial]), [`pg_basebackup`][postgres-pg_basebackup]
works with all TimescaleDB installation types. You can also use any of several
external backup and restore managers such as [`pg_backrest`][pg-backrest], or [`barman`][pg-barman]. For ongoing physical backups, you can use
[`wal-e`][wale], although this method is now deprecated. These tools all allow
you to take online, physical backups of your entire instance, and many offer
incremental backups and other automation options.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
===== PAGE: https://docs.tigerdata.com/self-hosted/backup-and-restore/docker-and-wale/ =====
# Ongoing physical backups with Docker & WAL-E
When you run TimescaleDB in a containerized environment, you can use
[continuous archiving][pg archiving] with a [WAL-E][wale official] container.
These containers are sometimes referred to as sidecars, because they run
alongside the main container. A [WAL-E sidecar image][wale image]
works with TimescaleDB as well as regular Postgres. In this section, you
can set up archiving to your local filesystem with a main TimescaleDB
container called `timescaledb`, and a WAL-E sidecar called `wale`. When you are
ready to implement this in your production deployment, you can adapt the
instructions here to do archiving against cloud providers such as AWS S3, and
run it in an orchestration framework such as Kubernetes.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
## Run the TimescaleDB container in Docker
To make TimescaleDB use the WAL-E sidecar for archiving, the two containers need
to share a network. To do this, you need to create a Docker network and then
launch TimescaleDB with archiving turned on, using the newly created network.
When you launch TimescaleDB, you need to explicitly set the location of the
write-ahead log (`POSTGRES_INITDB_WALDIR`) and data directory (`PGDATA`) so that
you can share them with the WAL-E sidecar. Both must reside in a Docker volume,
by default a volume is created for `/var/lib/postgresql/data`. When you have
started TimescaleDB, you can log in and create tables and data.
This section describes a feature that is deprecated. We strongly
recommend that you do not use this feature in a production environment. If you
need more information, [contact us](https://www.tigerdata.com/contact/).
### Running the TimescaleDB container in Docker
1. Create the docker container:
```bash
docker network create timescaledb-net
```
1. Launch TimescaleDB, with archiving turned on:
```bash
docker run \
--name timescaledb \
--network timescaledb-net \
-e POSTGRES_PASSWORD=insecure \
-e POSTGRES_INITDB_WALDIR=/var/lib/postgresql/data/pg_wal \
-e PGDATA=/var/lib/postgresql/data/pg_data \
timescale/timescaledb:latest-pg10 postgres \
-cwal_level=archive \
-carchive_mode=on \
-carchive_command="/usr/bin/wget wale/wal-push/%f -O -" \
-carchive_timeout=600 \
-ccheckpoint_timeout=700 \
-cmax_wal_senders=1
```
1. Run TimescaleDB within Docker:
```bash
docker exec -it timescaledb psql -U postgres
```
## Perform the backup using the WAL-E sidecar
The [WAL-E Docker image][wale image] runs a web endpoint that accepts WAL-E
commands across an HTTP API. This allows Postgres to communicate with the
WAL-E sidecar over the internal network to trigger archiving. You can also use
the container to invoke WAL-E directly. The Docker image accepts standard WAL-E
environment variables to configure the archiving backend, so you can issue
commands from services such as AWS S3. For information about configuring, see
the official [WAL-E documentation][wale official].
To enable the WAL-E docker image to perform archiving, it needs to use the same
network and data volumes as the TimescaleDB container. It also needs to know the
location of the write-ahead log and data directories. You can pass all this
information to WAL-E when you start it. In this example, the WAL-E image listens
for commands on the `timescaledb-net` internal network at port 80, and writes
backups to `~/backups` on the Docker host.
### Performing the backup using the WAL-E sidecar
1. Start the WAL-E container with the required information about the container.
In this example, the container is called `timescaledb-wale`:
```bash
docker run \
--name wale \
--network timescaledb-net \
--volumes-from timescaledb \
-v ~/backups:/backups \
-e WALE_LOG_DESTINATION=stderr \
-e PGWAL=/var/lib/postgresql/data/pg_wal \
-e PGDATA=/var/lib/postgresql/data/pg_data \
-e PGHOST=timescaledb \
-e PGPASSWORD=insecure \
-e PGUSER=postgres \
-e WALE_FILE_PREFIX=file://localhost/backups \
timescale/timescaledb-wale:latest
```
1. Start the backup:
```bash
docker exec wale wal-e backup-push /var/lib/postgresql/data/pg_data
```
Alternatively, you can start the backup using the sidecar's HTTP endpoint.
This requires exposing the sidecar's port 80 on the Docker host by mapping
it to an open port. In this example, it is mapped to port 8080:
```bash
curl http://localhost:8080/backup-push
```
You should do base backups at regular intervals daily, to minimize
the amount of WAL-E replay, and to make recoveries faster. To make new base
backups, re-trigger a base backup as shown here, either manually or on a
schedule. If you run TimescaleDB on Kubernetes, there is built-in support for
scheduling cron jobs that can invoke base backups using the WAL-E container's
HTTP API.
## Recovery
To recover the database instance from the backup archive, create a new TimescaleDB
container, and restore the database and configuration files from the base
backup. Then you can relaunch the sidecar and the database.
### Restoring database files from backup
1. Create the docker container:
```bash
docker create \
--name timescaledb-recovered \
--network timescaledb-net \
-e POSTGRES_PASSWORD=insecure \
-e POSTGRES_INITDB_WALDIR=/var/lib/postgresql/data/pg_wal \
-e PGDATA=/var/lib/postgresql/data/pg_data \
timescale/timescaledb:latest-pg10 postgres
```
1. Restore the database files from the base backup:
```bash
docker run -it --rm \
-v ~/backups:/backups \
--volumes-from timescaledb-recovered \
-e WALE_LOG_DESTINATION=stderr \
-e WALE_FILE_PREFIX=file://localhost/backups \
timescale/timescaledb-wale:latest \wal-e \
backup-fetch /var/lib/postgresql/data/pg_data LATEST
```
1. Recreate the configuration files. These are backed up from the original
database instance:
```bash
docker run -it --rm \
--volumes-from timescaledb-recovered \
timescale/timescaledb:latest-pg10 \
cp /usr/local/share/postgresql/pg_ident.conf.sample /var/lib/postgresql/data/pg_data/pg_ident.conf
docker run -it --rm \
--volumes-from timescaledb-recovered \
timescale/timescaledb:latest-pg10 \
cp /usr/local/share/postgresql/postgresql.conf.sample /var/lib/postgresql/data/pg_data/postgresql.conf
docker run -it --rm \
--volumes-from timescaledb-recovered \
timescale/timescaledb:latest-pg10 \
sh -c 'echo "local all postgres trust" > /var/lib/postgresql/data/pg_data/pg_hba.conf'
```
1. Create a `recovery.conf` file that tells Postgres how to recover:
```bash
docker run -it --rm \
--volumes-from timescaledb-recovered \
timescale/timescaledb:latest-pg10 \
sh -c 'echo "restore_command='\''/usr/bin/wget wale/wal-fetch/%f -O -'\''" > /var/lib/postgresql/data/pg_data/recovery.conf'
```
When you have recovered the data and the configuration files, and have created a
recovery configuration file, you can relaunch the sidecar. You might need to
remove the old one first. When you relaunch the sidecar, it replays the last WAL
segments that might be missing from the base backup. The you can relaunch the
database, and check that recovery was successful.
### Relaunch the recovered database
1. Relaunch the WAL-E sidecar:
```bash
docker run \
--name wale \
--network timescaledb-net \
-v ~/backups:/backups \
--volumes-from timescaledb-recovered \
-e WALE_LOG_DESTINATION=stderr \
-e PGWAL=/var/lib/postgresql/data/pg_wal \
-e PGDATA=/var/lib/postgresql/data/pg_data \
-e PGHOST=timescaledb \
-e PGPASSWORD=insecure \
-e PGUSER=postgres \
-e WALE_FILE_PREFIX=file://localhost/backups \
timescale/timescaledb-wale:latest
```
1. Relaunch the TimescaleDB docker container:
```bash
docker start timescaledb-recovered
```
1. Verify that the database started up and recovered successfully:
```bash
docker logs timescaledb-recovered
```
Don't worry if you see some archive recovery errors in the log at this
stage. This happens because the recovery is not completely finalized until
no more files can be found in the archive. See the Postgres documentation
on [continuous archiving][pg archiving] for more information.
===== PAGE: https://docs.tigerdata.com/self-hosted/uninstall/uninstall-timescaledb/ =====
# Uninstall TimescaleDB
Postgres is designed to be easily extensible. The extensions loaded into the
database can function just like features that are built in. TimescaleDB extends
Postgres for time-series data, giving Postgres the high-performance,
scalability, and analytical capabilities required by modern data-intensive
applications. If you installed TimescaleDB with Homebrew or MacPorts, you can
uninstall it without having to uninstall Postgres.
## Uninstalling TimescaleDB using Homebrew
1. At the `psql` prompt, remove the TimescaleDB extension:
```sql
DROP EXTENSION timescaledb;
```
1. At the command prompt, remove `timescaledb` from `shared_preload_libraries`
in the `postgresql.conf` configuration file:
```bash
nano /opt/homebrew/var/postgresql@14/postgresql.conf
shared_preload_libraries = ''
```
1. Save the changes to the `postgresql.conf` file.
1. Restart Postgres:
```bash
brew services restart postgresql
```
1. Check that the TimescaleDB extension is uninstalled by using the `\dx`
command at the `psql` prompt. Output is similar to:
```sql
tsdb-# \dx
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+-------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(1 row)
```
1. Uninstall TimescaleDB:
```bash
brew uninstall timescaledb
```
1. Remove all the dependencies and related files:
```bash
brew remove timescaledb
```
## Uninstalling TimescaleDB using MacPorts
1. At the `psql` prompt, remove the TimescaleDB extension:
```sql
DROP EXTENSION timescaledb;
```
1. At the command prompt, remove `timescaledb` from `shared_preload_libraries`
in the `postgresql.conf` configuration file:
```bash
nano /opt/homebrew/var/postgresql@14/postgresql.conf
shared_preload_libraries = ''
```
1. Save the changes to the `postgresql.conf` file.
1. Restart Postgres:
```bash
port reload postgresql
```
1. Check that the TimescaleDB extension is uninstalled by using the `\dx`
command at the `psql` prompt. Output is similar to:
```sql
tsdb-# \dx
List of installed extensions
Name | Version | Schema | Description
-------------+---------+------------+-------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(1 row)
```
1. Uninstall TimescaleDB and the related dependencies:
```bash
port uninstall timescaledb --follow-dependencies
```
===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/about-upgrades/ =====
# About upgrades
A major upgrade is when you upgrade from one major version of TimescaleDB, to
the next major version. For example, when you upgrade from TimescaleDB 1
to TimescaleDB 2.
A minor upgrade is when you upgrade within your current major version of
TimescaleDB. For example, when you upgrade from TimescaleDB 2.5 to
TimescaleDB 2.6.
If you originally installed TimescaleDB using Docker, you can upgrade from
within the Docker container. For more information, and instructions, see the
[Upgrading with Docker section][upgrade-docker].
When you upgrade the `timescaledb` extension, the experimental schema is removed
by default. To use experimental features after an upgrade, you need to add the
experimental schema again.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
## Plan your upgrade
- Install the Postgres client tools on your migration machine. This includes `psql`, and `pg_dump`.
- Read [the release notes][relnotes] for the version of TimescaleDB that you are upgrading to.
- [Perform a backup][backup] of your database. While TimescaleDB
upgrades are performed in-place, upgrading is an intrusive operation. Always
make sure you have a backup on hand, and that the backup is readable in the
case of disaster.
If you use the TimescaleDB Toolkit, ensure the `timescaledb_toolkit` extension is on
version 1.6.0, then upgrade the `timescaledb` extension. If required, you
can then later upgrade the `timescaledb_toolkit` extension to the most
recent version.
## Check your version
You can check which version of TimescaleDB you are running, at the psql command
prompt. Use this to check which version you are running before you begin your
upgrade, and again after your upgrade is complete:
sql \dx timescaledb
Name | Version | Schema | Description
-------------+---------+------------+--------------------------------------------------------------------- timescaledb | x.y.z | public | Enables scalable inserts and complex queries for time-series data (1 row)
===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/upgrade-pg/ =====
# Upgrade Postgres
TimescaleDB is a Postgres extension. Ensure that you upgrade to compatible versions of TimescaleDB and Postgres.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
## Prerequisites
- Install the Postgres client tools on your migration machine. This includes `psql`, and `pg_dump`.
- Read [the release notes][relnotes] for the version of TimescaleDB that you are upgrading to.
- [Perform a backup][backup] of your database. While TimescaleDB
upgrades are performed in-place, upgrading is an intrusive operation. Always
make sure you have a backup on hand, and that the backup is readable in the
case of disaster.
## Plan your upgrade path
Best practice is to always use the latest version of TimescaleDB. Subscribe to our releases on GitHub or use Tiger Cloud
and always run the latest update without any hassle.
Check the following support matrix against the versions of TimescaleDB and Postgres that you are running currently
and the versions you want to update to, then choose your upgrade path.
For example, to upgrade from TimescaleDB 2.13 on Postgres 13 to TimescaleDB 2.18.2 you need to:
1. Upgrade TimescaleDB to 2.15
1. Upgrade Postgres to 14, 15 or 16.
1. Upgrade TimescaleDB to 2.18.2.
You may need to [upgrade to the latest Postgres version][upgrade-pg] before you upgrade TimescaleDB. Also,
if you use [TimescaleDB Toolkit][toolkit-install], ensure the `timescaledb_toolkit` extension is >=
v1.6.0 before you upgrade TimescaleDB extension.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10|
|-----------------------|-|-|-|-|-|-|-|-|
| 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌|
| 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌|
| 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌|
| 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌|
| 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌|
| 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌|
| 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌|
| 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌
| 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21.
These minor versions [introduced a breaking binary interface change][postgres-breaking-change] that,
once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22.
When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher.
Users of [Tiger Cloud](https://console.cloud.timescale.com/) and platform packages for Linux, Windows, MacOS,
Docker, and Kubernetes are unaffected.
## Upgrade your Postgres instance
You use [`pg_upgrade`][pg_upgrade] to upgrade Postgres in-place. `pg_upgrade` allows you to retain
the data files of your current Postgres installation while binding the new Postgres binary runtime
to them.
1. **Find the location of the Postgres binary**
Set the `OLD_BIN_DIR` environment variable to the folder holding the `postgres` binary.
For example, `which postgres` returns something like `/usr/lib/postgresql/16/bin/postgres`.
bash export OLD_BIN_DIR=/usr/lib/postgresql/16/bin
1. **Set your connection string**
This variable holds the connection information for the database to upgrade:
bash export SOURCE="postgres://:@:/"
1. **Retrieve the location of the Postgres data folder**
Set the `OLD_DATA_DIR` environment variable to the value returned by the following:
```shell
psql -d "source" -c "SHOW data_directory ;"
```
Postgres returns something like:
```shell
----------------------------
/home/postgres/pgdata/data
(1 row)
```
1. **Choose the new locations for the Postgres binary and data folders**
For example:
```shell
export NEW_BIN_DIR=/usr/lib/postgresql/17/bin
export NEW_DATA_DIR=/home/postgres/pgdata/data-17
```
1. Using psql, perform the upgrade:
```sql
pg_upgrade -b $OLD_BIN_DIR -B $NEW_BIN_DIR -d $OLD_DATA_DIR -D $NEW_DATA_DIR
```
If you are moving data to a new physical instance of Postgres, you can use `pg_dump` and `pg_restore`
to dump your data from the old database, and then restore it into the new, upgraded, database. For more
information, see the [backup and restore section][backup].
===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/downgrade/ =====
# Downgrade to a previous version of TimescaleDB
If you upgrade to a new TimescaleDB version and encounter problems, you can roll
back to a previously installed version. This works in the same way as a minor
upgrade.
Downgrading is not supported for all versions. Generally, downgrades between
patch versions and between consecutive minor versions are supported. For
example, you can downgrade from TimescaleDB 2.5.2 to 2.5.1, or from 2.5.0 to
2.4.2. To check whether you can downgrade from a specific version, see the
[release notes][relnotes].
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
## Plan your downgrade
You can downgrade your on-premise TimescaleDB installation in-place. This means
that you do not need to dump and restore your data. However, it is still
important that you plan for your downgrade ahead of time.
Before you downgrade:
* Read [the release notes][relnotes] for the TimescaleDB version you are
downgrading to.
* Check which Postgres version you are currently running. You might need to
[upgrade to the latest Postgres version][upgrade-pg]
before you begin your TimescaleDB downgrade.
* [Perform a backup][backup] of your database. While TimescaleDB
downgrades are performed in-place, downgrading is an intrusive operation.
Always make sure you have a backup on hand, and that the backup is readable in
the case of disaster.
## Downgrade TimescaleDB to a previous minor version
This downgrade uses the Postgres `ALTER EXTENSION` function to downgrade to
a previous version of the TimescaleDB extension. TimescaleDB supports having
different extension versions on different databases within the same Postgres
instance. This allows you to upgrade and downgrade extensions independently on
different databases. Run the `ALTER EXTENSION` function on each database to
downgrade them individually.
The downgrade script is tested and supported for single-step downgrades. That
is, downgrading from the current version, to the previous minor version.
Downgrading might not work if you have made changes to your database between
upgrading and downgrading.
1. **Set your connection string**
This variable holds the connection information for the database to upgrade:
bash export SOURCE="postgres://:@:/"
2. **Connect to your database instance**
```shell
psql -X -d source
```
The `-X` flag prevents any `.psqlrc` commands from accidentally triggering the load of a
previous TimescaleDB version on session startup.
1. **Downgrade the TimescaleDB extension**
This must be the first command you execute in the current session:
```sql
ALTER EXTENSION timescaledb UPDATE TO '<PREVIOUS_VERSION>';
```
For example:
```sql
ALTER EXTENSION timescaledb UPDATE TO '2.17.0';
```
1. **Check that you have downgraded to the correct version of TimescaleDB**
```sql
\dx timescaledb;
```
Postgres returns something like:
```shell
Name | Version | Schema | Description
-------------+---------+--------+---------------------------------------------------------------------------------------
timescaledb | 2.17.0 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/minor-upgrade/ =====
# Minor TimescaleDB upgrades
A minor upgrade is when you update from TimescaleDB `<major version>.x` to TimescaleDB `<major version>.y`.
A major upgrade is when you update from TimescaleDB `X.<minor version>` to `Y.<minor version>`.
You can run different versions of TimescaleDB on different databases within the same Postgres instance.
This process uses the Postgres `ALTER EXTENSION` function to upgrade TimescaleDB independently on different
databases.
Tiger Cloud is a fully managed service with automatic backup and restore, high
availability with replication, seamless scaling and resizing, and much more. You
can try Tiger Cloud free for thirty days.
This page shows you how to perform a minor upgrade, for major upgrades, see [Upgrade TimescaleDB to a major version][upgrade-major].
## Prerequisites
- Install the Postgres client tools on your migration machine. This includes `psql`, and `pg_dump`.
- Read [the release notes][relnotes] for the version of TimescaleDB that you are upgrading to.
- [Perform a backup][backup] of your database. While TimescaleDB
upgrades are performed in-place, upgrading is an intrusive operation. Always
make sure you have a backup on hand, and that the backup is readable in the
case of disaster.
## Check the TimescaleDB and Postgres versions
To see the versions of Postgres and TimescaleDB running in a self-hosted database instance:
1. **Set your connection string**
This variable holds the connection information for the database to upgrade:
bash export SOURCE="postgres://:@:/"
2. **Retrieve the version of Postgres that you are running**
```shell
psql -X -d source -c "SELECT version();"
```
Postgres returns something like:
```shell
-----------------------------------------------------------------------------------------------------------------------------------------
PostgreSQL 17.2 (Ubuntu 17.2-1.pgdg22.04+1) on aarch64-unknown-linux-gnu, compiled by gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0, 64-bit
(1 row)
```
1. **Retrieve the version of TimescaleDB that you are running**
```sql
psql -X -d source -c "\dx timescaledb;"
```
Postgres returns something like:
```shell
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data
(1 row)
```
## Plan your upgrade path
Best practice is to always use the latest version of TimescaleDB. Subscribe to our releases on GitHub or use Tiger Cloud
and always run the latest update without any hassle.
Check the following support matrix against the versions of TimescaleDB and Postgres that you are running currently
and the versions you want to update to, then choose your upgrade path.
For example, to upgrade from TimescaleDB 2.13 on Postgres 13 to TimescaleDB 2.18.2 you need to:
1. Upgrade TimescaleDB to 2.15
1. Upgrade Postgres to 14, 15 or 16.
1. Upgrade TimescaleDB to 2.18.2.
You may need to [upgrade to the latest Postgres version][upgrade-pg] before you upgrade TimescaleDB. Also,
if you use [TimescaleDB Toolkit][toolkit-install], ensure the `timescaledb_toolkit` extension is >=
v1.6.0 before you upgrade TimescaleDB extension.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10|
|-----------------------|-|-|-|-|-|-|-|-|
| 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌|
| 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌|
| 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌|
| 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌|
| 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌|
| 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌|
| 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌|
| 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌|
| 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌
| 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21.
These minor versions [introduced a breaking binary interface change][postgres-breaking-change] that,
once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22.
When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher.
Users of [Tiger Cloud](https://console.cloud.timescale.com/) and platform packages for Linux, Windows, MacOS,
Docker, and Kubernetes are unaffected.
## Implement your upgrade path
You cannot upgrade TimescaleDB and Postgres at the same time. You upgrade each product in
the following steps:
1. **Upgrade TimescaleDB**
```sql
psql -X -d source -c "ALTER EXTENSION timescaledb UPDATE TO '<version number>';"
Follow the procedure in Upgrade Postgres. The version of TimescaleDB installed in your Postgres deployment must be the same before and after the Postgres upgrade.
If your migration path dictates it, upgrade TimescaleDB again
psql -X -d source -c "ALTER EXTENSION timescaledb UPDATE TO '<version number>';"
Check that you have upgraded to the correct version of TimescaleDB
psql -X -d source -c "\dx timescaledb;"
Postgres returns something like:
```shell
Name | Version | Schema | Description
-------------+---------+--------+---------------------------------------------------------------------------------------
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
You are running a shiny new version of TimescaleDB.
===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/upgrade-docker/ =====
If you originally installed TimescaleDB using Docker, you can upgrade from within the Docker container. This allows you to upgrade to the latest TimescaleDB version while retaining your data.
The timescale/timescaledb-ha* images have the files necessary to run previous versions. Patch releases
only contain bugfixes so should always be safe. Non-patch releases may rarely require some extra steps.
These steps are mentioned in the release notes for the version of TimescaleDB
that you are upgrading to.
After you upgrade the docker image, you run ALTER EXTENSION for all databases using TimescaleDB.
Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
The examples in this page use a Docker instance called timescaledb. If you
have given your Docker instance a different name, replace it when you issue the
commands.
When you start your upgraded Docker container, you need to be able to point the new Docker image to the location that contains the data from your previous version. To do this, you need to work out where the current mount point is. The current mount point varies depending on whether your container is using volume mounts, or bind mounts.
Find the mount type used by your Docker container:
docker inspect timescaledb --format='{{range .Mounts }}{{.Type}}{{end}}'
This returns either volume or bind.
Note the volume or bind used by your container:
docker inspect timescaledb --format='{{range .Mounts }}{{.Name}}{{end}}'
Docker returns the <volume ID>. You see something like this:
069ba64815f0c26783b81a5f0ca813227fde8491f429cf77ed9a5ae3536c0b2c
docker inspect timescaledb --format='{{range .Mounts }}{{.Source}}{{end}}'
Docker returns the <bind path>. You see something like this:
/path/to/data
You use this value when you perform the upgrade.
To upgrade TimescaleDB within Docker, you need to download the upgraded image, stop the old container, and launch the new container pointing to your existing data.
Pull the latest TimescaleDB image
This command pulls the latest version of TimescaleDB running on Postgres 17:
docker pull timescale/timescaledb-ha:pg17
If you're using another version of Postgres, look for the relevant tag in the TimescaleDB HA repository on Docker Hub.
Stop the old container, and remove it
docker stop timescaledb
docker rm timescaledb
Launch a new container with the upgraded Docker image
Launch based on your mount point type:
```bash
docker run -v <volume ID>:/pgdata -e PGDATA=/pgdata
-d --name timescaledb -p 5432:5432 timescale/timescaledb-ha:pg17
```
```bash
docker run -v <bind path>:/pgdata -e PGDATA=/pgdata -d --name timescaledb \
-p 5432:5432 timescale/timescaledb-ha:pg17
```
</Terminal>
Connect to the upgraded instance using psql with the -X flag
docker exec -it timescaledb psql -U postgres -X
At the psql prompt, use the ALTER command to upgrade the extension
ALTER EXTENSION timescaledb UPDATE;
CREATE EXTENSION IF NOT EXISTS timescaledb_toolkit;
ALTER EXTENSION timescaledb_toolkit UPDATE;
The TimescaleDB Toolkit extension is packaged with TimescaleDB HA, it includes additional hyperfunctions to help you with queries and data analysis.
If you have multiple databases, update each database separately.
Pull the latest TimescaleDB image
This command pulls the latest version of TimescaleDB running on Postgres 17.
docker pull timescale/timescaledb:latest-pg17
If you're using another version of Postgres, look for the relevant tag in the TimescaleDB light repository on Docker Hub.
Stop the old container, and remove it
docker stop timescaledb
docker rm timescaledb
Launch a new container with the upgraded Docker image
Launch based on your mount point type:
```bash
docker run -v <volume ID>:/pgdata -e PGDATA=/pgdata \
-d --name timescaledb -p 5432:5432 timescale/timescaledb:latest-pg17
```
```bash
docker run -v <bind path>:/pgdata -e PGDATA=/pgdata -d --name timescaledb \
-p 5432:5432 timescale/timescaledb:latest-pg17
```
</Terminal>
Connect to the upgraded instance using psql with the -X flag
docker exec -it timescaledb psql -U postgres -X
At the psql prompt, use the ALTER command to upgrade the extension
ALTER EXTENSION timescaledb UPDATE;
If you have multiple databases, you need to update each database separately.
===== PAGE: https://docs.tigerdata.com/self-hosted/upgrades/major-upgrade/ =====
A major upgrade is when you update from TimescaleDB X.<minor version> to Y.<minor version>.
A minor upgrade is when you update from TimescaleDB <major version>.x, to TimescaleDB <major version>.y.
You can run different versions of TimescaleDB on different databases within the same Postgres instance.
This process uses the Postgres ALTER EXTENSION function to upgrade TimescaleDB independently on different
databases.
When you perform a major upgrade, new policies are automatically configured based on your current configuration. In order to verify your policies post upgrade, in this upgrade process you export your policy settings before upgrading.
Tiger Cloud is a fully managed service with automatic backup and restore, high availability with replication, seamless scaling and resizing, and much more. You can try Tiger Cloud free for thirty days.
This page shows you how to perform a major upgrade. For minor upgrades, see Upgrade TimescaleDB to a minor version.
psql, and pg_dump.To see the versions of Postgres and TimescaleDB running in a self-hosted database instance:
This variable holds the connection information for the database to upgrade:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
Retrieve the version of Postgres that you are running
psql -X -d source -c "SELECT version();"
Postgres returns something like:
-----------------------------------------------------------------------------------------------------------------------------------------
PostgreSQL 17.2 (Ubuntu 17.2-1.pgdg22.04+1) on aarch64-unknown-linux-gnu, compiled by gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0, 64-bit
(1 row)
Retrieve the version of TimescaleDB that you are running
psql -X -d source -c "\dx timescaledb;"
Postgres returns something like:
Name | Version | Schema | Description
-------------+---------+------------+---------------------------------------------------------------------
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data
(1 row)
Best practice is to always use the latest version of TimescaleDB. Subscribe to our releases on GitHub or use Tiger Cloud and always get latest update without any hassle.
Check the following support matrix against the versions of TimescaleDB and Postgres that you are running currently and the versions you want to update to, then choose your upgrade path.
For example, to upgrade from TimescaleDB 1.7 on Postgres 12 to TimescaleDB 2.17.2 on Postgres 15 you need to:
You may need to upgrade to the latest Postgres version before you upgrade TimescaleDB.
| TimescaleDB version |Postgres 17|Postgres 16|Postgres 15|Postgres 14|Postgres 13|Postgres 12|Postgres 11|Postgres 10| |-----------------------|-|-|-|-|-|-|-|-| | 2.22.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.21.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.20.x |✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.17 - 2.19 |✅|✅|✅|✅|❌|❌|❌|❌|❌| | 2.16.x |❌|✅|✅|✅|❌|❌|❌|❌|❌|❌| | 2.13 - 2.15 |❌|✅|✅|✅|✅|❌|❌|❌|❌| | 2.12.x |❌|❌|✅|✅|✅|❌|❌|❌|❌| | 2.10.x |❌|❌|✅|✅|✅|✅|❌|❌|❌| | 2.5 - 2.9 |❌|❌|❌|✅|✅|✅|❌|❌|❌| | 2.4 |❌|❌|❌|❌|✅|✅|❌|❌|❌| | 2.1 - 2.3 |❌|❌|❌|❌|✅|✅|✅|❌|❌| | 2.0 |❌|❌|❌|❌|❌|✅|✅|❌|❌ | 1.7 |❌|❌|❌|❌|❌|✅|✅|✅|✅|
We recommend not using TimescaleDB with Postgres 17.1, 16.5, 15.9, 14.14, 13.17, 12.21. These minor versions introduced a breaking binary interface change that, once identified, was reverted in subsequent minor Postgres versions 17.2, 16.6, 15.10, 14.15, 13.18, and 12.22. When you build from source, best practice is to build with Postgres 17.2, 16.6, etc and higher. Users of Tiger Cloud and platform packages for Linux, Windows, MacOS, Docker, and Kubernetes are unaffected.
When you upgrade from TimescaleDB 1 to TimescaleDB 2, scripts automatically configure updated features to work as expected with the new version. However, not everything works in exactly the same way as previously.
Before you begin this major upgrade, check the database log for errors related to failed retention policies that could have occurred in TimescaleDB 1. You can either remove the failing policies entirely, or update them to be compatible with your existing continuous aggregates.
If incompatible retention policies are present when you perform the upgrade, the
ignore_invalidation_older_than setting is automatically turned off, and a
notice is shown.
This variable holds the connection information for the database to upgrade:
export SOURCE="postgres://<user>:<password>@<source host>:<source port>/<db_name>"
Connect to your Postgres deployment
psql -d source
Save your policy statistics settings to a .csv file
COPY (SELECT * FROM timescaledb_information.policy_stats)
TO policy_stats.csv csv header
Save your continuous aggregates settings to a .csv file
COPY (SELECT * FROM timescaledb_information.continuous_aggregate_stats)
TO continuous_aggregate_stats.csv csv header
Save your drop chunk policies to a .csv file
COPY (SELECT * FROM timescaledb_information.drop_chunks_policies)
TO drop_chunk_policies.csv csv header
Save your reorder policies to a .csv file
COPY (SELECT * FROM timescaledb_information.reorder_policies)
TO reorder_policies.csv csv header
Exit your psql session
\q;
You cannot upgrade TimescaleDB and Postgres at the same time. You upgrade each product in the following steps:
Upgrade TimescaleDB
psql -X -d source -c "ALTER EXTENSION timescaledb UPDATE TO '<version number>';"
If your migration path dictates it, upgrade Postgres
Follow the procedure in Upgrade Postgres. The version of TimescaleDB installed in your Postgres deployment must be the same before and after the Postgres upgrade.
If your migration path dictates it, upgrade TimescaleDB again
psql -X -d source -c "ALTER EXTENSION timescaledb UPDATE TO '<version number>';"
Check that you have upgraded to the correct version of TimescaleDB
psql -X -d source -c "\dx timescaledb;"
Postgres returns something like:
```shell
Name | Version | Schema | Description
-------------+---------+--------+---------------------------------------------------------------------------------------
timescaledb | 2.17.2 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
To upgrade TimescaleDB in a Docker container, see the Docker container upgrades section.
Verify the continuous aggregate policy jobs
SELECT * FROM timescaledb_information.jobs
WHERE application_name LIKE 'Refresh Continuous%';
Postgres returns something like:
-[ RECORD 1 ]-----+--------------------------------------------------
job_id | 1001
application_name | Refresh Continuous Aggregate Policy [1001]
schedule_interval | 01:00:00
max_runtime | 00:00:00
max_retries | -1
retry_period | 01:00:00
proc_schema | _timescaledb_internal
proc_name | policy_refresh_continuous_aggregate
owner | postgres
scheduled | t
config | {"start_offset": "20 days", "end_offset": "10
days", "mat_hypertable_id": 2}
next_start | 2020-10-02 12:38:07.014042-04
hypertable_schema | _timescaledb_internal
hypertable_name | _materialized_hypertable_2
Verify the information for each policy type that you exported before you upgraded.
For continuous aggregates, take note of the config information to
verify that all settings were converted correctly.
Verify that all jobs are scheduled and running as expected
SELECT * FROM timescaledb_information.job_stats
WHERE job_id = 1001;
Postgres returns something like:
-[ RECORD 1 ]----------+------------------------------
hypertable_schema | _timescaledb_internal
hypertable_name | _materialized_hypertable_2
job_id | 1001
last_run_started_at | 2020-10-02 09:38:06.871953-04
last_successful_finish | 2020-10-02 09:38:06.932675-04
last_run_status | Success
job_status | Scheduled
last_run_duration | 00:00:00.060722
next_scheduled_run | 2020-10-02 10:38:06.932675-04
total_runs | 1
total_successes | 1
total_failures | 0
You are running a shiny new version of TimescaleDB.
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-ha/ =====
Multi-node support is sunsetted.
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres versions 13, 14, and 15.
A multi-node installation of TimescaleDB can be made highly available by setting up one or more standbys for each node in the cluster, or by natively replicating data at the chunk level.
Using standby nodes relies on streaming replication and you set it up in a similar way to configuring single-node HA, although the configuration needs to be applied to each node independently.
To replicate data at the chunk level, you can use the built-in capabilities of multi-node TimescaleDB to avoid having to replicate entire data nodes. The access node still relies on a streaming replication standby, but the data nodes need no additional configuration. Instead, the existing pool of data nodes share responsibility to host chunk replicas and handle node failures.
There are advantages and disadvantages to each approach. Setting up standbys for each node in the cluster ensures that standbys are identical at the instance level, and this is a tried and tested method to provide high availability. However, it also requires more setting up and maintenance for the mirror cluster.
Native replication typically requires less resources, nodes, and configuration, and takes advantage of built-in capabilities, such as adding and removing data nodes, and different replication factors on each distributed hypertable. However, only chunks are replicated on the data nodes.
The rest of this section discusses native replication. To set up standbys for each node, follow the instructions for single node HA.
Native replication is a set of capabilities and APIs that allow you to build a highly available multi-node TimescaleDB installation. At the core of native replication is the ability to write copies of a chunk to multiple data nodes in order to have alternative chunk replicas in case of a data node failure. If one data node fails, its chunks should be available on at least one other data node. If a data node is permanently lost, a new data node can be added to the cluster, and lost chunk replicas can be re-replicated from other data nodes to reach the number of desired chunk replicas.
Native replication in TimescaleDB is under development and currently lacks functionality for a complete high-availability solution. Some functionality described in this section is still experimental. For production environments, we recommend setting up standbys for each node in a multi-node cluster.
Similar to how high-availability configurations for single-node Postgres uses a system like Patroni for automatically handling fail-over, native replication requires an external entity to orchestrate fail-over, chunk re-replication, and data node management. This orchestration is not provided by default in TimescaleDB and therefore needs to be implemented separately. The sections below describe how to enable native replication and the steps involved to implement high availability in case of node failures.
The first step to enable native replication is to configure a standby for the access node. This process is identical to setting up a single node standby.
The next step is to enable native replication on a distributed
hypertable. Native replication is governed by the
replication_factor, which determines how many data nodes a chunk is
replicated to. This setting is configured separately for each
hypertable, which means the same database can have some distributed
hypertables that are replicated and others that are not.
By default, the replication factor is set to 1, so there is no
native replication. You can increase this number when you create the
hypertable. For example, to replicate the data across a total of three
data nodes:
SELECT create_distributed_hypertable('conditions', 'time', 'location',
replication_factor => 3);
Alternatively, you can use the
set_replication_factor call to change the
replication factor on an existing distributed hypertable. Note,
however, that only new chunks are replicated according to the
updated replication factor. Existing chunks need to be re-replicated
by copying those chunks to new data nodes (see the node
failures section below).
When native replication is enabled, the replication happens whenever
you write data to the table. On every INSERT and COPY call, each
row of the data is written to multiple data nodes. This means that you
don't need to do any extra steps to have newly ingested data
replicated. When you query replicated data, the query planner only
includes one replica of each chunk in the query plan.
When a data node fails, inserts that attempt to write to the failed
node result in an error. This is to preserve data consistency in
case the data node becomes available again. You can use the
alter_data_node call to mark a failed data node
as unavailable by running this query:
SELECT alter_data_node('data_node_2', available => false);
Setting available => false means that the data node is no longer
used for reads and writes queries.
To fail over reads, the alter_data_node call finds
all the chunks for which the unavailable data node is the primary query
target and fails over to a chunk replica on another data node.
However, if some chunks do not have a replica to fail over to, a warning
is raised. Reads continue to fail for chunks that do not have a chunk
replica on any other data nodes.
To fail over writes, any activity that intends to write to the failed node marks the involved chunk as stale for the specific failed node by changing the metadata on the access node. This is only done for natively replicated chunks. This allows you to continue to write to other chunk replicas on other data nodes while the failed node has been marked as unavailable. Writes continue to fail for chunks that do not have a chunk replica on any other data nodes. Also note that chunks on the failed node which do not get written into are not affected.
When you mark a chunk as stale, the chunk becomes under-replicated.
When the failed data node becomes available then such chunks can be
re-balanced using the copy_chunk API.
If waiting for the data node to come back is not an option, either because it takes too long or the node is permanently failed, one can delete it instead. To be able to delete a data node, all of its chunks must have at least one replica on other data nodes. For example:
SELECT delete_data_node('data_node_2', force => true);
WARNING: distributed hypertable "conditions" is under-replicated
Use the force option when you delete the data node if the deletion
means that the cluster no longer achieves the desired replication
factor. This would be the normal case unless the data node has no
chunks or the distributed hypertable has more chunk replicas than the
configured replication factor.
You cannot force the deletion of a data node if it would mean that a multi-node cluster permanently loses data.
When you have successfully removed a failed data node, or marked a failed data node unavailable, some data chunks might lack replicas but queries and inserts work as normal again. However, the cluster stays in a vulnerable state until all chunks are fully replicated.
When you have restored a failed data node or marked it available again, you can see the chunks that need to be replicated with this query:
SELECT chunk_schema, chunk_name, replica_nodes, non_replica_nodes
FROM timescaledb_experimental.chunk_replication_status
WHERE hypertable_name = 'conditions' AND num_replicas < desired_num_replicas;
The output from this query looks like this:
chunk_schema | chunk_name | replica_nodes | non_replica_nodes
-----------------------+-----------------------+---------------+---------------------------
_timescaledb_internal | _dist_hyper_1_1_chunk | {data_node_3} | {data_node_1,data_node_2}
_timescaledb_internal | _dist_hyper_1_3_chunk | {data_node_1} | {data_node_2,data_node_3}
_timescaledb_internal | _dist_hyper_1_4_chunk | {data_node_3} | {data_node_1,data_node_2}
(3 rows)
With the information from the chunk replication status view, an under-replicated chunk can be copied to a new node to ensure the chunk has the sufficient number of replicas. For example:
CALL timescaledb_experimental.copy_chunk('_timescaledb_internal._dist_hyper_1_1_chunk', 'data_node_3', 'data_node_2');
When you restore chunk replication, the operation uses more than one transaction. This means that it cannot be automatically rolled back. If you cancel the operation before it is completed, an operation ID for the copy is logged. You can use this operation ID to clean up any state left by the cancelled operation. For example:
CALL timescaledb_experimental.cleanup_copy_chunk_operation('ts_copy_1_31');
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-setup/ =====
Multi-node support is sunsetted.
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres versions 13, 14, and 15.
To set up multi-node on a self-hosted TimescaleDB instance, you need:
postgres, on all nodesThe access and data nodes must begin as individual TimescaleDB instances. They should be hosts with a running Postgres server and a loaded TimescaleDB extension. For more information about installing self-hosted TimescaleDB instances, see the installation instructions. Additionally, you can configure high availability with multi-node to increase redundancy and resilience.
The multi-node TimescaleDB architecture consists of an access node (AN) which stores metadata for the distributed hypertable and performs query planning across the cluster, and a set of data nodes (DNs) which store subsets of the distributed hypertable dataset and execute queries locally. For more information about the multi-node architecture, see about multi-node.
If you intend to use continuous aggregates in your multi-node environment, check the additional considerations in the continuous aggregates section.
When you have installed TimescaleDB on the access node and as many data nodes as you require, you can set up multi-node and create a distributed hypertable.
Before you begin, make sure you have considered what partitioning method you want to use for your multi-node cluster. For more information about multi-node and architecture, see the About multi-node section.
On the access node (AN), run this command and provide the hostname of the first data node (DN1) you want to add:
SELECT add_data_node('dn1', 'dn1.example.com')
Repeat for all other data nodes:
SELECT add_data_node('dn2', 'dn2.example.com')
SELECT add_data_node('dn3', 'dn3.example.com')
On the access node, create the distributed hypertable with your chosen
partitioning. In this example, the distributed hypertable is called
example, and it is partitioned on time and location:
SELECT create_distributed_hypertable('example', 'time', 'location');
Insert some data into the hypertable. For example:
INSERT INTO example VALUES ('2020-12-14 13:45', 1, '1.2.3.4');
When you have set up your multi-node installation, you can configure your cluster. For more information, see the configuration section.
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-auth/ =====
Multi-node support is sunsetted.
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres versions 13, 14, and 15.
When you have your instances set up, you need to configure them to accept connections from the access node to the data nodes. The authentication mechanism you choose for this can be different than the one used by external clients to connect to the access node.
How you set up your multi-node cluster depends on which authentication mechanism you choose. The options are:
Going beyond the simple trust approach to create a secure system can be complex, but it is important to secure your database appropriately for your environment. We do not recommend any one security model, but encourage you to perform a risk assessment and implement the security model that best suits your environment.
Trusting all incoming connections is the quickest way to get your multi-node environment up and running, but it is not a secure method of operation. Use this only for developing a proof of concept, do not use this method for production installations.
The trust authentication method allows insecure access to all nodes. Do not use this method in production. It is not a secure method of operation.
Connect to the access node with psql, and locate the pg_hba.conf file:
SHOW hba_file;
Open the pg_hba.conf file in your preferred text editor, and add this
line. In this example, the access node is located at IP 192.0.2.20 with a
mask length of 32. You can add one of these two lines:
host all all 192.0.2.20/32 trust
host all all 192.0.2.20 255.255.255.255 trust
1. At the command prompt, reload the server configuration:
bash pg_ctl reload
On some operating systems, you might need to use the `pg_ctlcluster` command
instead.
1. If you have not already done so, add the data nodes to the access node. For
instructions, see the [multi-node setup][multi-node-setup] section.
1. On the access node, create the trust role. In this example, we call
the role `testrole`:
sql CREATE ROLE testrole;
**OPTIONAL**: If external clients need to connect to the access node
as `testrole`, add the `LOGIN` option when you create the role. You can
also add the `PASSWORD` option if you want to require external clients to
enter a password.
1. Allow the trust role to access the foreign server objects for the data
nodes. Make sure you include all the data node names:
sql GRANT USAGE ON FOREIGN SERVER , , ... TO testrole;
1. On the access node, use the [`distributed_exec`][distributed_exec] command
to add the role to all the data nodes:
sql CALL distributed_exec($$ CREATE ROLE testrole LOGIN $$);
Make sure you create the role with the `LOGIN` privilege on the data nodes, even
if you don't use this privilege on the access node. For all other privileges,
ensure they are same on the access node and the data nodes.
## Password authentication
Password authentication requires every user role to know a password before it
can establish a connection between the access node and the data nodes. This
internal password is only used by the access node and it does not need to be
the same password as the client uses to connect to the access node. External
users do not need to share the internal password at all, it can be set up and
administered by the database administrator.
The access node stores the internal password so that it can verify the correct
password has been provided by a data node. We recommend that you store the
password on the access node in a local password file, and this section shows you
how to set this up. However, if it works better in your environment, you can use
[user mappings][user-mapping] to store your passwords instead. This is slightly
less secure than a local pasword file, because it requires one mapping for each
data node in your cluster.
This section sets up your password authentication using SCRAM SHA-256 password
authentication. For other password authentication methods, see the
[Postgres authentication documentation][auth-password].
Before you start, check that you can use the `postgres` username to log in to
your access node.
### Setting up password authentication
1. On the access node, open the `postgresql.conf` configuration file, and add
or edit this line:
txt password_encryption = 'scram-sha-256' # md5 or scram-sha-256
1. Repeat for each of the data nodes.
1. On each of the data nodes, at the `psql` prompt, locate the `pg_hba.conf`
configuration file:
sql SHOW hba_file
1. On each of the data nodes, open the `pg_hba.conf` configuration file, and
add or edit this line to enable encrypted authentication to the access
node:
txt host all all 192.0.2.20 scram-sha-256 #where '192.0.2.20' is the access node IP
1. On the access node, open or create the password file at `data/passfile`.
This file stores the passwords for each role that the access node connects
to on the data nodes. If you need to change the location of the password
file, adjust the `timescaledb.passfile` setting in the `postgresql.conf`
configuration file.
1. On the access node, open the `passfile` file, and add a line like this for
each user, starting with the `postgres` user:
bash ::*:postgres:xyzzy #assuming 'xyzzy' is the password for the 'postgres' user
1. On the access node, at the command prompt, change the permissions of the
`passfile` file:
bash chmod 0600 passfile
1. On the access node, and on each of the data nodes, reload the server
configuration to pick up the changes:
bash pg_ctl reload
1. If you have not already done so, add the data nodes to the access node. For
instructions, see the [multi-node setup][multi-node-setup] section.
1. On the access node, at the `psql` prompt, create additional roles, and
grant them access to foreign server objects for the data nodes:
sql CREATE ROLE testrole PASSWORD 'clientpass' LOGIN; GRANT USAGE ON FOREIGN SERVER , , ... TO testrole;
The `clientpass` password is used by external clients to connect to the
access node as user `testrole`. If the access node is configured to accept
other authentication methods, or the role is not a login role, then you
might not need to do this step.
1. On the access node, add the new role to each of the data nodes with
[`distributed_exec`][distributed_exec]. Make sure you add the `PASSWORD`
parameter to specify a different password to use when connecting to the
data nodes with role `testrole`:
sql CALL distributed_exec($$ CREATE ROLE testrole PASSWORD 'internalpass' LOGIN $$);
1. On the access node, add the new role to the `passfile` you created earlier,
by adding this line:
bash ::*:testrole:internalpass #assuming 'internalpass' is the password used to connect to data nodes
Any user passwords that you created before you set up password authentication
need to be re-created so that they use the new encryption method.
## Certificate authentication
This method is a bit more complex to set up than password authentication, but
it is more secure, easier to automate, and can be customized to your security environment.
To use certificates, the access node and each data node need three files:
* The root CA certificate, called `root.crt`. This certificate serves as the
root of trust in the system. It is used to verify the other certificates.
* A node certificate, called `server.crt`. This certificate provides the node
with a trusted identity in the system.
* A node certificate key, called `server.key`. This provides proof of
ownership of the node certificate. Make sure you keep this file private on
the node where it is generated.
You can purchase certificates from a commercial certificate authority (CA), or
generate your own self-signed CA. This section shows you how to use your access
node certificate to create and sign new user certificates for the data nodes.
Keys and certificates serve different purposes on the data nodes and access
node. For the access node, a signed certificate is used to verify user
certificates for access. For the data nodes, a signed certificate authenticates
the node to the access node.
### Generating a self-signed root certificate for the access node
1. On the access node, at the command prompt, generate a private key called
`auth.key`:
bash openssl genpkey -algorithm rsa -out auth.key
1. Generate a self-signed root certificate for the certificate authority (CA),
called `root.cert`:
bash openssl req -new -key auth.key -days 3650 -out root.crt -x509
1. Complete the questions asked by the script to create your root certificate.
Type your responses in, press `enter` to accept the default value shown in
brackets, or type `.` to leave the field blank. For example:
txt Country Name (2 letter code) [AU]:US State or Province Name (full name) [Some-State]:New York Locality Name (eg, city) []:New York Organization Name (eg, company) [Internet Widgets Pty Ltd]:Example Company Pty Ltd Organizational Unit Name (eg, section) []: Common Name (e.g. server FQDN or YOUR name) []:http://cert.example.com/ Email Address []:
When you have created the root certificate on the access node, you can generate
certificates and keys for each of the data nodes. To do this, you need to create
a certificate signing request (CSR) for each data node.
The default names for the key is `server.key`, and for the certificate is
`server.crt`. They are stored in together, in the `data` directory on the data
node instance.
The default name for the CSR is `server.csr` and you need to sign
it using the root certificate you created on the access node.
### Generating keys and certificates for data nodes
1. On the access node, generate a certificate signing request (CSR)
called `server.csr`, and create a new key called `server.key`:
bash openssl req -out server.csr -new -newkey rsa:2048 -nodes \ -keyout server.key
1. Sign the CSR using the root certificate CA you created earlier,
called `auth.key`:
bash openssl ca -extensions v3_intermediate_ca -days 3650 -notext \ -md sha256 -in server.csr -out server.crt
1. Move the `server.crt` and `server.key` files from the access node, on to
each data node, in the `data` directory. Depending on your network setup,
you might need to use portable media.
1. Copy the root certificate file `root.crt` from the access node, on to each
data node, in the `data` directory. Depending on your network setup, you
might need to use portable media.
When you have created the certificates and keys, and moved all the files into
the right places on the data nodes, you can configure the data nodes to use SSL
authentication.
### Configuring data nodes to use SSL authentication
1. On each data node, open the `postgresql.conf` configuration file and add or
edit the SSL settings to enable certificate authentication:
txt ssl = on ssl_ca_file = 'root.crt' ssl_cert_file = 'server.crt' ssl_key_file = 'server.key'
1. [](#)If you want the access node to use certificate authentication
for login, make these changes on the access node as well.
1. On each data node, open the `pg_hba.conf` configuration file, and add or
edit this line to allow any SSL user log in with client certificate
authentication:
txt hostssl all all all cert clientcert=1
If you are using the default names for your certificate and key, you do not need
to explicitly set them. The configuration looks for `server.crt` and
`server.key` by default. If you use different names for your certificate and
key, make sure you specify the correct names in the `postgresql.conf`
configuration file.
When your data nodes are configured to use SSL certificate authentication, you
need to create a signed certificate and key for your access node. This allows
the access node to log in to the data nodes.
### Creating certificates and keys for the access node
1. On the access node, as the `postgres` user, compute a base name for the
certificate files using [md5sum][], generate a subject identifier, and
create names for the key and certificate files:
bash
pguser=postgres
base=echo -n $pguser | md5sum | cut -c1-32
subj="/C=US/ST=New York/L=New York/O=Timescale/OU=Engineering/CN=$pguser"
key_file="timescaledb/certs/$base.key"
crt_file="timescaledb/certs/$base.crt"
1. Generate a new random user key:
bash openssl genpkey -algorithm RSA -out "$key_file"
1. Generate a certificate signing request (CSR). This file is temporary,
stored in the `data` directory, and is deleted later on:
bash openssl req -new -sha256 -key $key_file -out "$base.csr" -subj "$subj"
1. Sign the CSR with the access node key:
bash openssl ca -batch -keyfile server.key -extensions v3_intermediate_ca \ -days 3650 -notext -md sha256 -in "$base.csr" -out "$crt_file" rm $base.csr
1. Append the node certificate to the user certificate. This completes the
certificate verification chain and makes sure that all certificates are
available on the data node, up to the trusted certificate stored
in `root.crt`:
bash cat >>$crt_file <server.crt
By default, the user key files and certificates are stored on the access node in
the `data` directory, under `timescaledb/certs`. You can change this location
using the `timescaledb.ssl_dir` configuration variable.
Your data nodes are now set up to accept certificate authentication, the data
and access nodes have keys, and the `postgres` user has a certificate. If you
have not already done so, add the data nodes to the access node. For
instructions, see the [multi-node setup][multi-node-setup] section. The final
step is add additional user roles.
### Setting up additional user roles
1. On the access node, at the `psql` prompt, create the new user and grant
permissions:
sql CREATE ROLE testrole; GRANT USAGE ON FOREIGN SERVER , , ... TO testrole;
If you need external clients to connect to the access node as `testrole`,
make sure you also add the `LOGIN` option. You can also enable password
authentication by adding the `PASSWORD` option.
1. On the access node, use the [`distributed_exec`][distributed_exec] command
to add the role to all the data nodes:
sql CALL distributed_exec($$ CREATE ROLE testrole LOGIN $$);
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-grow-shrink/ =====
# Grow and shrink multi-node
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
When you are working within a multi-node environment, you might discover that
you need more or fewer data nodes in your cluster over time. You can choose how
many of the available nodes to use when creating a distributed hypertable. You
can also add and remove data nodes from your cluster, and move data between
chunks on data nodes as required to free up storage.
## See which data nodes are in use
You can check which data nodes are in use by a distributed hypertable, using
this query. In this example, our distributed hypertable is called
`conditions`:
sql
SELECT hypertable_name, data_nodes FROM timescaledb_information.hypertables WHERE hypertable_name = 'conditions';
The result of this query looks like this:
sql hypertable_name | data_nodes -----------------+--------------------------------------- conditions | {data_node_1,data_node_2,data_node_3}
## Choose how many nodes to use for a distributed hypertable
By default, when you create a distributed hypertable, it uses all available
data nodes. To restrict it to specific nodes, pass the `data_nodes` argument to
[`create_distributed_hypertable`][create_distributed_hypertable].
## Attach a new data node
When you add additional data nodes to a database, you need to add them to the
distributed hypertable so that your database can use them.
### Attaching a new data node to a distributed hypertable
1. On the access node, at the `psql` prompt, add the data node:
```sql
SELECT add_data_node('node3', host => 'dn3.example.com');
```
1. Attach the new data node to the distributed hypertable:
```sql
SELECT attach_data_node('node3', hypertable => 'hypertable_name');
```
When you attach a new data node, the partitioning configuration of the
distributed hypertable is updated to account for the additional data node, and
the number of hash partitions are automatically increased to match. You can
prevent this happening by setting the function parameter `repartition` to
`FALSE`.
## Move data between chunks Experimental
When you attach a new data node to a distributed hypertable, you can move
existing data in your hypertable to the new node to free up storage on the
existing nodes and make better use of the added capacity.
The ability to move chunks between data nodes is an experimental feature that is
under active development. We recommend that you do not use this feature in a
production environment.
Move data using this query:
sql CALL timescaledb_experimental.move_chunk('_timescaledb_internal._dist_hyper_1_1_chunk', 'data_node_3', 'data_node_2');
The move operation uses a number of transactions, which means that you cannot
roll the transaction back automatically if something goes wrong. If a move
operation fails, the failure is logged with an operation ID that you can use to
clean up any state left on the involved nodes.
Clean up after a failed move using this query. In this example, the operation ID
of the failed move is `ts_copy_1_31`:
sql CALL timescaledb_experimental.cleanup_copy_chunk_operation('ts_copy_1_31');
## Remove a data node
You can also remove data nodes from an existing distributed hypertable.
You cannot remove a data node that still contains data for the distributed
hypertable. Before you remove the data node, check that is has had all of its
data deleted or moved, or that you have replicated the data on to other data
nodes.
Remove a data node using this query. In this example, our distributed hypertable
is called `conditions`:
sql SELECT detach_data_node('node1', hypertable => 'conditions');
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-administration/ =====
# Multi-node administration
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Multi-node TimescaleDB allows you to administer your cluster directly
from the access node. When your environment is set up, you do not
need to log directly into the data nodes to administer your database.
When you perform an administrative task, such as adding a new column,
changing privileges, or adding an index on a distributed hypertable,
you can perform the task from the access node and it is applied to all
the data nodes. If a command is executed on a regular table, however,
the effects of that command are only applied locally on the access
node. Similarly, if a command is executed directly on a data node, the
result is only visible on that data node.
Commands that create or modify schemas, roles, tablespaces, and
settings in a distributed database are not automatically distributed
either. That is because these objects and settings sometimes need to
be different on the access node compared to the data nodes, or even
vary among data nodes. For example, the data nodes could have unique
CPU, memory, and disk configurations. The node differences make it
impossible to assume that a single configuration works for all
nodes. Further, some settings need to be different on the publicly
accessible access node compared to data nodes, such as having
different connection limits. A role might not have the `LOGIN`
privilege on the access node, but it needs this privilege on data
nodes so that the access node can connect.
Roles and tablespaces are also shared across multiple databases on the
same instance. Some of these databases might be distributed and some
might not be, or be configured with a different set of data
nodes. Therefore, it is not possible to know for sure when a role or
tablespace should be distributed to a data node given that these
commands can be executed from within different databases, that need
not be distributed.
To administer a multi-node cluster from the access node, you can use
the [`distributed_exec`][distributed_exec] function. This function
allows full control over creating and configuring, database settings,
schemas, roles, and tablespaces across all data nodes.
The rest of this section describes in more detail how specific
administrative tasks are handled in a multi-node environment.
## Distributed role management
In a multi-node environment, you need to manage roles on each
Postgres instance independently, because roles are instance-level
objects that are shared across both distributed and non-distributed
databases that each can be configured with a different set of data
nodes or none at all. Therefore, an access node does not
automatically distribute roles or role management commands across its
data nodes. When a data node is added to a cluster, it is assumed that
it already has the proper roles necessary to be consistent with the
rest of the nodes. If this is not the case, you might encounter
unexpected errors when you try to create or alter objects that depend
on a role that is missing or set incorrectly.
To help manage roles from the access node, you can use the
[`distributed_exec`][distributed_exec] function. This is useful for
creating and configuring roles across all data nodes in the
current database.
### Creating a distributed role
When you create a distributed role, it is important to consider that
the same role might require different configuration on the access node
compared to the data nodes. For example, a user might require a
password to connect to the access node, while certificate
authentication is used between nodes within the cluster. You might
also want a connection limit for external connections, but allow
unlimited internal connections to data nodes. For example, the
following user can use a password to make 10 connections to the access
node but has no limits connecting to the data nodes:
sql CREATE ROLE alice WITH LOGIN PASSWORD 'mypassword' CONNECTION LIMIT 10; CALL distributed_exec($$ CREATE ROLE alice WITH LOGIN CONNECTION LIMIT -1; $$);
For more information about setting up authentication, see the
[multi-node authentication section][multi-node-authentication].
Some roles can also be configured without the `LOGIN` attribute on
the access node. This allows you to switch to the role locally, but not
connect with the user from a remote location. However, to be able to
connect from the access node to a data node as that user, the data
nodes need to have the role configured with the `LOGIN` attribute
enabled. To create a non-login role for a multi-node setup, use these
commands:
sql CREATE ROLE alice WITHOUT LOGIN; CALL distributed_exec($$ CREATE ROLE alice WITH LOGIN; $$);
To allow a new role to create distributed hypertables it also needs to
be granted usage on data nodes, for example:
sql GRANT USAGE ON FOREIGN SERVER dn1,dn2,dn3 TO alice;
By granting usage on some data nodes, but not others, you can
restrict usage to a subset of data nodes based on the role.
### Alter a distributed role
When you alter a distributed role, use the same process as creating
roles. The role needs to be altered on the access node and on the data
nodes in two separate steps. For example, add the `CREATEROLE`
attribute to a role as follows:
sql ALTER ROLE alice CREATEROLE; CALL distributed_exec($$ ALTER ROLE alice CREATEROLE; $$);
## Manage distributed databases
A distributed database can contain both distributed and
non-distributed objects. In general, when a command is issued to alter
a distributed object, it applies to all nodes that have that object (or
a part of it).
However, in some cases settings *should* be different depending on
node, because nodes might be provisioned differently (having, for example,
varying levels of CPU, memory, and disk capabilities) and the role of
the access node is different from a data node's.
This section describes how and when commands on distributed objects
are applied across all data nodes when executed from within a
distributed database.
### Alter a distributed database
The [`ALTER DATABASE`][alter-database] command is only applied locally
on the access node. This is because database-level configuration often
needs to be different across nodes. For example, this is a setting that
might differ depending on the CPU capabilities of the node:
sql ALTER DATABASE mydatabase SET max_parallel_workers TO 12;
The database names can also differ between nodes, even if the
databases are part of the same distributed database. When you rename a
data node's database, also make sure to update the configuration of
the data node on the access node so that it references the new
database name.
### Drop a distributed database
When you drop a distributed database on the access node, it does not
automatically drop the corresponding databases on the data nodes. In
this case, you need to connect directly to each data node and drop the
databases locally.
A distributed database is not automatically dropped across all nodes,
because the information about data nodes lives within the distributed
database on the access node, but it is not possible to read it when
executing the drop command since it cannot be issued when connected to
the database.
Additionally, if a data node has permanently failed, you need to be able
to drop a database even if one or more data nodes are not responding.
It is also good practice to leave the data intact on a data node if
possible. For example, you might want to back up a data node even
after a database was dropped on the access node.
Alternatively, you can delete the data nodes with
the `drop_database` option prior to dropping the database on the
access node:
sql SELECT * FROM delete_data_node('dn1', drop_database => true);
## Create, alter, and drop schemas
When you create, alter, or drop schemas, the commands are not
automatically applied across all data nodes. A missing schema is,
however, created when a distributed hypertable is created, and the
schema it belongs to does not exist on a data node.
To manually create a schema across all data nodes, use this command:
sql CREATE SCHEMA newschema; CALL distributed_exec($$ CREATE SCHEMA newschema $$);
If a schema is created with a particular authorization, then the
authorized role must also exist on the data nodes prior to issuing the
command. The same things applies to altering the owner of an existing
schema.
### Prepare for role removal with DROP OWNED
The [`DROP OWNED`][drop-owned] command is used to drop all objects owned
by a role and prepare the role for removal. Execute the following
commands to prepare a role for removal across all data nodes in a
distributed database:
sql DROP OWNED BY alice CASCADE; CALL distributed_exec($$ DROP OWNED BY alice CASCADE $$);
Note, however, that the role might still own objects in other
databases after these commands have been executed.
### Manage privileges
Privileges configured using [`GRANT`][grant] or [`REVOKE`][revoke]
statements are applied to all data nodes when they are run on a
distributed hypertable. When granting privileges on other objects, the
command needs to be manually distributed with
[`distributed_exec`][distributed_exec].
#### Set default privileges
Default privileges need to be manually modified using
[`distributed_exec`][distributed_exec], if they are to apply across
all data nodes. The roles and schemas that the default privileges
reference need to exist on the data nodes prior to executing the
command.
New data nodes are assumed to already have any altered
default privileges. The default privileges are not automatically
applied retrospectively to new data nodes.
## Manage tablespaces
Nodes might be configured with different disks, and therefore
tablespaces need to be configured manually on each node. In
particular, an access node might not have the same storage
configuration as data nodes, since it typically does not store a lot
of data. Therefore, it is not possible to assume that the same
tablespace configuration exists across all nodes in a multi-node
cluster.
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/about-multinode/ =====
# About multi-node
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
If you have a larger petabyte-scale workload, you might need more than
one TimescaleDB instance. TimescaleDB multi-node allows you to run and
manage a cluster of databases, which can give you faster data ingest,
and more responsive and efficient queries for large workloads.
In some cases, your queries could be slower in a multi-node cluster due to the
extra network communication between the various nodes. Queries perform the best
when the query processing is distributed among the nodes and the result set is
small relative to the queried dataset. It is important that you understand
multi-node architecture before you begin, and plan your database according to
your specific requirements.
## Multi-node architecture
Multi-node TimescaleDB allows you to tie several databases together into a
logical distributed database to combine the processing power of many physical
Postgres instances.
One of the databases exists on an access node and stores
metadata about the other databases. The other databases are
located on data nodes and hold the actual data. In theory, a
Postgres instance can serve as both an access node and a data node
at the same time in different databases. However, it is recommended not to
have mixed setups, because it can be complicated, and server
instances are often provisioned differently depending on the role they
serve.
For self-hosted installations, create a server that can act as an
access node, then use that access node to create data nodes on other
servers.
When you have configured multi-node TimescaleDB, the access node coordinates
the placement and access of data chunks on the data nodes. In most
cases, it is recommend that you use multidimensional partitioning to
distribute data across chunks in both time and space dimensions. The
figure in this section shows how an access node (AN) partitions data in the same
time interval across multiple data nodes (DN1, DN2, and DN3).
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/multi-node-arch.webp"
alt="Diagram showing how multi-node access and data nodes interact"/>
A database user connects to the access node to issue commands and
execute queries, similar to how one connects to a regular single
node TimescaleDB instance. In most cases, connecting directly to the
data nodes is not necessary.
Because TimescaleDB exists as an extension within a specific
database, it is possible to have both distributed and non-distributed
databases on the same access node. It is also possible to
have several distributed databases that use different sets of physical
instances as data nodes. In this section,
however, it is assumed that you have a single
distributed database with a consistent set of data nodes.
## Distributed hypertables
If you use a regular table or hypertable on a distributed database, they are not
automatically distributed. Regular tables and hypertables continue to work as
usual, even when the underlying database is distributed. To enable multi-node
capabilities, you need to explicitly create a distributed hypertable on the
access node to make use of the data nodes. A distributed hypertable is similar
to a regular [hypertable][hypertables], but with the difference that chunks are
distributed across data nodes instead of on local storage. By distributing the
chunks, the processing power of the data nodes is combined to achieve higher
ingest throughput and faster queries. However, the ability to achieve good
performance is highly dependent on how the data is partitioned across the data
nodes.
To achieve good ingest performance, write the data in batches, with each batch
containing data that can be distributed across many data nodes. To achieve good
query performance, spread the query across many nodes and have a result set that
is small relative to the amount of processed data. To achieve this, it is
important to consider an appropriate partitioning method.
### Partitioning methods
Data that is ingested into a distributed hypertable is spread across the data
nodes according to the partitioning method you have chosen. Queries that can be
sent from the access node to multiple data nodes and processed simultaneously
generally run faster than queries that run on a single data node, so it is
important to think about what kind of data you have, and the type of queries you
want to run.
TimescaleDB multi-node currently supports capabilities that make it best suited
for large-volume time-series workloads that are partitioned on `time`, and a
space dimension such as `location`. If you usually run wide queries that
aggregate data across many locations and devices, choose this partitioning
method. For example, a query like this is faster on a database partitioned on
`time,location`, because it spreads the work across all the data nodes in
parallel:
sql SELECT time_bucket('1 hour', time) AS hour, location, avg(temperature) FROM conditions GROUP BY hour, location ORDER BY hour, location LIMIT 100;
Partitioning on `time` and a space dimension such as `location`, is also best if
you need faster insert performance. If you partition only on time, and your
inserts are generally occuring in time order, then you are always writing to one
data node at a time. Partitioning on `time` and `location` means your
time-ordered inserts are spread across multiple data nodes, which can lead to
better performance.
If you mostly run deep time queries on a single location, you might see better
performance by partitioning solely on the `time` dimension, or on a space
dimension other than `location`. For example, a query like this is faster on a
database partitioned on `time` only, because the data for a single location is
spread across all the data nodes, rather than being on a single one:
sql SELECT time_bucket('1 hour', time) AS hour, avg(temperature) FROM conditions WHERE location = 'office_1' GROUP BY hour ORDER BY hour LIMIT 100;
### Transactions and consistency model
Transactions that occur on distributed hypertables are atomic, just
like those on regular hypertables. This means that a distributed
transaction that involves multiple data nodes is guaranteed to
either succeed on all nodes or on none of them. This guarantee
is provided by the [two-phase commit protocol][2pc], which
is used to implement distributed transactions in TimescaleDB.
However, the read consistency of a distributed hypertable is different
to a regular hypertable. Because a distributed transaction is a set of
individual transactions across multiple nodes, each node can commit
its local transaction at a slightly different time due to network
transmission delays or other small fluctuations. As a consequence, the
access node cannot guarantee a fully consistent snapshot of the
data across all data nodes. For example, a distributed read
transaction might start when another concurrent write transaction is
in its commit phase and has committed on some data nodes but not
others. The read transaction can therefore use a snapshot on one node
that includes the other transaction's modifications, while the
snapshot on another data node might not include them.
If you need stronger read consistency in a distributed transaction, then you
can use consistent snapshots across all data nodes. However, this
requires a lot of coordination and management, which can negatively effect
performance, and it is therefore not implemented by default for distributed
hypertables.
## Using continuous aggregates in a multi-node environment
If you are using self-hosted TimescaleDB in a multi-node environment, there are some
additional considerations for continuous aggregates.
When you create a continuous aggregate within a multi-node environment, the
continuous aggregate should be created on the access node. While it is possible
to create a continuous aggregate on data nodes, it interferes with the
continuous aggregates on the access node and can cause problems.
When you refresh a continuous aggregate on an access node, it computes a single
window to update the time buckets. This could slow down your query if the actual
number of rows that were updated is small, but widely spread apart. This is
aggravated if the network latency is high if, for example, you have remote data
nodes.
Invalidation logs are on kept on the data nodes, which is designed to limit the
amount of data that needs to be transferred. However, some statements send
invalidations directly to the log, for example, when dropping a chunk or
truncate a hypertable. This action could slow down performance, in comparison to
a local update. Additionally, if you have infrequent refreshes but a lot of
changes to the hypertable, the invalidation logs could get very large, which
could cause performance issues. Make sure you are maintaining your invalidation
log size to avoid this, for example, by refreshing the continuous aggregate
frequently.
For more information about setting up multi-node, see the
[multi-node section][multi-node]
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-config/ =====
# Multi-node configuration
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
In addition to the
[regular TimescaleDB configuration][timescaledb-configuration], it is recommended
that you also configure additional settings specific to multi-node operation.
## Update settings
Each of these settings can be configured in the `postgresql.conf` file on the
individual node. The `postgresql.conf` file is usually in the `data` directory,
but you can locate the correct path by connecting to the node with `psql` and
giving this command:
sql SHOW config_file;
After you have modified the `postgresql.conf` file, reload the configuration to
see your changes:
bash pg_ctl reload
<!--these need a better structure --LKB 2021-10-20-->
### `max_prepared_transactions`
If not already set, ensure that `max_prepared_transactions` is a non-zero value
on all data nodes is set to `150` as a starting point.
### `enable_partitionwise_aggregate`
On the access node, set the `enable_partitionwise_aggregate` parameter to `on`.
This ensures that queries are pushed down to the data nodes, and improves query
performance.
### `jit`
On the access node, set `jit` to `off`. Currently, JIT does not work well with
distributed queries. However, you can enable JIT on the data nodes successfully.
### `statement_timeout`
On the data nodes, disable `statement_timeout`. If you need to enable this,
enable and configure it on the access node only. This setting is disabled by
default in Postgres, but can be useful if your specific environment is suited.
### `wal_level`
On the data nodes, set the `wal_level` to `logical` or higher to
[move][move_chunk] or [copy][copy_chunk] chunks between data nodes. If you
are moving many chunks in parallel, consider increasing `max_wal_senders` and
`max_replication_slots` as well.
### Transaction isolation level
For consistency, if the transaction isolation level is set to `READ COMMITTED`
it is automatically upgraded to `REPEATABLE READ` whenever a distributed
operation occurs. If the isolation level is `SERIALIZABLE`, it is not changed.
===== PAGE: https://docs.tigerdata.com/self-hosted/multinode-timescaledb/multinode-maintenance/ =====
# Multi-node maintenance tasks
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Various maintenance activities need to be carried out for effective
upkeep of the distributed multi-node setup. You can use `cron` or
another scheduling system outside the database to run these below
maintenance jobs on a regular schedule if you prefer. Also make sure
that the jobs are scheduled separately for each database that contains
distributed hypertables.
## Maintaining distributed transactions
A distributed transaction runs across multiple data nodes, and can remain in a
non-completed state if a data node reboots or experiences temporary issues. The
access node keeps a log of distributed transactions so that nodes that haven't
completed their part of the distributed transaction can complete it later when
they become available. This transaction log requires regular cleanup to remove
transactions that have completed, and complete those that haven't.
We highly recommended that you configure the access node to run a maintenance
job that regularly cleans up any unfinished distributed transactions. For example:
= 2.12">
sql CREATE OR REPLACE PROCEDURE data_node_maintenance(job_id int, config jsonb) LANGUAGE SQL AS $$
SELECT _timescaledb_functions.remote_txn_heal_data_node(fs.oid)
FROM pg_foreign_server fs, pg_foreign_data_wrapper fdw
WHERE fs.srvfdw = fdw.oid
AND fdw.fdwname = 'timescaledb_fdw';
$$;
SELECT add_job('data_node_maintenance', '5m');
sql CREATE OR REPLACE PROCEDURE data_node_maintenance(job_id int, config jsonb) LANGUAGE SQL AS $$
SELECT _timescaledb_internal.remote_txn_heal_data_node(fs.oid)
FROM pg_foreign_server fs, pg_foreign_data_wrapper fdw
WHERE fs.srvfdw = fdw.oid
AND fdw.fdwname = 'timescaledb_fdw';
$$;
SELECT add_job('data_node_maintenance', '5m');
## Statistics for distributed hypertables
On distributed hypertables, the table statistics need to be kept updated.
This allows you to efficiently plan your queries. Because of the nature of
distributed hypertables, you can't use the `auto-vacuum` tool to gather
statistics. Instead, you can explicitly ANALYZE the distributed hypertable
periodically using a maintenance job, like this:
sql CREATE OR REPLACE PROCEDURE distributed_hypertables_analyze(job_id int, config jsonb) LANGUAGE plpgsql AS $$ DECLARE r record; BEGIN FOR r IN SELECT hypertable_schema, hypertable_name
FROM timescaledb_information.hypertables
WHERE is_distributed ORDER BY 1, 2
LOOP EXECUTE format('ANALYZE %I.%I', r.hypertable_schema, r.hypertable_name); END LOOP; END $$;
SELECT add_job('distributed_hypertables_analyze', '12h');
You can merge the jobs in this example into a single maintenance job
if you prefer. However, analyzing distributed hypertables should be
done less frequently than remote transaction healing activity. This
is because the former could analyze a large number of remote chunks
everytime and can be expensive if called too frequently.
===== PAGE: https://docs.tigerdata.com/self-hosted/migration/migrate-influxdb/ =====
# Migrate data to TimescaleDB from InfluxDB
You can migrate data to TimescaleDB from InfluxDB using the Outflux tool.
[Outflux][outflux] is an open source tool built by Tiger Data for fast, seamless
migrations. It pipes exported data directly to self-hosted TimescaleDB, and manages schema
discovery, validation, and creation.
Outflux works with earlier versions of InfluxDB. It does not work with InfluxDB
version 2 and later.
## Prerequisites
Before you start, make sure you have:
* A running instance of InfluxDB and a means to connect to it.
* An [self-hosted TimescaleDB instance][install] and a means to connect to it.
* Data in your InfluxDB instance.
## Procedures
To import data from Outflux, follow these procedures:
1. [Install Outflux][install-outflux]
1. [Discover, validate, and transfer schema][discover-validate-and-transfer-schema] to self-hosted TimescaleDB (optional)
1. [Migrate data to Timescale][migrate-data-to-timescale]
## Install Outflux
Install Outflux from the GitHub repository. There are builds for Linux, Windows,
and MacOS.
1. Go to the [releases section][outflux-releases] of the Outflux repository.
1. Download the latest compressed tarball for your platform.
1. Extract it to a preferred location.
If you prefer to build Outflux from source, see the [Outflux README][outflux-readme] for
instructions.
To get help with Outflux, run `./outflux --help` from the directory
where you installed it.
## Discover, validate, and transfer schema
Outflux can:
* Discover the schema of an InfluxDB measurement
* Validate whether a table exists that can hold the transferred data
* Create a new table to satisfy the schema requirements if no valid table
exists
Outflux's `migrate` command does schema transfer and data migration in one step.
For more information, see the [migrate][migrate-data-to-timescale] section.
Use this section if you want to validate and transfer your schema independently
of data migration.
To transfer your schema from InfluxDB to Timescale, run `outflux
schema-transfer`:
bash outflux schema-transfer \ --input-server=http://localhost:8086 \ --output-conn="dbname=tsdb user=tsdbadmin"
To transfer all measurements from the database, leave out the measurement name
argument.
This example uses the `postgres` user and database to connect to the self-hosted TimescaleDB instance. For other connection options and configuration, see the [Outflux
Github repo][outflux-gitbuh].
### Schema transfer options
Outflux's `schema-transfer` can use 1 of 4 schema strategies:
* `ValidateOnly`: checks that self-hosted TimescaleDB is installed and that the specified
database has a properly partitioned hypertable with the correct columns, but
doesn't perform modifications
* `CreateIfMissing`: runs the same checks as `ValidateOnly`, and creates and
properly partitions any missing hypertables
* `DropAndCreate`: drops any existing table with the same name as the
measurement, and creates a new hypertable and partitions it properly
* `DropCascadeAndCreate`: performs the same action as `DropAndCreate`, and
also executes a cascade table drop if there is an existing table with the
same name as the measurement
You can specify your schema strategy by passing a value to the
`--schema-strategy` option in the `schema-transfer` command. The default
strategy is `CreateIfMissing`.
By default, each tag and field in InfluxDB is treated as a separate column in
your TimescaleDB tables. To transfer tags and fields as a single JSONB column,
use the flag `--tags-as-json`.
## Migrate data to TimescaleDB
Transfer your schema and migrate your data all at once with the `migrate`
command.
For example, run:
bash outflux migrate \ --input-server=http://localhost:8086 \ --output-conn="dbname=tsdb user=tsdbadmin"
The schema strategy and connection options are the same as for
`schema-transfer`. For more information, see
[Discover, validate, and transfer schema][discover-validate-and-transfer-schema].
In addition, `outflux migrate` also takes the following flags:
* `--limit`: Pass a number, `N`, to `--limit` to export only the first `N`
rows, ordered by time.
* `--from` and `to`: Pass a timestamp to `--from` or `--to` to specify a time
window of data to migrate.
* `chunk-size`: Changes the size of data chunks transferred. Data is pulled
from the InfluxDB server in chunks of default size 15 000.
* `batch-size`: Changes the number of rows in an insertion batch. Data is
inserted into a self-hosted TimescaleDB database in batches that are 8000 rows by default.
For more flags, see the [Github documentation for `outflux
migrate`][outflux-migrate]. Alternatively, see the command line help:
bash outflux migrate --help
===== PAGE: https://docs.tigerdata.com/self-hosted/migration/entire-database/ =====
# Migrate the entire database at once
Migrate smaller databases by dumping and restoring the entire database at once.
This method works best on databases smaller than 100 GB. For larger
databases, consider [migrating your schema and data
separately][migrate-separately].
Depending on your database size and network speed, migration can take a very
long time. You can continue reading from your source database during this time,
though performance could be slower. To avoid this problem, fork your database
and migrate your data from the fork. If you write to tables in your source
database during the migration, the new writes might not be transferred to
Timescale. To avoid this problem, see [Live migration][live-migration].
## Prerequisites
Before you begin, check that you have:
* Installed the Postgres [`pg_dump`][pg_dump] and [`pg_restore`][pg_restore]
utilities.
* Installed a client for connecting to Postgres. These instructions use
[`psql`][psql], but any client works.
* Created a new empty database in your self-hosted TimescaleDB instance. For more information, see
[Install TimescaleDB][install-selfhosted-timescale]. Provision
your database with enough space for all your data.
* Checked that any other Postgres extensions you use are compatible with
Timescale. For more information, see the [list of compatible
extensions][extensions]. Install your other Postgres extensions.
* Checked that you're running the same major version of Postgres on both
your target and source databases. For information about upgrading
Postgres on your source database, see the
[upgrade instructions for self-hosted TimescaleDB][upgrading-postgresql-self-hosted].
* Checked that you're running the same major version of TimescaleDB on both
your target and source databases. For more information, see
[upgrade self-hosted TimescaleDB][upgrading-timescaledb].
To speed up migration, compress your data into the columnstore. You can compress any chunks where
data is not currently inserted, updated, or deleted. When you finish the
migration, you can decompress chunks back to the rowstore as needed for normal operation. For more
information about the rowstore and columnstore compression, see [hypercore][compression].
### Migrating the entire database at once
1. Dump all the data from your source database into a `dump.bak` file, using your
source database connection details. If you are prompted for a password, use
your source database credentials:
```bash
pg_dump -U <SOURCE_DB_USERNAME> -W \
-h <SOURCE_DB_HOST> -p <SOURCE_DB_PORT> -Fc -v \
-f dump.bak <SOURCE_DB_NAME>
```
1. Connect to your self-hosted TimescaleDB instance using your connection details:
```bash
psql “postgres://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/<DATABASE>?sslmode=require”
```
1. Prepare your self-hosted TimescaleDB instance for data restoration by using
[`timescaledb_pre_restore`][timescaledb_pre_restore] to stop background
workers:
```sql
SELECT timescaledb_pre_restore();
```
1. At the command prompt, restore the dumped data from the `dump.bak` file into
your self-hosted TimescaleDB instance, using your connection details. To avoid permissions errors, include the `--no-owner` flag:
```bash
pg_restore -U tsdbadmin -W \
-h <CLOUD_HOST> -p <CLOUD_PORT> --no-owner \
-Fc -v -d tsdb dump.bak
```
1. At the `psql` prompt, return your self-hosted TimescaleDB instance to normal
operations by using the
[`timescaledb_post_restore`][timescaledb_post_restore] command:
```sql
SELECT timescaledb_post_restore();
```
1. Update your table statistics by running [`ANALYZE`][analyze] on your entire
dataset:
```sql
ANALYZE;
```
===== PAGE: https://docs.tigerdata.com/self-hosted/migration/schema-then-data/ =====
# Migrate schema and data separately
Migrate larger databases by migrating your schema first, then migrating the
data. This method copies each table or chunk separately, which allows you to
restart midway if one copy operation fails.
For smaller databases, it may be more convenient to migrate your entire database
at once. For more information, see the section on
[choosing a migration method][migration].
This method does not retain continuous aggregates calculated using
already-deleted data. For example, if you delete raw data after a month but
retain downsampled data in a continuous aggregate for a year, the continuous
aggregate loses any data older than a month upon migration. If you must keep
continuous aggregates calculated using deleted data, migrate your entire
database at once. For more information, see the section on
[choosing a migration method][migration].
The procedure to migrate your database requires these steps:
* [Migrate schema pre-data](#migrate-schema-pre-data)
* [Restore hypertables in Timescale](#restore-hypertables-in-timescale)
* [Copy data from the source database](#copy-data-from-the-source-database)
* [Restore data into Timescale](#restore-data-into-timescale)
* [Migrate schema post-data](#migrate-schema-post-data)
* [Recreate continuous aggregates](#recreate-continuous-aggregates) (optional)
* [Recreate policies](#recreate-policies) (optional)
* [Update table statistics](#update-table-statistics)
Depending on your database size and network speed, steps that involve copying
data can take a very long time. You can continue reading from your source
database during this time, though performance could be slower. To avoid this
problem, fork your database and migrate your data from the fork. If you write to
the tables in your source database during the migration, the new writes might
not be transferred to Timescale. To avoid this problem, see the section on
[migrating an active database][migration].
## Prerequisites
Before you begin, check that you have:
* Installed the Postgres [`pg_dump`][pg_dump] and [`pg_restore`][pg_restore]
utilities.
* Installed a client for connecting to Postgres. These instructions use
[`psql`][psql], but any client works.
* Created a new empty database in a self-hosted TimescaleDB instance. For more information, see
the [Install TimescaleDB][install-selfhosted]. Provision
your database with enough space for all your data.
* Checked that any other Postgres extensions you use are compatible with
TimescaleDB. For more information, see the [list of compatible
extensions][extensions]. Install your other Postgres extensions.
* Checked that you're running the same major version of Postgres on both your
self-hosted TimescaleDB instance and your source database. For information about upgrading
Postgres on your source database, see the [upgrade instructions for
self-hosted TimescaleDB][upgrading-postgresql-self-hosted] and [Managed
Service for TimescaleDB][upgrading-postgresql].
* Checked that you're running the same major version of TimescaleDB on both
your target and source database. For more information, see
[upgrading TimescaleDB][upgrading-timescaledb].
## Migrate schema pre-data
Migrate your pre-data from your source database to self-hosted TimescaleDB. This
includes table and schema definitions, as well as information on sequences,
owners, and settings. This doesn't include Timescale-specific schemas.
### Migrating schema pre-data
1. Dump the schema pre-data from your source database into a `dump_pre_data.bak` file, using
your source database connection details. Exclude Timescale-specific schemas.
If you are prompted for a password, use your source database credentials:
```bash
pg_dump -U <SOURCE_DB_USERNAME> -W \
-h <SOURCE_DB_HOST> -p <SOURCE_DB_PORT> -Fc -v \
--section=pre-data --exclude-schema="_timescaledb*" \
-f dump_pre_data.bak <DATABASE_NAME>
```
1. Restore the dumped data from the `dump_pre_data.bak` file into your self-hosted TimescaleDB instance, using your self-hosted TimescaleDB connection details. To avoid permissions errors, include the `--no-owner` flag:
```bash
pg_restore -U tsdbadmin -W \
-h <HOST> -p <PORT> --no-owner -Fc \
-v -d tsdb dump_pre_data.bak
```
## Restore hypertables in your self-hosted TimescaleDB instance
After pre-data migration, your hypertables from your source database become
regular Postgres tables in Timescale. Recreate your hypertables in your self-hosted TimescaleDB instance to
restore them.
### Restoring hypertables in your self-hosted TimescaleDB instance
1. Connect to your self-hosted TimescaleDB instance:
```sql
psql "postgres://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/<DATABSE>?sslmode=require"
```
1. Restore the hypertable:
```sql
SELECT create_hypertable(
'',
by_range('<COLUMN_NAME>', INTERVAL '<CHUNK_INTERVAL>')
);
```
The `by_range` dimension builder is an addition to TimescaleDB 2.13.
## Copy data from the source database
After restoring your hypertables, return to your source database to copy your
data, table by table.
### Copying data from your source database
1. Connect to your source database:
```bash
psql "postgres://<SOURCE_DB_USERNAME>:<SOURCE_DB_PASSWORD>@<SOURCE_DB_HOST>:<SOURCE_DB_PORT>/<SOURCE_DB_NAME>?sslmode=require"
```
1. Dump the data from the first table into a `.csv` file:
```sql
\COPY (SELECT * FROM ) TO .csv CSV
```
Repeat for each table and hypertable you want to migrate.
If your tables are very large, you can migrate each table in multiple pieces.
Split each table by time range, and copy each range individually. For example:
sql \COPY (SELECT * FROM WHERE time > '2021-11-01' AND time < '2011-11-02') TO .csv CSV
## Restore data into Timescale
When you have copied your data into `.csv` files, you can restore it to
self-hosted TimescaleDB by copying from the `.csv` files. There are two methods: using
regular Postgres [`COPY`][copy], or using the TimescaleDB
[`timescaledb-parallel-copy`][timescaledb-parallel-copy] function. In tests,
`timescaledb-parallel-copy` is 16% faster. The `timescaledb-parallel-copy` tool
is not included by default. You must install the function.
Because `COPY` decompresses data, any compressed data in your source
database is now stored uncompressed in your `.csv` files. If you
provisioned your self-hosted TimescaleDB storage for your compressed data, the
uncompressed data may take too much storage. To avoid this problem, periodically
recompress your data as you copy it in. For more information on compression, see
the [compression section](https://docs.tigerdata.com/use-timescale/latest/compression/).
### Restoring data into a Tiger Cloud service with timescaledb-parallel-copy
1. At the command prompt, install `timescaledb-parallel-copy`:
```bash
go get github.com/timescale/timescaledb-parallel-copy/cmd/timescaledb-parallel-copy
```
1. Use `timescaledb-parallel-copy` to import data into
your Tiger Cloud service. Set `<NUM_WORKERS>` to twice the number of CPUs in your
database. For example, if you have 4 CPUs, `<NUM_WORKERS>` should be `8`.
```bash
timescaledb-parallel-copy \
--connection "host=<HOST> \
user=tsdbadmin password=<PASSWORD> \
port=<PORT> \
dbname=tsdb \
sslmode=require
" \
--table \
--file <FILE_NAME>.csv \
--workers <NUM_WORKERS> \
--reporting-period 30s
```
Repeat for each table and hypertable you want to migrate.
### Restoring data into a Tiger Cloud service with COPY
1. Connect to your Tiger Cloud service:
```sql
psql "postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
```
1. Restore the data to your Tiger Cloud service:
```sql
\copy FROM '.csv' WITH (FORMAT CSV);
```
Repeat for each table and hypertable you want to migrate.
## Migrate schema post-data
When you have migrated your table and hypertable data, migrate your Postgres schema post-data. This includes information about constraints.
### Migrating schema post-data
1. At the command prompt, dump the schema post-data from your source database
into a `dump_post_data.dump` file, using your source database connection details. Exclude
Timescale-specific schemas. If you are prompted for a password, use your
source database credentials:
```bash
pg_dump -U <SOURCE_DB_USERNAME> -W \
-h <SOURCE_DB_HOST> -p <SOURCE_DB_PORT> -Fc -v \
--section=post-data --exclude-schema="_timescaledb*" \
-f dump_post_data.dump <DATABASE_NAME>
```
1. Restore the dumped schema post-data from the `dump_post_data.dump` file into
your Tiger Cloud service, using your connection details. To avoid permissions
errors, include the `--no-owner` flag:
```bash
pg_restore -U tsdbadmin -W \
-h <HOST> -p <PORT> --no-owner -Fc \
-v -d tsdb dump_post_data.dump
```
### Troubleshooting
If you see these errors during the migration process, you can safely ignore
them. The migration still occurs successfully.
pg_restore: error: could not execute query: ERROR: relation "" already exists
pg_restore: error: could not execute query: ERROR: trigger "ts_insert_blocker" for relation "" already exists
## Recreate continuous aggregates
Continuous aggregates aren't migrated by default when you transfer your schema
and data separately. You can restore them by recreating the continuous aggregate
definitions and recomputing the results on your Tiger Cloud service. The recomputed
continuous aggregates only aggregate existing data in your Tiger Cloud service. They
don't include deleted raw data.
### Recreating continuous aggregates
1. Connect to your source database:
```bash
psql "postgres://<SOURCE_DB_USERNAME>:<SOURCE_DB_PASSWORD>@<SOURCE_DB_HOST>:<SOURCE_DB_PORT>/<SOURCE_DB_NAME>?sslmode=require"
```
1. Get a list of your existing continuous aggregate definitions:
```sql
SELECT view_name, view_definition FROM timescaledb_information.continuous_aggregates;
```
This query returns the names and definitions for all your continuous
aggregates. For example:
```sql
view_name | view_definition
----------------+--------------------------------------------------------------------------------------------------------
avg_fill_levels | SELECT round(avg(fill_measurements.fill_level), 2) AS avg_fill_level, +
| time_bucket('01:00:00'::interval, fill_measurements."time") AS bucket, +
| fill_measurements.sensor_id +
| FROM fill_measurements +
| GROUP BY (time_bucket('01:00:00'::interval, fill_measurements."time")), fill_measurements.sensor_id;
(1 row)
```
1. Connect to your Tiger Cloud service:
```bash
psql "postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
```
1. Recreate each continuous aggregate definition:
```sql
CREATE MATERIALIZED VIEW <VIEW_NAME>
WITH (timescaledb.continuous) AS
<VIEW_DEFINITION>
```
## Recreate policies
By default, policies aren't migrated when you transfer your schema and data
separately. Recreate them on your Tiger Cloud service.
### Recreating policies
1. Connect to your source database:
```bash
psql "postgres://<SOURCE_DB_USERNAME>:<SOURCE_DB_PASSWORD>@<SOURCE_DB_HOST>:<SOURCE_DB_PORT>/<SOURCE_DB_NAME>?sslmode=require"
```
1. Get a list of your existing policies. This query returns a list of all your
policies, including continuous aggregate refresh policies, retention
policies, compression policies, and reorder policies:
```sql
SELECT application_name, schedule_interval, retry_period,
config, hypertable_name
FROM timescaledb_information.jobs WHERE owner = '<SOURCE_DB_USERNAME>';
```
1. Connect to your Tiger Cloud service:
```sql
psql "postgres://tsdbadmin:<PASSWORD>@<HOST>:<PORT>/tsdb?sslmode=require"
```
1. Recreate each policy. For more information about recreating policies, see
the sections on [continuous-aggregate refresh policies][cagg-policy],
[retention policies][retention-policy], [Hypercore policies][setup-hypercore], and [reorder policies][reorder-policy].
## Update table statistics
Update your table statistics by running [`ANALYZE`][analyze] on your entire
dataset. Note that this might take some time depending on the size of your
database:
sql ANALYZE;
### Troubleshooting
If you see errors of the following form when you run `ANALYZE`, you can safely
ignore them:
WARNING: skipping "" --- only superuser can analyze it
The skipped tables and indexes correspond to system catalogs that can't be
accessed. Skipping them does not affect statistics on your data.
===== PAGE: https://docs.tigerdata.com/self-hosted/migration/same-db/ =====
# Migrate data to self-hosted TimescaleDB from the same Postgres instance
You can migrate data into a TimescaleDB hypertable from a regular Postgres
table. This method assumes that you have TimescaleDB set up in the same database
instance as your existing table.
## Prerequisites
Before beginning, make sure you have [installed and set up][install] TimescaleDB.
You also need a table with existing data. In this example, the source table is
named `old_table`. Replace the table name with your actual table name. The
example also names the destination table `new_table`, but you might want to use
a more descriptive name.
## Migrate data
Migrate your data into TimescaleDB from within the same database.
## Migrating data
1. Call [CREATE TABLE][hypertable-create-table] to make a new table based on your existing table.
You can create your indexes at the same time, so you don't have to recreate them manually. Or you can
create the table without indexes, which makes data migration faster.
<Terminal>
```sql
CREATE TABLE new_table (
LIKE old_table INCLUDING DEFAULTS INCLUDING CONSTRAINTS INCLUDING INDEXES
) WITH (
tsdb.hypertable,
tsdb.partition_column='<the name of the time column>'
);
```
```sql
CREATE TABLE new_table (
LIKE old_table INCLUDING DEFAULTS INCLUDING CONSTRAINTS EXCLUDING INDEXES
) WITH (
tsdb.hypertable,
tsdb.partition_column='<the name of the time column>'
);
```
</Terminal>
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Insert data from the old table to the new table.
```sql
INSERT INTO new_table
SELECT * FROM old_table;
```
1. If you created your new table without indexes, recreate your indexes now.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/mst/corrupt-index-duplicate/ =====
# Corrupted unique index has duplicated rows
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When you try to rebuild index with `REINDEX` it fails because of conflicting
duplicated rows.
To identify conflicting duplicate rows, you need to run a query that counts the
number of rows for each combination of columns included in the index definition.
For example, this `route` table has a `unique_route_index` index defining
unique rows based on the combination of the `source` and `destination` columns:
sql CREATE TABLE route(
source TEXT,
destination TEXT,
description TEXT
);
CREATE UNIQUE INDEX unique_route_index
ON route (source, destination);
If the `unique_route_index` is corrupt, you can find duplicated rows in the
`route` table using this query:
sql SELECT
source,
destination,
count
FROM
(SELECT
source,
destination,
COUNT(*) AS count
FROM route
GROUP BY
source,
destination) AS foo
WHERE count > 1;
The query groups the data by the same `source` and `destination` fields defined
in the index, and filters any entries with more than one occurrence.
Resolve the problematic entries in the rows by manually deleting or merging the
entries until no duplicates exist. After all duplicate entries are removed, you
can use the `REINDEX` command to rebuild the index.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/mst/changing-owner-permission-denied/ =====
# Permission denied when changing ownership of tables and hypertables
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might see this error when using the `ALTER TABLE` command to change the
ownership of tables or hypertables.
This use of `ALTER TABLE` is blocked because the `tsdbadmin` user is not a
superuser.
To change table ownership, use the [`REASSIGN`][sql-reassign] command instead:
sql REASSIGN OWNED BY TO
===== PAGE: https://docs.tigerdata.com/_troubleshooting/mst/transaction-wraparound/ =====
# Postgres transaction ID wraparound
The transaction control mechanism in Postgres assigns a transaction ID to
every row that is modified in the database; these IDs control the visibility of
that row to other concurrent transactions. The transaction ID is a 32-bit number
where two billion IDs are always in the visible past and the remaining IDs are
reserved for future transactions and are not visible to the running transaction.
To avoid a transaction wraparound of old rows, Postgres requires occasional
cleanup and freezing of old rows. This ensures that existing rows are visible
when more transactions are created. You can manually freeze the old rows by
executing `VACUUM FREEZE`. It can also be done automatically using the
`autovacuum` daemon when a configured number of transactions has been created
since the last freeze point.
In Managed Service for TimescaleDB, the transaction limit is set according to
the size of the database, up to 1.5 billion transactions. This ensures 500
million transaction IDs are available before a forced freeze and avoids
churning stable data in existing tables. To check your transaction freeze
limits, you can execute `show autovacuum_freeze_max_age` in your Postgres
instance. When the limit is reached, `autovacuum` starts freezing the old rows.
Some applications do not automatically adjust the configuration when the Postgres
settings change, which can result in unnecessary warnings. For example,
PGHero's default settings alert when 500 million transactions have been created
instead of alerting after 1.5 billion transactions. To avoid this, change the
value of the `transaction_id_danger` setting from 1,500,000,000 to
500,000,000, to receive warnings when the transaction limit reaches 1.5 billion.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/mst/low-disk-memory-cpu/ =====
# Service is running low on disk, memory, or CPU
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When your database reaches 90% of your allocated disk, memory, or CPU resources,
an automated message with the text above is sent to your email address.
You can resolve this by logging in to your Managed Service for TimescaleDB
account and increasing your available resources. From the Managed Service for TimescaleDB Dashboard, select the service that you want to increase resources
for. In the `Overview` tab, locate the `Service Plan` section, and click
`Upgrade Plan`. Select the plan that suits your requirements, and click
`Upgrade` to enable the additional resources.
If you run out of resources regularly, you might need to consider using your
resources more efficiently. Consider enabling [Hypercore][setup-hypercore],
using [continuous aggregates][howto-caggs], or
[configuring data retention][howto-dataretention] to reduce the amount of
resources your database uses.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/mst/forgotten-password/ =====
# Reset password
It happens to us all, you want to login to MST Console, and the password is somewhere
next to your keys, wherever they are.
To reset your password:
1. Open [MST Portal][mst-login].
2. Click `Forgot password`.
3. Enter your email address, then click `Reset password`.
A secure reset password link is sent to the email associated with this account. Click the link
and update your password.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/mst/resolving-dns/ =====
# Problem resolving DNS
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
services require a DNS record. When you launch a
new service the DNS record is created, and it can take some time for the new
name to propagate to DNS servers around the world.
If you move an existing service to a new Cloud provider or region, the service
is rebuilt in the new region in the background. When the service has been
rebuilt in the new region, the DNS records are updated. This could cause a short
interruption to your service while the DNS changes are propagated.
If you are unable to resolve DNS, wait a few minutes and try again.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/upgrade-no-update-path/ =====
# TimescaleDB upgrade fails with no update path
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
In some cases, when you use the `ALTER EXTENSION timescaledb UPDATE` command to
upgrade, it might fail with the above error.
This occurs if the list of available extensions does not include the version you
are trying to upgrade to, and it can occur if the package was not installed
correctly in the first place. To correct the problem, install the upgrade
package, restart Postgres, verify the version, and then attempt the upgrade
again.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/pg_dump-version-mismatch/ =====
# Versions are mismatched when dumping and restoring a database
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
The Postgres `pg_dump` command does not allow you to specify which version of
the extension to use when backing up. This can create problems if you have a
more recent version installed. For example, if you create the backup using an
older version of TimescaleDB, and when you restore it uses the current version,
without giving you an opportunity to upgrade first.
You can work around this problem when you are restoring from backup by making
sure the new Postgres instance has the same extension version as the original
database before you perform the restore. After the data is restored, you can
upgrade the version of TimescaleDB.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/upgrade-fails-already-loaded/ =====
# Upgrading fails with an error saying "old version has already been loaded"
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When you use the `ALTER EXTENSION timescaledb UPDATE` command to upgrade, this
error might appear.
This occurs if you don't run `ALTER EXTENSION timescaledb UPDATE` command as the
first command after starting a new session using psql or if you use tab
completion when running the command. Tab completion triggers metadata queries in
the background which prevents the alter extension from being the first command.
To correct the problem, execute the ALTER EXTENSION command like this:
sql psql -X -c 'ALTER EXTENSION timescaledb UPDATE;'
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/migration-errors-perms/ =====
# Errors encountered during a pg_dump migration
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
The `pg_restore` function tries to apply the TimescaleDB extension when it
copies your schema. This can cause a permissions error. If you already have the
TimescaleDB extension installed, you can safely ignore this.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/pg_restore-errors/ =====
# Errors occur after restoring from file dump
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might see the errors above when running `pg_restore`. When loading from a
logical dump make sure that you set `timescaledb.restoring` to true before loading
the dump.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/install-timescaledb-could-not-access-file/ =====
# Can't access file "timescaledb" after installation
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
If your Postgres logs have this error preventing it from starting up,
you should double check that the TimescaleDB files have been installed
to the correct location. Our installation methods use `pg_config` to
get Postgres's location. However if you have multiple versions of
Postgres installed on the same machine, the location `pg_config`
points to may not be for the version you expect. To check which
version TimescaleDB used:
bash $ pg_config --version PostgreSQL 12.3
If that is the correct version, double check that the installation path is
the one you'd expect. For example, for Postgres 11.0 installed via
Homebrew on macOS it should be `/usr/local/Cellar/postgresql/11.0/bin`:
bash $ pg_config --bindir /usr/local/Cellar/postgresql/11.0/bin
If either of those steps is not the version you are expecting, you need
to either (a) uninstall the incorrect version of Postgres if you can or
(b) update your `PATH` environmental variable to have the correct
path of `pg_config` listed first, that is, by prepending the full path:
bash export PATH = /usr/local/Cellar/postgresql/11.0/bin:$PATH
Then, reinstall TimescaleDB and it should find the correct installation
path.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/update-error-third-party-tool/ =====
# Error updating TimescaleDB when using a third-party Postgres admin tool
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
The update command `ALTER EXTENSION timescaledb UPDATE` must be the first command
executed upon connection to a database. Some admin tools execute commands before
this, which can disrupt the process. Try manually updating the database with
`psql`. For instructions, see the [updating guide][update].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/windows-install-library-not-loaded/ =====
# Error loading the timescaledb extension
If you see a message saying that Postgres cannot load the TimescaleDB library `timescaledb-<version>.dll`, start a new psql
session to your self-hosted instance and create the `timescaledb` extension as the first command:
bash psql -X -d "postgres://:@:/" -c "CREATE EXTENSION IF NOT EXISTS timescaledb;"
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/pg_dump-errors/ =====
# Errors occur when running `pg_dump`
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might see the errors above when running `pg_dump`. You can safely ignore
these. Your hypertable data is still accurately copied.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/background-worker-failed-start/ =====
# Failed to start a background worker
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
You might see this error message in the logs if background workers aren't
properly configured.
To fix this error, make sure that `max_worker_processes`,
`max_parallel_workers`, and `timescaledb.max_background_workers` are properly
set. `timescaledb.max_background_workers` should equal the number of databases
plus the number of concurrent background workers. `max_worker_processes` should
equal the sum of `timescaledb.max_background_workers` and
`max_parallel_workers`.
For more information, see the [worker configuration docs][worker-config].
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/toolkit-cannot-create-upgrade-extension/ =====
# Install or upgrade of TimescaleDB Toolkit fails
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
In some cases, when you create the TimescaleDB Toolkit extension, or upgrade it
with the `ALTER EXTENSION timescaledb_toolkit UPDATE` command, it might fail
with the above error.
This occurs if the list of available extensions does not include the version you
are trying to upgrade to, and it can occur if the package was not installed
correctly in the first place. To correct the problem, install the upgrade
package, restart Postgres, verify the version, and then attempt the update
again.
### Troubleshooting TimescaleDB Toolkit setup
1. If you're installing Toolkit from a package, check your package manager's
local repository list. Make sure the TimescaleDB repository is available and
contains Toolkit. For instructions on adding the TimescaleDB repository, see
the installation guides:
* [Linux installation guide][linux-install]
1. Update your local repository list with `apt update` or `yum update`.
1. Restart your Postgres service.
1. Check that the right version of Toolkit is among your available extensions:
```sql
SELECT * FROM pg_available_extensions
WHERE name = 'timescaledb_toolkit';
```
The result should look like this:
```bash
-[ RECORD 1 ]-----+--------------------------------------------------------------------------------------
name | timescaledb_toolkit
default_version | 1.6.0
installed_version | 1.6.0
comment | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities
```
1. Retry `CREATE EXTENSION` or `ALTER EXTENSION`.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/pg_dump-permission-denied/ =====
# Permission denied for table `job_errors` when running `pg_dump`
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
When the `pg_dump` tool tries to acquire a lock on the `job_errors`
table, if the user doesn't have the required SELECT permission, it
results in this error.
To resolve this issue, use a superuser account to grant the necessary
permissions to the user requiring the `pg_dump` tool.
Use this command to grant permissions to `<TEST_USER>`:
sql GRANT SELECT ON TABLE _timescaledb_internal.job_errors TO ;
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/update-timescaledb-could-not-access-file/ =====
# Can't access file "timescaledb-VERSION" after update
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
If the error occurs immediately after updating your version of TimescaleDB and
the file mentioned is from the previous version, it is probably due to an incomplete
update process. Within the greater Postgres server instance, each
database that has TimescaleDB installed needs to be updated with the SQL command
`ALTER EXTENSION timescaledb UPDATE;` while connected to that database. Otherwise,
the database looks for the previous version of the TimescaleDB files.
See [our update docs][update-db] for more info.
===== PAGE: https://docs.tigerdata.com/_troubleshooting/self-hosted/migration-errors/ =====
# Errors encountered during a pg_dump migration
<!---
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem?
Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same
action is applied?
* Copy this comment at the top of every troubleshooting page
-->
If you see these errors during the migration process, you can safely ignore
them. The migration still occurs successfully.
===== PAGE: https://docs.tigerdata.com/tutorials/financial-tick-data/financial-tick-dataset/ =====
# Analyze financial tick data - Set up the dataset
This tutorial uses a dataset that contains second-by-second trade data for
the most-traded crypto-assets. You optimize this time-series data in a a hypertable called `assets_real_time`.
You also create a separate table of asset symbols in a regular Postgres table named `assets`.
The dataset is updated on a nightly basis and contains data from the last four
weeks, typically around 8 million rows of data. Trades are recorded in
real-time from 180+ cryptocurrency exchanges.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data in a hypertable
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. **Connect to your Tiger Cloud service**
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. You can also connect to your service using [psql][connect-using-psql].
1. **Create a hypertable to store the real-time cryptocurrency data**
Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data:
```sql
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
## Create a standard Postgres table for relational data
When you have relational data that enhances your time-series data, store that data in
standard Postgres relational tables.
1. **Add a table to store the asset symbol and name in a relational table**
```sql
CREATE TABLE crypto_assets (
symbol TEXT UNIQUE,
"name" TEXT
);
```
You now have two tables within your Tiger Cloud service. A hypertable named `crypto_ticks`, and a normal
Postgres table named `crypto_assets`.
## Load financial data
This tutorial uses real-time cryptocurrency data, also known as tick data, from
[Twelve Data][twelve-data]. To ingest data into the tables that you created, you need to
download the dataset, then upload the data to your Tiger Cloud service.
1. Unzip [crypto_sample.zip](https://assets.timescale.com/docs/downloads/candlestick/crypto_sample.zip) to a `<local folder>`.
This test dataset contains second-by-second trade data for the most-traded crypto-assets
and a regular table of asset symbols and company names.
To import up to 100GB of data directly from your current Postgres-based database,
[migrate with downtime][migrate-with-downtime] using native Postgres tooling. To seamlessly import 100GB-10TB+
of data, use the [live migration][migrate-live] tooling supplied by Tiger Data. To add data from non-Postgres
data sources, see [Import and ingest data][data-ingest].
1. In Terminal, navigate to `<local folder>` and connect to your service.
bash psql -d "postgres://:@:/"
The connection information for a service is available in the file you downloaded when you created it.
1. At the `psql` prompt, use the `COPY` command to transfer data into your
Tiger Cloud service. If the `.csv` files aren't in your current directory,
specify the file paths in these commands:
```sql
\COPY crypto_ticks FROM 'tutorial_sample_tick.csv' CSV HEADER;
```
```sql
\COPY crypto_assets FROM 'tutorial_sample_assets.csv' CSV HEADER;
```
Because there are millions of rows of data, the `COPY` process could take a
few minutes depending on your internet connection and local client
resources.
## Connect Grafana to Tiger Cloud
To visualize the results of your queries, enable Grafana to read the data in your service:
1. **Log in to Grafana**
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
1. **Add your service as a data source**
1. Open `Connections` > `Data sources`, then click `Add new data source`.
1. Select `PostgreSQL` from the list.
1. Configure the connection:
- `Host URL`, `Database name`, `Username`, and `Password`
Configure using your [connection details][connection-info]. `Host URL` is in the format `<host>:<port>`.
- `TLS/SSL Mode`: select `require`.
- `PostgreSQL options`: enable `TimescaleDB`.
- Leave the default setting for all other fields.
1. Click `Save & test`.
Grafana checks that your details are set correctly.
===== PAGE: https://docs.tigerdata.com/tutorials/financial-tick-data/financial-tick-compress/ =====
# Compress your data using hypercore
Over time you end up with a lot of data. Since this data is mostly immutable, you can compress it
to save space and avoid incurring additional cost.
TimescaleDB is built for handling event-oriented data such as time-series and fast analytical queries, it comes with support
of [hypercore][hypercore] featuring the columnstore.
[Hypercore][hypercore] enables you to store the data in a vastly more efficient format allowing
up to 90x compression ratio compared to a normal Postgres table. However, this is highly dependent
on the data and configuration.
[Hypercore][hypercore] is implemented natively in Postgres and does not require special storage
formats. When you convert your data from the rowstore to the columnstore, TimescaleDB uses
Postgres features to transform the data into columnar format. The use of a columnar format allows a better
compression ratio since similar data is stored adjacently. For more details on the columnar format,
see [hypercore][hypercore].
A beneficial side effect of compressing data is that certain queries are significantly faster, since
less data has to be read into memory.
## Optimize your data in the columnstore
To compress the data in the `crypto_ticks` table, do the following:
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
You can also connect to your service using [psql][connect-using-psql].
1. Convert data to the columnstore:
You can do this either automatically or manually:
- [Automatically convert chunks][add_columnstore_policy] in the hypertable to the columnstore at a specific time interval:
```sql
CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '1d');
```
- [Manually convert all chunks][convert_to_columnstore] in the hypertable to the columnstore:
```sql
CALL convert_to_columnstore(c) from show_chunks('crypto_ticks') c;
```
1. Now that you have converted the chunks in your hypertable to the columnstore, compare the
size of the dataset before and after compression:
```sql
SELECT
pg_size_pretty(before_compression_total_bytes) as before,
pg_size_pretty(after_compression_total_bytes) as after
FROM hypertable_columnstore_stats('crypto_ticks');
```
This shows a significant improvement in data usage:
```sql
before | after
--------+-------
694 MB | 75 MB
(1 row)
```
## Take advantage of query speedups
Previously, data in the columnstore was segmented by the `block_id` column value.
This means fetching data by filtering or grouping on that column is
more efficient. Ordering is set to time descending. This means that when you run queries
which try to order data in the same way, you see performance benefits.
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
1. Run the following query:
sql SELECT
time_bucket('1 day', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks GROUP BY bucket, symbol;
Performance speedup is of two orders of magnitude, around 15 ms when compressed in the columnstore and
1 second when decompressed in the rowstore.
===== PAGE: https://docs.tigerdata.com/tutorials/financial-tick-data/financial-tick-query/ =====
# Analyze financial tick data - Query the data
Turning raw, real-time tick data into aggregated candlestick views is a common
task for users who work with financial data. TimescaleDB includes
[hyperfunctions][hyperfunctions]
that you can use to store and query your financial data more easily.
Hyperfunctions are SQL functions within TimescaleDB that make it easier to
manipulate and analyze time-series data in Postgres with fewer lines of code.
There are three hyperfunctions that are essential for calculating candlestick
values: [`time_bucket()`][time-bucket], [`FIRST()`][first], and [`LAST()`][last].
The `time_bucket()` hyperfunction helps you aggregate records into buckets of
arbitrary time intervals based on the timestamp value. `FIRST()` and `LAST()`
help you calculate the opening and closing prices. To calculate highest and
lowest prices, you can use the standard Postgres aggregate functions `MIN` and
`MAX`.
In TimescaleDB, the most efficient way to create candlestick views is to use
[continuous aggregates][caggs].
In this tutorial, you create a continuous aggregate for a candlestick time
bucket, and then query the aggregate with different refresh policies. Finally,
you can use Grafana to visualize your data as a candlestick chart.
## Create a continuous aggregate
To look at OHLCV values, the most effective way is to create a continuous
aggregate. In this tutorial, you create a continuous aggregate to aggregate data
for each day. You then set the aggregate to refresh every day, and to aggregate
the last two days' worth of data.
### Creating a continuous aggregate
1. Connect to the Tiger Cloud service that contains the Twelve Data
cryptocurrency dataset.
1. At the psql prompt, create the continuous aggregate to aggregate data every
minute:
```sql
CREATE MATERIALIZED VIEW one_day_candle
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 day', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks
GROUP BY bucket, symbol;
```
When you create the continuous aggregate, it refreshes by default.
1. Set a refresh policy to update the continuous aggregate every day,
if there is new data available in the hypertable for the last two days:
```sql
SELECT add_continuous_aggregate_policy('one_day_candle',
start_offset => INTERVAL '3 days',
end_offset => INTERVAL '1 day',
schedule_interval => INTERVAL '1 day');
```
## Query the continuous aggregate
When you have your continuous aggregate set up, you can query it to get the
OHLCV values.
### Querying the continuous aggregate
1. Connect to the Tiger Cloud service that contains the Twelve Data
cryptocurrency dataset.
1. At the psql prompt, use this query to select all Bitcoin OHLCV data for the
past 14 days, by time bucket:
```sql
SELECT * FROM one_day_candle
WHERE symbol = 'BTC/USD' AND bucket >= NOW() - INTERVAL '14 days'
ORDER BY bucket;
```
The result of the query looks like this:
```sql
bucket | symbol | open | high | low | close | day_volume
------------------------+---------+---------+---------+---------+---------+------------
2022-11-24 00:00:00+00 | BTC/USD | 16587 | 16781.2 | 16463.4 | 16597.4 | 21803
2022-11-25 00:00:00+00 | BTC/USD | 16597.4 | 16610.1 | 16344.4 | 16503.1 | 20788
2022-11-26 00:00:00+00 | BTC/USD | 16507.9 | 16685.5 | 16384.5 | 16450.6 | 12300
```
## Graph OHLCV data
When you have extracted the raw OHLCV data, you can use it to graph the result
in a candlestick chart, using Grafana. To do this, you need to have Grafana set
up to connect to your self-hosted TimescaleDB instance.
### Graphing OHLCV data
1. Ensure you have Grafana installed, and you are using the TimescaleDB
database that contains the Twelve Data dataset set up as a
data source.
1. In Grafana, from the `Dashboards` menu, click `New Dashboard`. In the
`New Dashboard` page, click `Add a new panel`.
1. In the `Visualizations` menu in the top right corner, select `Candlestick`
from the list. Ensure you have set the Twelve Data dataset as
your data source.
1. Click `Edit SQL` and paste in the query you used to get the OHLCV values.
1. In the `Format as` section, select `Table`.
1. Adjust elements of the table as required, and click `Apply` to save your
graph to the dashboard.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/Grafana_candlestick_1day.webp"
alt="Creating a candlestick graph in Grafana using 1-day OHLCV tick data"
/>
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-analyze/blockchain-dataset/ =====
# Analyze the Bitcoin blockchain - set up dataset
# Ingest data into a Tiger Cloud service
This tutorial uses a dataset that contains Bitcoin blockchain data for
the past five days, in a hypertable named `transactions`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data using hypertables
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
You can also connect to your service using [psql][connect-using-psql].
1. Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data:
```sql
CREATE TABLE transactions (
time TIMESTAMPTZ NOT NULL,
block_id INT,
hash TEXT,
size INT,
weight INT,
is_coinbase BOOLEAN,
output_total BIGINT,
output_total_usd DOUBLE PRECISION,
fee BIGINT,
fee_usd DOUBLE PRECISION,
details JSONB
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='block_id',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Create an index on the `hash` column to make queries for individual
transactions faster:
```sql
CREATE INDEX hash_idx ON public.transactions USING HASH (hash);
```
1. Create an index on the `block_id` column to make block-level queries faster:
When you create a hypertable, it is partitioned on the time column. TimescaleDB
automatically creates an index on the time column. However, you'll often filter
your time-series data on other columns as well. You use [indexes][indexing] to improve
query performance.
```sql
CREATE INDEX block_idx ON public.transactions (block_id);
```
1. Create a unique index on the `time` and `hash` columns to make sure you
don't accidentally insert duplicate records:
```sql
CREATE UNIQUE INDEX time_hash_idx ON public.transactions (time, hash);
```
## Load financial data
The dataset contains around 1.5 million Bitcoin transactions, the trades for five days. It includes
information about each transaction, along with the value in [satoshi][satoshi-def]. It also states if a
trade is a [coinbase][coinbase-def] transaction, and the reward a coin miner receives for mining the coin.
To ingest data into the tables that you created, you need to download the
dataset and copy the data to your database.
1. Download the `bitcoin_sample.zip` file. The file contains a `.csv`
file that contains Bitcoin transactions for the past five days. Download:
[bitcoin_sample.zip](https://assets.timescale.com/docs/downloads/bitcoin-blockchain/bitcoin_sample.zip)
1. In a new terminal window, run this command to unzip the `.csv` files:
```bash
unzip bitcoin_sample.zip
```
1. In Terminal, navigate to the folder where you unzipped the Bitcoin transactions, then
connect to your service using [psql][connect-using-psql].
1. At the `psql` prompt, use the `COPY` command to transfer data into your
Tiger Cloud service. If the `.csv` files aren't in your current directory,
specify the file paths in these commands:
```sql
\COPY transactions FROM 'tutorial_bitcoin_sample.csv' CSV HEADER;
```
Because there is over a million rows of data, the `COPY` process could take
a few minutes depending on your internet connection and local client
resources.
## Connect Grafana to Tiger Cloud
To visualize the results of your queries, enable Grafana to read the data in your service:
1. **Log in to Grafana**
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
1. **Add your service as a data source**
1. Open `Connections` > `Data sources`, then click `Add new data source`.
1. Select `PostgreSQL` from the list.
1. Configure the connection:
- `Host URL`, `Database name`, `Username`, and `Password`
Configure using your [connection details][connection-info]. `Host URL` is in the format `<host>:<port>`.
- `TLS/SSL Mode`: select `require`.
- `PostgreSQL options`: enable `TimescaleDB`.
- Leave the default setting for all other fields.
1. Click `Save & test`.
Grafana checks that your details are set correctly.
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-analyze/analyze-blockchain-query/ =====
# Analyze the Bitcoin blockchain - query the data
When you have your dataset loaded, you can create some continuous aggregates,
and start constructing queries to discover what your data tells you. This
tutorial uses [TimescaleDB hyperfunctions][about-hyperfunctions] to construct
queries that are not possible in standard Postgres.
In this section, you learn how to write queries that answer these questions:
* [Is there any connection between the number of transactions and the transaction fees?](#is-there-any-connection-between-the-number-of-transactions-and-the-transaction-fees)
* [Does the transaction volume affect the BTC-USD rate?](#does-the-transaction-volume-affect-the-btc-usd-rate)
* [Do more transactions in a block mean the block is more expensive to mine?](#do-more-transactions-in-a-block-mean-the-block-is-more-expensive-to-mine)
* [What percentage of the average miner's revenue comes from fees compared to block rewards?](#what-percentage-of-the-average-miners-revenue-comes-from-fees-compared-to-block-rewards)
* [How does block weight affect miner fees?](#how-does-block-weight-affect-miner-fees)
* [What's the average miner revenue per block?](#whats-the-average-miner-revenue-per-block)
## Create continuous aggregates
You can use [continuous aggregates][docs-cagg] to simplify and speed up your
queries. For this tutorial, you need three continuous aggregates, focusing on
three aspects of the dataset: Bitcoin transactions, blocks, and coinbase
transactions. In each continuous aggregate definition, the `time_bucket()`
function controls how large the time buckets are. The examples all use 1-hour
time buckets.
### Continuous aggregate: transactions
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, create a continuous aggregate called
`one_hour_transactions`. This view holds aggregated data about each hour of
transactions:
```sql
CREATE MATERIALIZED VIEW one_hour_transactions
WITH (timescaledb.continuous) AS
SELECT time_bucket('1 hour', time) AS bucket,
count(*) AS tx_count,
sum(fee) AS total_fee_sat,
sum(fee_usd) AS total_fee_usd,
stats_agg(fee) AS stats_fee_sat,
avg(size) AS avg_tx_size,
avg(weight) AS avg_tx_weight,
count(
CASE
WHEN (fee > output_total) THEN hash
ELSE NULL
END) AS high_fee_count
FROM transactions
WHERE (is_coinbase IS NOT TRUE)
GROUP BY bucket;
```
1. Add a refresh policy to keep the continuous aggregate up-to-date:
```sql
SELECT add_continuous_aggregate_policy('one_hour_transactions',
start_offset => INTERVAL '3 hours',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. Create a continuous aggregate called `one_hour_blocks`. This view holds
aggregated data about all the blocks that were mined each hour:
```sql
CREATE MATERIALIZED VIEW one_hour_blocks
WITH (timescaledb.continuous) AS
SELECT time_bucket('1 hour', time) AS bucket,
block_id,
count(*) AS tx_count,
sum(fee) AS block_fee_sat,
sum(fee_usd) AS block_fee_usd,
stats_agg(fee) AS stats_tx_fee_sat,
avg(size) AS avg_tx_size,
avg(weight) AS avg_tx_weight,
sum(size) AS block_size,
sum(weight) AS block_weight,
max(size) AS max_tx_size,
max(weight) AS max_tx_weight,
min(size) AS min_tx_size,
min(weight) AS min_tx_weight
FROM transactions
WHERE is_coinbase IS NOT TRUE
GROUP BY bucket, block_id;
```
1. Add a refresh policy to keep the continuous aggregate up-to-date:
```sql
SELECT add_continuous_aggregate_policy('one_hour_blocks',
start_offset => INTERVAL '3 hours',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. Create a continuous aggregate called `one_hour_coinbase`. This view holds
aggregated data about all the transactions that miners received as rewards
each hour:
```sql
CREATE MATERIALIZED VIEW one_hour_coinbase
WITH (timescaledb.continuous) AS
SELECT time_bucket('1 hour', time) AS bucket,
count(*) AS tx_count,
stats_agg(output_total, output_total_usd) AS stats_miner_revenue,
min(output_total) AS min_miner_revenue,
max(output_total) AS max_miner_revenue
FROM transactions
WHERE is_coinbase IS TRUE
GROUP BY bucket;
```
1. Add a refresh policy to keep the continuous aggregate up-to-date:
```sql
SELECT add_continuous_aggregate_policy('one_hour_coinbase',
start_offset => INTERVAL '3 hours',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
## Is there any connection between the number of transactions and the transaction fees?
Transaction fees are a major concern for blockchain users. If a blockchain is
too expensive, you might not want to use it. This query shows you whether
there's any correlation between the number of Bitcoin transactions and the fees.
The time range for this analysis is the last 2 days.
If you choose to visualize the query in Grafana, you can see the average
transaction volume and the average fee per transaction, over time. These trends
might help you decide whether to submit a transaction now or wait a few days for
fees to decrease.
### Finding a connection between the number of transactions and the transaction fees
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to average transaction volume and the
fees from the `one_hour_transactions` continuous aggregate:
```sql
SELECT
bucket AS "time",
tx_count as "tx volume",
average(stats_fee_sat) as fees
FROM one_hour_transactions
WHERE bucket > date_add('2023-11-22 00:00:00+00', INTERVAL '-2 days')
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | tx volume | fees
------------------------+-----------+--------------------
2023-11-20 01:00:00+00 | 2602 | 105963.45810914681
2023-11-20 02:00:00+00 | 33037 | 26686.814117504615
2023-11-20 03:00:00+00 | 42077 | 22875.286546094067
2023-11-20 04:00:00+00 | 46021 | 20280.843180287262
2023-11-20 05:00:00+00 | 20828 | 24694.472969080085
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-transactions-fees.webp"
width={1375} height={944}
alt="Visualizing number of transactions and fees"
/>
## Does the transaction volume affect the BTC-USD rate?
In cryptocurrency trading, there's a lot of speculation. You can adopt a
data-based trading strategy by looking at correlations between blockchain
metrics, such as transaction volume and the current exchange rate between
Bitcoin and US Dollars.
If you choose to visualize the query in Grafana, you can see the average
transaction volume, along with the BTC to US Dollar conversion rate.
### Finding the transaction volume and the BTC-USD rate
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to return the trading volume and the BTC
to US Dollar exchange rate:
```sql
SELECT
bucket AS "time",
tx_count as "tx volume",
total_fee_usd / (total_fee_sat*0.00000001) AS "btc-usd rate"
FROM one_hour_transactions
WHERE bucket > date_add('2023-11-22 00:00:00+00', INTERVAL '-2 days')
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | tx volume | btc-usd rate
------------------------+-----------+--------------------
2023-06-13 08:00:00+00 | 20063 | 25975.888587931426
2023-06-13 09:00:00+00 | 16984 | 25976.00446352126
2023-06-13 10:00:00+00 | 15856 | 25975.988587014584
2023-06-13 11:00:00+00 | 24967 | 25975.89166787936
2023-06-13 12:00:00+00 | 8575 | 25976.004209699528
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
1. [](#)To make this visualization more useful, add an override to put
the fees on a different Y-axis. In the options panel, add an override for
the `btc-usd rate` field for `Axis > Placement` and choose `Right`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-volume-rate.webp"
width={1375} height={944}
alt="Visualizing transaction volume and BTC-USD conversion rate"
/>
## Do more transactions in a block mean the block is more expensive to mine?
The number of transactions in a block can influence the overall block mining
fee. For this analysis, a larger time frame is required, so increase the
analyzed time range to 5 days.
If you choose to visualize the query in Grafana, you can see that the more
transactions in a block, the higher the mining fee becomes.
## Finding if more transactions in a block mean the block is more expensive to mine
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to return the number of transactions in a
block, compared to the mining fee:
```sql
SELECT
bucket as "time",
avg(tx_count) AS transactions,
avg(block_fee_sat)*0.00000001 AS "mining fee"
FROM one_hour_blocks
WHERE bucket > date_add('2023-11-22 00:00:00+00', INTERVAL '-5 days')
GROUP BY bucket
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | transactions | mining fee
------------------------+-----------------------+------------------------
2023-06-10 08:00:00+00 | 2322.2500000000000000 | 0.29221418750000000000
2023-06-10 09:00:00+00 | 3305.0000000000000000 | 0.50512649666666666667
2023-06-10 10:00:00+00 | 3011.7500000000000000 | 0.44783255750000000000
2023-06-10 11:00:00+00 | 2874.7500000000000000 | 0.39303009500000000000
2023-06-10 12:00:00+00 | 2339.5714285714285714 | 0.25590717142857142857
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
1. [](#)To make this visualization more useful, add an override to put
the fees on a different Y-axis. In the options panel, add an override for
the `mining fee` field for `Axis > Placement` and choose `Right`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-transactions-miningfee.webp"
width={1375} height={944}
alt="Visualizing transactions in a block and the mining fee"
/>
You can extend this analysis to find if there is the same correlation between
block weight and mining fee. More transactions should increase the block weight,
and boost the miner fee as well.
If you choose to visualize the query in Grafana, you can see the same kind of
high correlation between block weight and mining fee. The relationship weakens
when the block weight gets close to its maximum value, which is 4 million weight
units, in which case it's impossible for a block to include more transactions.
### Finding if higher block weight means the block is more expensive to mine
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to return the block weight, compared to
the mining fee:
```sql
SELECT
bucket as "time",
avg(block_weight) as "block weight",
avg(block_fee_sat*0.00000001) as "mining fee"
FROM one_hour_blocks
WHERE bucket > date_add('2023-11-22 00:00:00+00', INTERVAL '-5 days')
group by bucket
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | block weight | mining fee
------------------------+----------------------+------------------------
2023-06-10 08:00:00+00 | 3992809.250000000000 | 0.29221418750000000000
2023-06-10 09:00:00+00 | 3991766.333333333333 | 0.50512649666666666667
2023-06-10 10:00:00+00 | 3992918.250000000000 | 0.44783255750000000000
2023-06-10 11:00:00+00 | 3991873.000000000000 | 0.39303009500000000000
2023-06-10 12:00:00+00 | 3992934.000000000000 | 0.25590717142857142857
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
1. [](#)To make this visualization more useful, add an override to put
the fees on a different Y-axis. In the options panel, add an override for
the `mining fee` field for `Axis > Placement` and choose `Right`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-blockweight-miningfee.webp"
width={1375} height={944}
alt="Visualizing blockweight and the mining fee"
/>
## What percentage of the average miner's revenue comes from fees compared to block rewards?
In the previous queries, you saw that mining fees are higher when block weights
and transaction volumes are higher. This query analyzes the data from a
different perspective. Miner revenue is not only made up of miner fees, it also
includes block rewards for mining a new block. This reward is currently 6.25
BTC, and it gets halved every four years. This query looks at how much of a
miner's revenue comes from fees, compares to block rewards.
If you choose to visualize the query in Grafana, you can see that most miner
revenue actually comes from block rewards. Fees never account for more than a
few percentage points of overall revenue.
### Finding what percentage of the average miner's revenue comes from fees compared to block rewards
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to return coinbase transactions, along
with the block fees and rewards:
```sql
WITH coinbase AS (
SELECT block_id, output_total AS coinbase_tx FROM transactions
WHERE is_coinbase IS TRUE and time > date_add('2023-11-22 00:00:00+00', INTERVAL '-5 days')
)
SELECT
bucket as "time",
avg(block_fee_sat)*0.00000001 AS "fees",
FIRST((c.coinbase_tx - block_fee_sat), bucket)*0.00000001 AS "reward"
FROM one_hour_blocks b
INNER JOIN coinbase c ON c.block_id = b.block_id
GROUP BY bucket
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | fees | reward
------------------------+------------------------+------------
2023-06-10 08:00:00+00 | 0.28247062857142857143 | 6.25000000
2023-06-10 09:00:00+00 | 0.50512649666666666667 | 6.25000000
2023-06-10 10:00:00+00 | 0.44783255750000000000 | 6.25000000
2023-06-10 11:00:00+00 | 0.39303009500000000000 | 6.25000000
2023-06-10 12:00:00+00 | 0.25590717142857142857 | 6.25000000
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
1. [](#)To make this visualization more useful, stack the series to
100%. In the options panel, in the `Graph styles` section, for
`Stack series` select `100%`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-coinbase-revenue.webp"
width={1375} height={944}
alt="Visualizing coinbase revenue sources"
/>
## How does block weight affect miner fees?
You've already found that more transactions in a block mean it's more expensive
to mine. In this query, you ask if the same is true for block weights? The more
transactions a block has, the larger its weight, so the block weight and mining
fee should be tightly correlated. This query uses a 12-hour moving average to
calculate the block weight and block mining fee over time.
If you choose to visualize the query in Grafana, you can see that the block
weight and block mining fee are tightly connected. In practice, you can also see
the four million weight units size limit. This means that there's still room to
grow for individual blocks, and they could include even more transactions.
### Finding how block weight affects miner fees
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to return block weight, along with the
block fees and rewards:
```sql
WITH stats AS (
SELECT
bucket,
stats_agg(block_weight, block_fee_sat) AS block_stats
FROM one_hour_blocks
WHERE bucket > date_add('2023-11-22 00:00:00+00', INTERVAL '-5 days')
GROUP BY bucket
)
SELECT
bucket as "time",
average_y(rolling(block_stats) OVER (ORDER BY bucket RANGE '12 hours' PRECEDING)) AS "block weight",
average_x(rolling(block_stats) OVER (ORDER BY bucket RANGE '12 hours' PRECEDING))*0.00000001 AS "mining fee"
FROM stats
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | block weight | mining fee
------------------------+--------------------+---------------------
2023-06-10 09:00:00+00 | 3991766.3333333335 | 0.5051264966666666
2023-06-10 10:00:00+00 | 3992424.5714285714 | 0.47238710285714286
2023-06-10 11:00:00+00 | 3992224 | 0.44353000909090906
2023-06-10 12:00:00+00 | 3992500.111111111 | 0.37056557222222225
2023-06-10 13:00:00+00 | 3992446.65 | 0.39728022799999996
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
1. [](#)To make this visualization more useful, add an override to put
the fees on a different Y-axis. In the options panel, add an override for
the `mining fee` field for `Axis > Placement` and choose `Right`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-blockweight-rewards.webp"
width={1375} height={944}
alt="Visualizing block weight and mining fees"
/>
## What's the average miner revenue per block?
In this final query, you analyze how much revenue miners actually generate by
mining a new block on the blockchain, including fees and block rewards. To make
the analysis more interesting, add the Bitcoin to US Dollar exchange rate, and
increase the time range.
### Finding the average miner revenue per block
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to return the average miner revenue per
block, with a 12-hour moving average:
```sql
SELECT
bucket as "time",
average_y(rolling(stats_miner_revenue) OVER (ORDER BY bucket RANGE '12 hours' PRECEDING))*0.00000001 AS "revenue in BTC",
average_x(rolling(stats_miner_revenue) OVER (ORDER BY bucket RANGE '12 hours' PRECEDING)) AS "revenue in USD"
FROM one_hour_coinbase
WHERE bucket > date_add('2023-11-22 00:00:00+00', INTERVAL '-5 days')
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
time | revenue in BTC | revenue in USD
------------------------+--------------------+--------------------
2023-06-09 14:00:00+00 | 6.6732841925 | 176922.1133
2023-06-09 15:00:00+00 | 6.785046736363636 | 179885.1576818182
2023-06-09 16:00:00+00 | 6.7252952905 | 178301.02735000002
2023-06-09 17:00:00+00 | 6.716377454814815 | 178064.5978074074
2023-06-09 18:00:00+00 | 6.7784206471875 | 179709.487309375
...
```
1. [](#)To visualize this in Grafana, create a new panel, select the
Bitcoin dataset as your data source, and type the query from the previous
step. In the `Format as` section, select `Time series`.
1. [](#)To make this visualization more useful, add an override to put
the US Dollars on a different Y-axis. In the options panel, add an override
for the `mining fee` field for `Axis > Placement` and choose `Right`.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-blockweight-revenue.webp"
width={1375} height={944}
alt="Visualizing block revenue over time"
/>
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-cab/dataset-nyc/ =====
# Query time-series data tutorial - set up dataset
This tutorial uses a dataset that contains historical data from the New York City Taxi and Limousine
Commission [NYC TLC][nyc-tlc], in a hypertable named `rides`. It also includes a separate
tables of payment types and rates, in a regular Postgres table named
`payment_types`, and `rates`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data in hypertables
Time-series data represents how a system, process, or behavior changes over time. [Hypertables][hypertables-section]
are Postgres tables that help you improve insert and query performance by automatically partitioning your data by
time. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only
contains data from that range.
Hypertables exist alongside regular Postgres tables. You interact with hypertables and regular Postgres tables in the
same way. You use regular Postgres tables for relational data.
1. **Create a hypertable to store the taxi trip data**
```sql
CREATE TABLE "rides"(
vendor_id TEXT,
pickup_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
dropoff_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
passenger_count NUMERIC,
trip_distance NUMERIC,
pickup_longitude NUMERIC,
pickup_latitude NUMERIC,
rate_code INTEGER,
dropoff_longitude NUMERIC,
dropoff_latitude NUMERIC,
payment_type INTEGER,
fare_amount NUMERIC,
extra NUMERIC,
mta_tax NUMERIC,
tip_amount NUMERIC,
tolls_amount NUMERIC,
improvement_surcharge NUMERIC,
total_amount NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='pickup_datetime',
tsdb.create_default_indexes=false
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. **Add another dimension to partition your hypertable more efficiently**
```sql
SELECT add_dimension('rides', by_hash('payment_type', 2));
```
1. **Create an index to support efficient queries**
Index by vendor, rate code, and passenger count:
```sql
CREATE INDEX ON rides (vendor_id, pickup_datetime DESC);
CREATE INDEX ON rides (rate_code, pickup_datetime DESC);
CREATE INDEX ON rides (passenger_count, pickup_datetime DESC);
```
## Create standard Postgres tables for relational data
When you have other relational data that enhances your time-series data, you can
create standard Postgres tables just as you would normally. For this dataset,
there are two other tables of data, called `payment_types` and `rates`.
1. **Add a relational table to store the payment types data**
```sql
CREATE TABLE IF NOT EXISTS "payment_types"(
payment_type INTEGER,
description TEXT
);
INSERT INTO payment_types(payment_type, description) VALUES
(1, 'credit card'),
(2, 'cash'),
(3, 'no charge'),
(4, 'dispute'),
(5, 'unknown'),
(6, 'voided trip');
```
1. **Add a relational table to store the rates data**
```sql
CREATE TABLE IF NOT EXISTS "rates"(
rate_code INTEGER,
description TEXT
);
INSERT INTO rates(rate_code, description) VALUES
(1, 'standard rate'),
(2, 'JFK'),
(3, 'Newark'),
(4, 'Nassau or Westchester'),
(5, 'negotiated fare'),
(6, 'group ride');
```
You can confirm that the scripts were successful by running the `\dt` command in
the `psql` command line. You should see this:
sql
List of relations
Schema | Name | Type | Owner --------+---------------+-------+---------- public | payment_types | table | tsdbadmin public | rates | table | tsdbadmin public | rides | table | tsdbadmin (3 rows)
## Load trip data
When you have your database set up, you can load the taxi trip data into the
`rides` hypertable.
This is a large dataset, so it might take a long time, depending on your network
connection.
1. Download the dataset:
[nyc_data.tar.gz](https://assets.timescale.com/docs/downloads/nyc_data.tar.gz)
1. Use your file manager to decompress the downloaded dataset, and take a note
of the path to the `nyc_data_rides.csv` file.
1. At the psql prompt, copy the data from the `nyc_data_rides.csv` file into
your hypertable. Make sure you point to the correct path, if it is not in
your current working directory:
```sql
\COPY rides FROM nyc_data_rides.csv CSV;
```
You can check that the data has been copied successfully with this command:
sql SELECT * FROM rides LIMIT 5;
You should get five records that look like this:
sql -[ RECORD 1 ]---------+-------------------- vendor_id | 1 pickup_datetime | 2016-01-01 00:00:01 dropoff_datetime | 2016-01-01 00:11:55 passenger_count | 1 trip_distance | 1.20 pickup_longitude | -73.979423522949219 pickup_latitude | 40.744613647460938 rate_code | 1 dropoff_longitude | -73.992034912109375 dropoff_latitude | 40.753944396972656 payment_type | 2 fare_amount | 9 extra | 0.5 mta_tax | 0.5 tip_amount | 0 tolls_amount | 0 improvement_surcharge | 0.3 total_amount | 10.3
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-cab/index/ =====
# Query time-series data tutorial
New York City is home to about 9 million people. This tutorial uses historical
data from New York's yellow taxi network, provided by the New York City Taxi and
Limousine Commission [NYC TLC][nyc-tlc]. The NYC TLC tracks over 200,000
vehicles making about 1 million trips each day. Because nearly all of this data
is time-series data, proper analysis requires a purpose-built time-series
database, like Timescale.
## Prerequisites
Before you begin, make sure you have:
* Signed up for a [free Tiger Data account][cloud-install].
## Steps in this tutorial
This tutorial covers:
1. [Setting up your dataset][dataset-nyc]: Set up and connect to a Timescale
service, and load data into your database using `psql`.
1. [Querying your dataset][query-nyc]: Analyze a dataset containing NYC taxi
trip data using Tiger Cloud and Postgres.
1. [Bonus: Store data efficiently][compress-nyc]: Learn how to store and query your
NYC taxi trip data more efficiently using compression feature of Timescale.
## About querying data with Timescale
This tutorial uses the [NYC taxi data][nyc-tlc] to show you how to construct
queries for time-series data. The analysis you do in this tutorial is similar to
the kind of analysis data science organizations use to do things like plan
upgrades, set budgets, and allocate resources.
It starts by teaching you how to set up and connect to a Tiger Cloud service,
create tables, and load data into the tables using `psql`.
You then learn how to conduct analysis and monitoring on your dataset. It walks
you through using Postgres queries to obtain information, including how to use
JOINs to combine your time-series data with relational or business data.
If you have been provided with a pre-loaded dataset on your Tiger Cloud service,
go directly to the
[queries section](https://docs.tigerdata.com/tutorials/latest/nyc-taxi-geospatial/plot-nyc/).
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-cab/query-nyc/ =====
# Query time-series data tutorial - query the data
When you have your dataset loaded, you can start constructing some queries to
discover what your data tells you. In this section, you learn how to write
queries that answer these questions:
* [How many rides take place each day?](#how-many-rides-take-place-every-day)
* [What is the average fare amount?](#what-is-the-average-fare-amount)
* [How many rides of each rate type were taken?](#how-many-rides-of-each-rate-type-were-taken)
* [What kind of trips are going to and from airports?](#what-kind-of-trips-are-going-to-and-from-airports)
* [How many rides took place on New Year's Day 2016](#how-many-rides-took-place-on-new-years-day-2016)?
## How many rides take place every day?
This dataset contains ride data for January 2016. To find out how many rides
took place each day, you can use a `SELECT` statement. In this case, you want to
count the total number of rides each day, and show them in a list by date.
### Finding how many rides take place every day
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
1. At the psql prompt, use this query to select all rides taken in the first
week of January 2016, and return a count of rides for each day:
```sql
SELECT date_trunc('day', pickup_datetime) as day,
COUNT(*) FROM rides
WHERE pickup_datetime < '2016-01-08'
GROUP BY day
ORDER BY day;
```
The result of the query looks like this:
```sql
day | count
---------------------+--------
2016-01-01 00:00:00 | 345037
2016-01-02 00:00:00 | 312831
2016-01-03 00:00:00 | 302878
2016-01-04 00:00:00 | 316171
2016-01-05 00:00:00 | 343251
2016-01-06 00:00:00 | 348516
2016-01-07 00:00:00 | 364894
```
## What is the average fare amount?
You can include a function in your `SELECT` query to determine the average fare
paid by each passenger.
### Finding the average fare amount
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
2. At the psql prompt, use this query to select all rides taken in the first
week of January 2016, and return the average fare paid on each day:
```sql
SELECT date_trunc('day', pickup_datetime)
AS day, avg(fare_amount)
FROM rides
WHERE pickup_datetime < '2016-01-08'
GROUP BY day
ORDER BY day;
```
The result of the query looks like this:
```sql
day | avg
---------------------+---------------------
2016-01-01 00:00:00 | 12.8569325028909943
2016-01-02 00:00:00 | 12.4344713599355563
2016-01-03 00:00:00 | 13.0615900461571986
2016-01-04 00:00:00 | 12.2072927308323660
2016-01-05 00:00:00 | 12.0018670885154013
2016-01-06 00:00:00 | 12.0002329017893009
2016-01-07 00:00:00 | 12.1234180337303436
```
## How many rides of each rate type were taken?
Taxis in New York City use a range of different rate types for different kinds
of trips. For example, trips to the airport are charged at a flat rate from any
location within the city. This section shows you how to construct a query that
shows you the nuber of trips taken for each different fare type. It also uses a
`JOIN` statement to present the data in a more informative way.
### Finding the number of rides for each fare type
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
2. At the psql prompt, use this query to select all rides taken in the first
week of January 2016, and return the total number of trips taken for each
rate code:
```sql
SELECT rate_code, COUNT(vendor_id) AS num_trips
FROM rides
WHERE pickup_datetime < '2016-01-08'
GROUP BY rate_code
ORDER BY rate_code;
```
The result of the query looks like this:
```sql
rate_code | num_trips
-----------+-----------
1 | 2266401
2 | 54832
3 | 4126
4 | 967
5 | 7193
6 | 17
99 | 42
```
This output is correct, but it's not very easy to read, because you probably
don't know what the different rate codes mean. However, the `rates` table in the
dataset contains a human-readable description of each code. You can use a `JOIN`
statement in your query to connect the `rides` and `rates` tables, and present
information from both in your results.
### Displaying the number of rides for each fare type
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
2. At the psql prompt, copy this query to select all rides taken in the first
week of January 2016, join the `rides` and `rates` tables, and return the
total number of trips taken for each rate code, with a description of the
rate code:
```sql
SELECT rates.description, COUNT(vendor_id) AS num_trips
FROM rides
JOIN rates ON rides.rate_code = rates.rate_code
WHERE pickup_datetime < '2016-01-08'
GROUP BY rates.description
ORDER BY LOWER(rates.description);
```
The result of the query looks like this:
```sql
description | num_trips
-----------------------+-----------
group ride | 17
JFK | 54832
Nassau or Westchester | 967
negotiated fare | 7193
Newark | 4126
standard rate | 2266401
```
## What kind of trips are going to and from airports
There are two primary airports in the dataset: John F. Kennedy airport, or JFK,
is represented by rate code 2; Newark airport, or EWR, is represented by rate
code 3.
Information about the trips that are going to and from the two airports is
useful for city planning, as well as for organizations like the NYC Tourism
Bureau.
This section shows you how to construct a query that returns trip information for
trips going only to the new main airports.
### Finding what kind of trips are going to and from airports
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
1. At the psql prompt, use this query to select all rides taken to and from JFK
and Newark airports, in the first week of January 2016, and return the number
of trips to that airport, the average trip duration, average trip cost, and
average number of passengers:
```sql
SELECT rates.description,
COUNT(vendor_id) AS num_trips,
AVG(dropoff_datetime - pickup_datetime) AS avg_trip_duration,
AVG(total_amount) AS avg_total,
AVG(passenger_count) AS avg_passengers
FROM rides
JOIN rates ON rides.rate_code = rates.rate_code
WHERE rides.rate_code IN (2,3) AND pickup_datetime < '2016-01-08'
GROUP BY rates.description
ORDER BY rates.description;
```
The result of the query looks like this:
```sql
description | num_trips | avg_trip_duration | avg_total | avg_passengers
-------------+-----------+-------------------+---------------------+--------------------
JFK | 54832 | 00:46:44.614222 | 63.7791311642836300 | 1.8062080536912752
Newark | 4126 | 00:34:45.575618 | 84.3841783809985458 | 1.8979641299079011
```
## How many rides took place on New Year's Day 2016?
New York City is famous for the Ball Drop New Year's Eve celebration in Times
Square. Thousands of people gather to bring in the New Year and then head out
into the city: to their favorite bar, to gather with friends for a meal, or back
home. This section shows you how to construct a query that returns the number of
taxi trips taken on 1 January, 2016, in 30 minute intervals.
In Postgres, it's not particularly easy to segment the data by 30 minute time
intervals. To do this, you would need to use a `TRUNC` function to calculate the
quotient of the minute that a ride began in divided by 30, then truncate the
result to take the floor of that quotient. When you had that result, you could
multiply the truncated quotient by 30.
In your Tiger Cloud service, you can use the `time_bucket` function to segment
the data into time intervals instead.
### Finding how many rides took place on New Year's Day 2016
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
1. At the psql prompt, use this query to select all rides taken on the first
day of January 2016, and return a count of rides for each 30 minute interval:
```sql
SELECT time_bucket('30 minute', pickup_datetime) AS thirty_min, count(*)
FROM rides
WHERE pickup_datetime < '2016-01-02 00:00'
GROUP BY thirty_min
ORDER BY thirty_min;
```
The result of the query starts like this:
```sql
thirty_min | count
---------------------+-------
2016-01-01 00:00:00 | 10920
2016-01-01 00:30:00 | 14350
2016-01-01 01:00:00 | 14660
2016-01-01 01:30:00 | 13851
2016-01-01 02:00:00 | 13260
2016-01-01 02:30:00 | 12230
2016-01-01 03:00:00 | 11362
```
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-cab/compress-nyc/ =====
# Query time-series data tutorial - set up compression
You have now seen how to create a hypertable for your NYC taxi trip
data and query it. When ingesting a dataset like this
is seldom necessary to update old data and over time the amount of
data in the tables grows. Over time you end up with a lot of data and
since this is mostly immutable you can compress it to save space and
avoid incurring additional cost.
It is possible to use disk-oriented compression like the support
offered by ZFS and Btrfs but since TimescaleDB is build for handling
event-oriented data (such as time-series) it comes with support for
compressing data in hypertables.
TimescaleDB compression allows you to store the data in a vastly more
efficient format allowing up to 20x compression ratio compared to a
normal Postgres table, but this is of course highly dependent on the
data and configuration.
TimescaleDB compression is implemented natively in Postgres and does
not require special storage formats. Instead it relies on features of
Postgres to transform the data into columnar format before
compression. The use of a columnar format allows better compression
ratio since similar data is stored adjacently. For more details on how
the compression format looks, you can look at the [compression
design][compression-design] section.
A beneficial side-effect of compressing data is that certain queries
are significantly faster since less data has to be read into
memory.
## Compression setup
1. Connect to the Tiger Cloud service that contains the
dataset using, for example `psql`.
1. Enable compression on the table and pick suitable segment-by and
order-by column using the `ALTER TABLE` command:
```sql
ALTER TABLE rides
SET (
timescaledb.compress,
timescaledb.compress_segmentby='vendor_id',
timescaledb.compress_orderby='pickup_datetime DESC'
);
```
Depending on the choice if segment-by and order-by column you can
get very different performance and compression ratio. To learn
more about how to pick the correct columns, see
[here][segment-by-columns].
1. You can manually compress all the chunks of the hypertable using
`compress_chunk` in this manner:
```sql
SELECT compress_chunk(c) from show_chunks('rides') c;
```
You can also [automate compression][automatic-compression] by
adding a [compression policy][add_compression_policy] which will
be covered below.
1. Now that you have compressed the table you can compare the size of
the dataset before and after compression:
```sql
SELECT
pg_size_pretty(before_compression_total_bytes) as before,
pg_size_pretty(after_compression_total_bytes) as after
FROM hypertable_compression_stats('rides');
```
This shows a significant improvement in data usage:
```sql
before | after
---------+--------
1741 MB | 603 MB
```
## Add a compression policy
To avoid running the compression step each time you have some data to
compress you can set up a compression policy. The compression policy
allows you to compress data that is older than a particular age, for
example, to compress all chunks that are older than 8 days:
sql SELECT add_compression_policy('rides', INTERVAL '8 days');
Compression policies run on a regular schedule, by default once every
day, which means that you might have up to 9 days of uncompressed data
with the setting above.
You can find more information on compression policies in the
[add_compression_policy][add_compression_policy] section.
## Taking advantage of query speedups
Previously, compression was set up to be segmented by `vendor_id` column value.
This means fetching data by filtering or grouping on that column will be
more efficient. Ordering is also set to time descending so if you run queries
which try to order data with that ordering, you should see performance benefits.
For instance, if you run the query example from previous section:
sql SELECT rate_code, COUNT(vendor_id) AS num_trips FROM rides WHERE pickup_datetime < '2016-01-08' GROUP BY rate_code ORDER BY rate_code;
You should see a decent performance difference when the dataset is compressed and
when is decompressed. Try it yourself by running the previous query, decompressing
the dataset and running it again while timing the execution time. You can enable
timing query times in psql by running:
sql
\timing
To decompress the whole dataset, run:
sql
SELECT decompress_chunk(c) from show_chunks('rides') c;
On an example setup, speedup performance observed was pretty significant,
700 ms when compressed vs 1,2 sec when decompressed.
Try it yourself and see what you get!
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-query/blockchain-compress/ =====
# Compress your data using hypercore
Over time you end up with a lot of data. Since this data is mostly immutable, you can compress it
to save space and avoid incurring additional cost.
TimescaleDB is built for handling event-oriented data such as time-series and fast analytical queries, it comes with support
of [hypercore][hypercore] featuring the columnstore.
[Hypercore][hypercore] enables you to store the data in a vastly more efficient format allowing
up to 90x compression ratio compared to a normal Postgres table. However, this is highly dependent
on the data and configuration.
[Hypercore][hypercore] is implemented natively in Postgres and does not require special storage
formats. When you convert your data from the rowstore to the columnstore, TimescaleDB uses
Postgres features to transform the data into columnar format. The use of a columnar format allows a better
compression ratio since similar data is stored adjacently. For more details on the columnar format,
see [hypercore][hypercore].
A beneficial side effect of compressing data is that certain queries are significantly faster, since
less data has to be read into memory.
## Optimize your data in the columnstore
To compress the data in the `transactions` table, do the following:
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
You can also connect to your service using [psql][connect-using-psql].
1. Convert data to the columnstore:
You can do this either automatically or manually:
- [Automatically convert chunks][add_columnstore_policy] in the hypertable to the columnstore at a specific time interval:
```sql
CALL add_columnstore_policy('transactions', after => INTERVAL '1d');
```
- [Manually convert all chunks][convert_to_columnstore] in the hypertable to the columnstore:
```sql
DO $$
DECLARE
chunk_name TEXT;
BEGIN
FOR chunk_name IN (SELECT c FROM show_chunks('transactions') c)
LOOP
RAISE NOTICE 'Converting chunk: %', chunk_name; -- Optional: To see progress
CALL convert_to_columnstore(chunk_name);
END LOOP;
RAISE NOTICE 'Conversion to columnar storage complete for all chunks.'; -- Optional: Completion message
END$$;
```
## Take advantage of query speedups
Previously, data in the columnstore was segmented by the `block_id` column value.
This means fetching data by filtering or grouping on that column is
more efficient. Ordering is set to time descending. This means that when you run queries
which try to order data in the same way, you see performance benefits.
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
1. Run the following query:
sql WITH recent_blocks AS (
SELECT block_id FROM transactions
WHERE is_coinbase IS TRUE
ORDER BY time DESC
LIMIT 5
) SELECT
t.block_id, count(*) AS transaction_count,
SUM(weight) AS block_weight,
SUM(output_total_usd) AS block_value_usd
FROM transactions t INNER JOIN recent_blocks b ON b.block_id = t.block_id WHERE is_coinbase IS NOT TRUE GROUP BY t.block_id;
Performance speedup is of two orders of magnitude, around 15 ms when compressed in the columnstore and
1 second when decompressed in the rowstore.
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-query/blockchain-dataset/ =====
# Query the Bitcoin blockchain - set up dataset
# Ingest data into a Tiger Cloud service
This tutorial uses a dataset that contains Bitcoin blockchain data for
the past five days, in a hypertable named `transactions`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data using hypertables
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. Connect to your Tiger Cloud service
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. The in-Console editors display the query speed.
You can also connect to your service using [psql][connect-using-psql].
1. Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data:
```sql
CREATE TABLE transactions (
time TIMESTAMPTZ NOT NULL,
block_id INT,
hash TEXT,
size INT,
weight INT,
is_coinbase BOOLEAN,
output_total BIGINT,
output_total_usd DOUBLE PRECISION,
fee BIGINT,
fee_usd DOUBLE PRECISION,
details JSONB
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='block_id',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Create an index on the `hash` column to make queries for individual
transactions faster:
```sql
CREATE INDEX hash_idx ON public.transactions USING HASH (hash);
```
1. Create an index on the `block_id` column to make block-level queries faster:
When you create a hypertable, it is partitioned on the time column. TimescaleDB
automatically creates an index on the time column. However, you'll often filter
your time-series data on other columns as well. You use [indexes][indexing] to improve
query performance.
```sql
CREATE INDEX block_idx ON public.transactions (block_id);
```
1. Create a unique index on the `time` and `hash` columns to make sure you
don't accidentally insert duplicate records:
```sql
CREATE UNIQUE INDEX time_hash_idx ON public.transactions (time, hash);
```
## Load financial data
The dataset contains around 1.5 million Bitcoin transactions, the trades for five days. It includes
information about each transaction, along with the value in [satoshi][satoshi-def]. It also states if a
trade is a [coinbase][coinbase-def] transaction, and the reward a coin miner receives for mining the coin.
To ingest data into the tables that you created, you need to download the
dataset and copy the data to your database.
1. Download the `bitcoin_sample.zip` file. The file contains a `.csv`
file that contains Bitcoin transactions for the past five days. Download:
[bitcoin_sample.zip](https://assets.timescale.com/docs/downloads/bitcoin-blockchain/bitcoin_sample.zip)
1. In a new terminal window, run this command to unzip the `.csv` files:
```bash
unzip bitcoin_sample.zip
```
1. In Terminal, navigate to the folder where you unzipped the Bitcoin transactions, then
connect to your service using [psql][connect-using-psql].
1. At the `psql` prompt, use the `COPY` command to transfer data into your
Tiger Cloud service. If the `.csv` files aren't in your current directory,
specify the file paths in these commands:
```sql
\COPY transactions FROM 'tutorial_bitcoin_sample.csv' CSV HEADER;
```
Because there is over a million rows of data, the `COPY` process could take
a few minutes depending on your internet connection and local client
resources.
===== PAGE: https://docs.tigerdata.com/tutorials/blockchain-query/beginner-blockchain-query/ =====
# Query the Bitcoin blockchain - query data
When you have your dataset loaded, you can start constructing some queries to
discover what your data tells you. In this section, you learn how to write
queries that answer these questions:
* [What are the five most recent coinbase transactions?](#what-are-the-five-most-recent-coinbase-transactions)
* [What are the five most recent transactions?](#what-are-the-five-most-recent-transactions)
* [What are the five most recent blocks?](#what-are-the-five-most-recent-blocks?)
## What are the five most recent coinbase transactions?
In the last procedure, you excluded coinbase transactions from the results.
[Coinbase][coinbase-def] transactions are the first transaction in a block, and
they include the reward a coin miner receives for mining the coin. To find out
the most recent coinbase transactions, you can use a similar `SELECT` statement,
but search for transactions that are coinbase instead. If you include the
transaction value in US Dollars again, you'll notice that the value is $0 for
each. This is because the coin has not transferred ownership in coinbase
transactions.
### Finding the five most recent coinbase transactions
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to select the five most recent
coinbase transactions:
```sql
SELECT time, hash, block_id, fee_usd FROM transactions
WHERE is_coinbase IS TRUE
ORDER BY time DESC
LIMIT 5;
```
1. The data you get back looks a bit like this:
```sql
time | hash | block_id | fee_usd
------------------------+------------------------------------------------------------------+----------+---------
2023-06-12 23:54:18+00 | 22e4610bc12d482bc49b7a1c5b27ad18df1a6f34256c16ee7e499b511e02d71e | 794111 | 0
2023-06-12 23:53:08+00 | dde958bb96a302fd956ced32d7b98dd9860ff82d569163968ecfe29de457fedb | 794110 | 0
2023-06-12 23:44:50+00 | 75ac1fa7febe1233ee57ca11180124c5ceb61b230cdbcbcba99aecc6a3e2a868 | 794109 | 0
2023-06-12 23:44:14+00 | 1e941d66b92bf0384514ecb83231854246a94c86ff26270fbdd9bc396dbcdb7b | 794108 | 0
2023-06-12 23:41:08+00 | 60ae50447254d5f4561e1c297ee8171bb999b6310d519a0d228786b36c9ffacf | 794107 | 0
(5 rows)
```
## What are the five most recent transactions?
This dataset contains Bitcoin transactions for the last five days. To find out
the most recent transactions in the dataset, you can use a `SELECT` statement.
In this case, you want to find transactions that are not coinbase transactions,
sort them by time in descending order, and take the top five results. You also
want to see the block ID, and the value of the transaction in US Dollars.
### Finding the five most recent transactions
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to select the five most recent
non-coinbase transactions:
```sql
SELECT time, hash, block_id, fee_usd FROM transactions
WHERE is_coinbase IS NOT TRUE
ORDER BY time DESC
LIMIT 5;
```
1. The data you get back looks a bit like this:
```sql
time | hash | block_id | fee_usd
------------------------+------------------------------------------------------------------+----------+---------
2023-06-12 23:54:18+00 | 6f709d52e9aa7b2569a7f8c40e7686026ede6190d0532220a73fdac09deff973 | 794111 | 7.614
2023-06-12 23:54:18+00 | ece5429f4a76b1603aecbee31bf3d05f74142a260e4023316250849fe49115ae | 794111 | 9.306
2023-06-12 23:54:18+00 | 54a196398880a7e2e38312d4285fa66b9c7129f7d14dc68c715d783322544942 | 794111 | 13.1928
2023-06-12 23:54:18+00 | 3e83e68735af556d9385427183e8160516fafe2f30f30405711c4d64bf0778a6 | 794111 | 3.5416
2023-06-12 23:54:18+00 | ca20d073b1082d7700b3706fe2c20bc488d2fc4a9bb006eb4449efe3c3fc6b2b | 794111 | 8.6842
(5 rows)
```
## What are the five most recent blocks?
In this procedure, you use a more complicated query to return the five most
recent blocks, and show some additional information about each, including the
block weight, number of transactions in each block, and the total block value in
US Dollars.
### Finding the five most recent blocks
1. Connect to the Tiger Cloud service that contains the Bitcoin dataset.
1. At the psql prompt, use this query to select the five most recent
coinbase transactions:
```sql
WITH recent_blocks AS (
SELECT block_id FROM transactions
WHERE is_coinbase IS TRUE
ORDER BY time DESC
LIMIT 5
)
SELECT
t.block_id, count(*) AS transaction_count,
SUM(weight) AS block_weight,
SUM(output_total_usd) AS block_value_usd
FROM transactions t
INNER JOIN recent_blocks b ON b.block_id = t.block_id
WHERE is_coinbase IS NOT TRUE
GROUP BY t.block_id;
```
1. The data you get back looks a bit like this:
```sql
block_id | transaction_count | block_weight | block_value_usd
----------+-------------------+--------------+--------------------
794108 | 5625 | 3991408 | 65222453.36381342
794111 | 5039 | 3991748 | 5966031.481099684
794109 | 6325 | 3991923 | 5406755.801599815
794110 | 2525 | 3995553 | 177249139.6457974
794107 | 4464 | 3991838 | 107348519.36559173
(5 rows)
```
===== PAGE: https://docs.tigerdata.com/tutorials/OLD-financial-candlestick-tick-data/create-candlestick-aggregates/ =====
# Create candlestick aggregates
Turning raw, real-time tick data into aggregated candlestick views is a common
task for users who work with financial data. If your data is not tick data, for
example if you receive it in an already aggregated form such as 1-min buckets,
you can still use these functions to help you create
additional aggregates of your data into larger buckets, such as 1-hour or 1-day
buckets. If you want to work with pre-aggregated stock and crypto data, see the
[Analyzing Intraday Stock Data][intraday-tutorial] tutorial for more examples.
TimescaleDB includes [hyperfunctions][hyperfunctions] that you can use to
store and query your financial data more
easily. Hyperfunctions are SQL functions within TimescaleDB that make it
easier to manipulate and analyze time-series data in Postgres with fewer
lines of code. There are three
hyperfunctions that are essential for calculating candlestick values:
[`time_bucket()`][time-bucket], [`FIRST()`][first], and [`LAST()`][last].
The `time_bucket()` hyperfunction helps you aggregate records into buckets of
arbitrary time intervals based on the timestamp value. `FIRST()` and `LAST()`
help you calculate the opening and closing prices. To calculate
highest and lowest prices, you can use the standard Postgres aggregate
functions `MIN` and `MAX`.
In this first SQL example, use the hyperfunctions to query the tick data,
and turn it into 1-min candlestick values in the candlestick format:
sql -- Create the candlestick format SELECT
time_bucket('1 min', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks GROUP BY bucket, symbol
Hyperfunctions in this query:
* `time_bucket('1 min', time)`: creates 1-minute buckets
* `FIRST(price, time)`: selects the first `price` value in the bucket, ordered
by `time`, which is the
opening price of the candlestick.
* `LAST(price, time)` selects
the last `price` value in the bucket, ordered by `time`, which is
the closing price of the candlestick
Besides the hyperfunctions, you can see other common SQL aggregate functions
like `MIN` and `MAX`, which calculate the lowest and highest prices in the
candlestick.
This tutorial uses the `LAST()` hyperfunction to calculate the volume within a bucket, because
the sample tick data already provides an incremental `day_volume` field which
contains the total volume for the given day with each trade. Depending on the
raw data you receive and whether you want to calculate volume in terms of
trade count or the total value of the trades, you might need to use
`COUNT(*)`, `SUM(price)`, or subtraction between the last and first values
in the bucket to get the correct result.
## Create continuous aggregates for candlestick data
In TimescaleDB, the most efficient way to create candlestick views is to
use [continuous aggregates][caggs]. Continuous aggregates are very similar
to Postgres materialized views but with three major advantages.
First,
materialized views recreate all of the data any time the view
is refreshed, which causes history to be lost. Continuous aggregates only
refresh the buckets of aggregated data where the source, raw data has been
changed or added.
Second, continuous aggregates can be automatically refreshed using built-in,
user-configured policies. No special triggers or stored procedures are
needed to refresh the data over time.
Finally, continuous aggregates are real-time by default. Any new raw
tick data that is inserted between refreshes is automatically appended
to the materialized data. This keeps your candlestick data up-to-date
without having to write special SQL to UNION data from multiple views and
tables.
Continuous aggregates are often used to power dashboards and other user-facing
applications, like price charts, where query performance and timeliness of
your data matter.
Let's see how to create different candlestick time buckets - 1 minute,
1 hour, and 1 day - using continuous aggregates with different refresh
policies.
### 1-minute candlestick
To create a continuous aggregate of 1-minute candlestick data, use the same query
that you previously used to get the 1-minute OHLCV values. But this time, put the
query in a continuous aggregate definition:
sql /* 1-min candlestick view*/ CREATE MATERIALIZED VIEW one_min_candle WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 min', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks
GROUP BY bucket, symbol
When you run this query, TimescaleDB queries 1-minute aggregate values of all
your tick data, creating the continuous aggregate and materializing the
results. But your candlestick data has only been materialized up to the
last data point. If you want the continuous aggregate to stay up to date
as new data comes in over time, you also need to add a continuous aggregate
refresh policy. For example, to refresh the continuous aggregate every two
minutes:
sql /* Refresh the continuous aggregate every two minutes */ SELECT add_continuous_aggregate_policy('one_min_candle',
start_offset => INTERVAL '2 hour',
end_offset => INTERVAL '10 sec',
schedule_interval => INTERVAL '2 min');
The continuous aggregate refreshes every hour, so every hour new
candlesticks are materialized, **if there's new raw tick data in the hypertable**.
When this job runs, it only refreshes the time period between `start_offset`
and `end_offset`, and ignores modifications outside of this window.
In most cases, set `end_offset` to be the same or bigger as the
time bucket in the continuous aggregate definition. This makes sure that only full
buckets get materialized during the refresh process.
### 1-hour candlestick
To create a 1-hour candlestick view, follow the same process as
in the previous step, except this time set the time bucket value to be one
hour in the continuous aggregate definition:
sql /* 1-hour candlestick view */ CREATE MATERIALIZED VIEW one_hour_candle WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 hour', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks
GROUP BY bucket, symbol
Add a refresh policy to refresh the continuous aggregate every hour:
sql /* Refresh the continuous aggregate every hour */ SELECT add_continuous_aggregate_policy('one_hour_candle',
start_offset => INTERVAL '1 day',
end_offset => INTERVAL '1 min',
schedule_interval => INTERVAL '1 hour');
Notice how this example uses a different refresh policy with different
parameter values to accommodate the 1-hour time bucket in the continuous
aggregate definition. The continuous aggregate will refresh every hour, so
every hour there will be new candlestick data materialized, if there's
new raw tick data in the hypertable.
### 1-day candlestick
Create the final view in this tutorial for 1-day candlesticks using the same
process as above, using a 1-day time bucket size:
sql /* 1-day candlestick */ CREATE MATERIALIZED VIEW one_day_candle WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 day', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks
GROUP BY bucket, symbol
Add a refresh policy to refresh the continuous aggregate once a day:
sql /* Refresh the continuous aggregate every day */ SELECT add_continuous_aggregate_policy('one_day_candle',
start_offset => INTERVAL '3 day',
end_offset => INTERVAL '1 day',
schedule_interval => INTERVAL '1 day');
The refresh job runs every day, and materializes two days' worth of
candlesticks.
## Optional: add price change (delta) column in the candlestick view
As an optional step, you can add an additional column in the continuous
aggregate to calculate the price difference between the opening and closing
price within the bucket.
In general, you can calculate the price difference with the formula:
text (CLOSE PRICE - OPEN PRICE) / OPEN PRICE = delta
Calculate delta in SQL:
sql SELECT time_bucket('1 day', time) AS bucket, symbol, (LAST(price, time)-FIRST(price, time))/FIRST(price, time) AS change_pct FROM crypto_ticks WHERE price != 0 GROUP BY bucket, symbol
The full continuous aggregate definition for a 1-day candlestick with a
price-change column:
sql /* 1-day candlestick with price change column*/ CREATE MATERIALIZED VIEW one_day_candle_delta WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 day', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume,
(LAST(price, time)-FIRST(price, time))/FIRST(price, time) AS change_pct
FROM crypto_ticks
WHERE price != 0
GROUP BY bucket, symbol
## Using multiple continuous aggregates
You cannot currently create a continuous aggregate on top of another continuous aggregate.
However, this is not necessary in most cases. You can get a similar result and performance by
creating multiple continuous aggregates for the same hypertable. Due
to the efficient materialization mechanism of continuous aggregates, both
refresh and query performance should work well.
===== PAGE: https://docs.tigerdata.com/tutorials/OLD-financial-candlestick-tick-data/query-candlestick-views/ =====
# Query candlestick views
So far in this tutorial, you have created the schema to store tick data,
and set up multiple candlestick views. In this section, use some
example candlestick queries and see how they can be represented in data visualizations.
The queries in this section are example queries. The [sample data](https://assets.timescale.com/docs/downloads/crypto_sample.zip)
provided with this tutorial is updated on a regular basis to have near-time
data, typically no more than a few days old. Our sample queries reflect time
filters that might be longer than you would normally use, so feel free to
modify the time filter in the `WHERE` clause as the data ages, or as you begin
to insert updated tick readings.
## 1-min BTC/USD candlestick chart
Start with a `one_min_candle` continuous aggregate, which contains
1-min candlesticks:
sql SELECT * FROM one_min_candle WHERE symbol = 'BTC/USD' AND bucket >= NOW() - INTERVAL '24 hour' ORDER BY bucket

## 1-hour BTC/USD candlestick chart
If you find that 1-min candlesticks are too granular, you can query the
`one_hour_candle` continuous aggregate containing 1-hour candlesticks:
sql SELECT * FROM one_hour_candle WHERE symbol = 'BTC/USD' AND bucket >= NOW() - INTERVAL '2 day' ORDER BY bucket

## 1-day BTC/USD candlestick chart
To zoom out even more, query the `one_day_candle`
continuous aggregate, which has one-day candlesticks:
sql SELECT * FROM one_day_candle WHERE symbol = 'BTC/USD' AND bucket >= NOW() - INTERVAL '14 days' ORDER BY bucket

## BTC vs. ETH 1-day price changes delta line chart
You can calculate and visualize the price change differences between
two symbols. In a previous example, you saw how to do this by comparing the
opening and closing prices. But what if you want to compare today's closing
price with yesterday's closing price? Here's an example how you can achieve
this by using the [`LAG()`][lag] window function on an already existing
candlestick view:
sql SELECT *, ("close" - LAG("close", 1) OVER (PARTITION BY symbol ORDER BY bucket)) / "close" AS change_pct FROM one_day_candle WHERE symbol IN ('BTC/USD', 'ETH/USD') AND bucket >= NOW() - INTERVAL '14 days' ORDER BY bucket

===== PAGE: https://docs.tigerdata.com/tutorials/OLD-financial-candlestick-tick-data/design-tick-schema/ =====
# Design schema and ingest tick data
This tutorial shows you how to store real-time cryptocurrency or stock
tick data in TimescaleDB. The initial schema provides the foundation to
store tick data only. Once you begin to store individual transactions, you can
calculate the candlestick values using TimescaleDB continuous aggregates
based on the raw tick data. This means that our initial schema doesn't need to
specifically store candlestick data.
## Schema
This schema uses two tables:
* **crypto_assets**: a relational table that stores the symbols to monitor.
You can also include additional information about each
symbol, such as social links.
* **crypto_ticks**: a time-series table that stores the real-time tick data.
**crypto_assets:**
|Field|Description|
|-|-|
|symbol|The symbol of the crypto currency pair, such as BTC/USD|
|name|The name of the pair, such as Bitcoin USD|
**crypto_ticks:**
|Field|Description|
|-|-|
|time|Timestamp, in UTC time zone|
|symbol|Crypto pair symbol from the `crypto_assets` table|
|price|The price registered on the exchange at that time|
|day_volume|Total volume for the given day (incremental)|
Create the tables:
sql CREATE TABLE crypto_assets (
symbol TEXT UNIQUE,
"name" TEXT
);
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
);
You also need to turn the time-series table into a [hypertable][hypertable]:
sql -- convert the regular 'crypto_ticks' table into a TimescaleDB hypertable with 7-day chunks SELECT create_hypertable('crypto_ticks', 'time');
This is an important step in order to efficiently store your time-series
data in TimescaleDB.
### Using TIMESTAMP data types
It is best practice to store time values using the `TIMESTAMP WITH TIME ZONE` (`TIMESTAMPTZ`)
data type. This makes it easier to query your data
using different time zones. TimescaleDB
stores `TIMESTAMPTZ` values in UTC internally and makes the necessary
conversions for your queries.
## Insert tick data
With the hypertable and relational table created, download the sample files
containing crypto assets and tick data from the last three weeks. Insert the data
into your TimescaleDB instance.
### Inserting sample data
1. Download the sample `.csv` files (provided by [Twelve Data][twelve-data]): [crypto_sample.csv](https://assets.timescale.com/docs/downloads/candlestick/crypto_sample.zip)
```bash
wget https://assets.timescale.com/docs/downloads/candlestick/crypto_sample.zip
```
1. Unzip the file and change the directory if you need to:
```bash
unzip crypto_sample.zip
cd crypto_sample
```
1. At the `psql` prompt, insert the content of the `.csv` files into the database.
```bash
psql -x "postgres://tsdbadmin:{YOUR_PASSWORD_HERE}@{YOUR_HOSTNAME_HERE}:{YOUR_PORT_HERE}/tsdb?sslmode=require"
\COPY crypto_assets FROM 'crypto_assets.csv' CSV HEADER;
\COPY crypto_ticks FROM 'crypto_ticks.csv' CSV HEADER;
```
If you want to ingest real-time market data, instead of sample data, check out
our complementing tutorial Ingest real-time financial websocket data to
ingest data directly from the [Twelve Data][twelve-data] financial API.
===== PAGE: https://docs.tigerdata.com/tutorials/OLD-financial-candlestick-tick-data/index/ =====
# Store financial tick data in TimescaleDB using the OHLCV (candlestick) format
<!-- markdown-link-check-disable -->
[Candlestick charts][charts] are the standard way to analyze the price changes of
financial assets. They can be used to examine trends in stock prices, cryptocurrency prices,
or even NFT prices. To generate candlestick charts, you need candlestick data in
the OHLCV format. That is, you need the Open, High, Low, Close, and Volume data for
some financial assets.
This tutorial shows you how to efficiently store raw financial tick
data, create different candlestick views, and query aggregated data in
TimescaleDB using the OHLCV format. It also shows you how to download sample
data containing real-world crypto tick transactions for cryptocurrencies like
BTC, ETH, and other popular assets.
## Prerequisites
Before you begin, make sure you have:
* A TimescaleDB instance running locally or on the cloud. For more
information, see [the Getting Started guide](https://docs.tigerdata.com/getting-started/latest/)
* [`psql`][psql], DBeaver, or any other Postgres client
## What's candlestick data and OHLCV?
Candlestick charts are used in the financial sector to visualize the price
change of an asset. Each candlestick represents a time
frame (for example, 1 minute, 5 minutes, 1 hour, or similar) and shows how the asset's
price changed during that time.

Candlestick charts are generated from candlestick data, which is the collection of data points
used in the chart. This is often abbreviated
as OHLCV (open-high-low-close-volume):
* Open: opening price
* High: highest price
* Low: lowest price
* Close: closing price
* Volume: volume of transactions
These data points correspond to the bucket of time covered by the candlestick.
For example, a 1-minute candlestick would need the open and close prices for that minute.
Many Tiger Data community members use
TimescaleDB to store and analyze candlestick data. Here are some examples:
* [How Trading Strategy built a data stack for crypto quant trading][trading-strategy]
* [How Messari uses data to open the cryptoeconomy to everyone][messari]
* [How I power a (successful) crypto trading bot with TimescaleDB][bot]
Follow this tutorial and see how to set up your TimescaleDB database to consume real-time tick or aggregated financial data and generate candlestick views efficiently.
* [Design schema and ingest tick data][design]
* [Create candlestick (open-high-low-close-volume) aggregates][create]
* [Query candlestick views][query]
* [Advanced data management][manage]
===== PAGE: https://docs.tigerdata.com/tutorials/OLD-financial-candlestick-tick-data/advanced-data-management/ =====
# Advanced data management
The final part of this tutorial shows you some more advanced techniques
to efficiently manage your tick and candlestick data long-term. TimescaleDB
is equipped with multiple features that help you manage your data lifecycle
and reduce your disk storage needs as your data grows.
This section contains four examples of how you can set up automation policies on your
tick data hypertable and your candlestick continuous aggregates. This can help you
save on disk storage and improve the performance of long-range analytical queries by
automatically:
<!-- vale Google.LyHyphens = NO -->
* [Deleting older tick data](#automatically-delete-older-tick-data)
* [Deleting older candlestick data](#automatically-delete-older-candlestick-data)
* [Compressing tick data](#automatically-compress-tick-data)
* [Compressing candlestick data](#automatically-compress-candlestick-data)
<!-- vale Google.LyHyphens = YES -->
Before you implement any of these automation policies, it's important to have
a high-level understanding of chunk time intervals in TimescaleDB
hypertables and continuous aggregates. The chunk time interval you set
for your tick data table directly affects how these automation policies
work. For more information, see the
[hypertables and chunks][chunks] section.
## Hypertable chunk time intervals and automation policies
TimescaleDB uses hypertables to provide a high-level and familiar abstraction
layer to interact with Postgres tables. You just need to access one
hypertable to access all of your time-series data.
Under the hood, TimescaleDB creates chunks based on the timestamp column.
Each chunk size is determined by the [`chunk_time_interval`][interval]
parameter. You can provide this parameter when creating the hypertable, or you can change
it afterwards. If you don't provide this optional parameter, the
chunk time interval defaults to 7 days. This means that each of the
chunks in the hypertable contains 7 days' worth of data.
Knowing your chunk time interval is important. All of the TimescaleDB automation
policies described in this section depend on this information, and the chunk
time interval fundamentally affects how these policies impact your data.
In this section, learn about these automation policies and how they work in the
context of financial tick data.
## Automatically delete older tick data
Usually, the older your time-series data, the less relevant and useful it is.
This is often the case with tick data as well. As time passes, you might not
need the raw tick data any more, because you only want to query the candlestick
aggregations. In this scenario, you can decide to remove tick data
automatically from your hypertable after it gets older than a certain time
interval.
TimescaleDB has a built-in way to automatically remove raw data after a
specific time. You can set up this automation using a
[data retention policy][retention]:
sql SELECT add_retention_policy('crypto_ticks', INTERVAL '7 days');
When you run this, it adds a data retention policy to the `crypto_ticks`
hypertable that removes a chunk after all the data in the chunk becomes
older than 7 days. All records in the chunk need to be
older than 7 days before the chunk is dropped.
Knowledge of your hypertable's chunk time interval
is crucial here. If you were to set a data retention policy with
`INTERVAL '3 days'`, the policy would not remove any data after three days, because your chunk time interval is seven days. Even after three
days have passed, the most recent chunk still contains data that is newer than three
days, and so cannot be removed by the data retention policy.
If you want to change this behavior, and drop chunks more often and
sooner, experiment with different chunk time intervals. For example, if you
set the chunk time interval to be two days only, you could create a retention
policy with a 2-day interval that would drop a chunk every other day
(assuming you're ingesting data in the meantime).
For more information, see the [data retention][retention] section.
Make sure none of the continuous aggregate policies intersect with a data
retention policy. It's possible to keep the candlestick data in the continuous
aggregate and drop tick data from the underlying hypertable, but only if you
materialize data in the continuous aggregate first, before the data is dropped
from the underlying hypertable.
## Automatically delete older candlestick data
Deleting older raw tick data from your hypertable while retaining aggregate
views for longer periods is a common way of minimizing disk utilization.
However, deleting older candlestick data from the continuous aggregates can
provide another method for further control over long-term disk use.
TimescaleDB allows you to create data retention policies on continuous
aggregates as well.
Continuous aggregates also have chunk time intervals because they use
hypertables in the background. By default, the continuous aggregate's chunk
time interval is 10 times what the original hypertable's chunk time interval is.
For example, if the original hypertable's chunk time interval is 7 days, the
continuous aggregates that are on top of it will have a 70 day chunk time
interval.
You can set up a data retention policy to remove old data from
your `one_min_candle` continuous aggregate:
sql SELECT add_retention_policy('one_min_candle', INTERVAL '70 days');
This data retention policy removes chunks from the continuous aggregate
that are older than 70 days. In TimescaleDB, this is determined by the
`range_end` property of a hypertable, or in the case of a continuous
aggregate, the materialized hypertable. In practice, this means that if
you were to
define a data retention policy of 30 days for a continuous aggregate that has
a `chunk_time_interval` of 70 days, data would not be removed from the
continuous aggregates until the `range_end` of a chunk is at least 70
days older than the current time, due to the chunk time interval of the
original hypertable.
## Automatically compress tick data
TimescaleDB allows you to keep your tick data in the hypertable
but still save on storage costs with TimescaleDB's native compression.
You need to enable compression on the hypertable and set up a compression
policy to automatically compress old data.
Enable compression on `crypto_ticks` hypertable:
sql ALTER TABLE crypto_ticks SET ( timescaledb.compress, timescaledb.compress_segmentby = 'symbol' );
Set up compression policy to compress data that's older than 7 days:
sql SELECT add_compression_policy('crypto_ticks', INTERVAL '7 days');
Executing these two SQL scripts compresses chunks that are
older than 7 days.
For more information, see the [compression][compression] section.
## Automatically compress candlestick data
Beginning with [TimescaleDB 2.6][release-blog], you can also set up a
compression policy on your continuous aggregates. This is a useful feature
if you store a lot of historical candlestick data that consumes significant
disk space, but you still want to retain it for longer periods.
Enable compression on the `one_min_candle` view:
sql ALTER MATERIALIZED VIEW one_min_candle set (timescaledb.compress = true);
Add a compression policy to compress data after 70 days:
sql SELECT add_compression_policy('one_min_candle', compress_after=> INTERVAL '70 days');
Before setting a compression policy on any of the candlestick views,
set a refresh policy first. The compression policy interval should
be set so that actively refreshed time intervals are not compressed.
[Read more about compressing continuous aggregates.][caggs-compress]
===== PAGE: https://docs.tigerdata.com/tutorials/energy-data/dataset-energy/ =====
# Energy time-series data tutorial - set up dataset
This tutorial uses the energy consumption data for over a year in a
hypertable named `metrics`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data in hypertables
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. To create a hypertable to store the energy consumption data, call [CREATE TABLE][hypertable-create-table].
```sql
CREATE TABLE "metrics"(
created timestamp with time zone default now() not null,
type_id integer not null,
value double precision not null
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
## Load energy consumption data
When you have your database set up, you can load the energy consumption data
into the `metrics` hypertable.
This is a large dataset, so it might take a long time, depending on your network
connection.
1. Download the dataset:
[metrics.csv.gz](https://assets.timescale.com/docs/downloads/metrics.csv.gz)
1. Use your file manager to decompress the downloaded dataset, and take a note
of the path to the `metrics.csv` file.
1. At the psql prompt, copy the data from the `metrics.csv` file into
your hypertable. Make sure you point to the correct path, if it is not in
your current working directory:
```sql
\COPY metrics FROM metrics.csv CSV;
```
1. You can check that the data has been copied successfully with this command:
sql SELECT * FROM metrics LIMIT 5;
You should get five records that look like this:
sql
created | type_id | value
-------------------------------+---------+-------
2023-05-31 23:59:59.043264+00 | 13 | 1.78
2023-05-31 23:59:59.042673+00 | 2 | 126
2023-05-31 23:59:59.042667+00 | 11 | 1.79
2023-05-31 23:59:59.042623+00 | 23 | 0.408
2023-05-31 23:59:59.042603+00 | 12 | 0.96
## Create continuous aggregates
In modern applications, data usually grows very quickly. This means that aggregating
it into useful summaries can become very slow. If you are collecting data very frequently, you might want to aggregate your
data into minutes or hours instead. For example, if an IoT device takes
temperature readings every second, you might want to find the average temperature
for each hour. Every time you run this query, the database needs to scan the
entire table and recalculate the average. TimescaleDB makes aggregating data lightning fast, accurate, and easy with continuous aggregates.

Continuous aggregates in TimescaleDB are a kind of hypertable that is refreshed automatically
in the background as new data is added, or old data is modified. Changes to your
dataset are tracked, and the hypertable behind the continuous aggregate is
automatically updated in the background.
Continuous aggregates have a much lower maintenance burden than regular Postgres materialized
views, because the whole view is not created from scratch on each refresh. This
means that you can get on with working your data instead of maintaining your
database.
Because continuous aggregates are based on hypertables, you can query them in exactly the same way as your other tables. This includes continuous aggregates in the rowstore, compressed into the [columnstore][hypercore],
or [tiered to object storage][data-tiering]. You can even create [continuous aggregates on top of your continuous aggregates][hierarchical-caggs], for an even more fine-tuned aggregation.
[Real-time aggregation][real-time-aggregation] enables you to combine pre-aggregated data from the materialized view with the most recent raw data. This gives you up-to-date results on every query. In TimescaleDB v2.13 and later, real-time aggregates are **DISABLED** by default. In earlier versions, real-time aggregates are **ENABLED** by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
1. **Monitor energy consumption on a day-to-day basis**
1. Create a continuous aggregate `kwh_day_by_day` for energy consumption:
```sql
CREATE MATERIALIZED VIEW kwh_day_by_day(time, value)
with (timescaledb.continuous) as
SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
```
1. Add a refresh policy to keep `kwh_day_by_day` up-to-date:
```sql
SELECT add_continuous_aggregate_policy('kwh_day_by_day',
start_offset => NULL,
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. **Monitor energy consumption on an hourly basis**
1. Create a continuous aggregate `kwh_hour_by_hour` for energy consumption:
```sql
CREATE MATERIALIZED VIEW kwh_hour_by_hour(time, value)
with (timescaledb.continuous) as
SELECT time_bucket('01:00:00', metrics.created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) * 100.) / 100. AS value
FROM metrics
WHERE type_id = 5
GROUP BY 1;
```
1. Add a refresh policy to keep the continuous aggregate up-to-date:
```sql
SELECT add_continuous_aggregate_policy('kwh_hour_by_hour',
start_offset => NULL,
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
1. **Analyze your data**
Now you have made continuous aggregates, it could be a good idea to use them to perform analytics on your data.
For example, to see how average energy consumption changes during weekdays over the last year, run the following query:
```sql
WITH per_day AS (
SELECT
time,
value
FROM kwh_day_by_day
WHERE "time" at time zone 'Europe/Berlin' > date_trunc('month', time) - interval '1 year'
ORDER BY 1
), daily AS (
SELECT
to_char(time, 'Dy') as day,
value
FROM per_day
), percentile AS (
SELECT
day,
approx_percentile(0.50, percentile_agg(value)) as value
FROM daily
GROUP BY 1
ORDER BY 1
)
SELECT
d.day,
d.ordinal,
pd.value
FROM unnest(array['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) WITH ORDINALITY AS d(day, ordinal)
LEFT JOIN percentile pd ON lower(pd.day) = lower(d.day);
```
You see something like:
| day | ordinal | value |
| --- | ------- | ----- |
| Mon | 2 | 23.08078714975423 |
| Sun | 1 | 19.511430831944395 |
| Tue | 3 | 25.003118897837307 |
| Wed | 4 | 8.09300571759772 |
## Connect Grafana to Tiger Cloud
To visualize the results of your queries, enable Grafana to read the data in your service:
1. **Log in to Grafana**
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
1. **Add your service as a data source**
1. Open `Connections` > `Data sources`, then click `Add new data source`.
1. Select `PostgreSQL` from the list.
1. Configure the connection:
- `Host URL`, `Database name`, `Username`, and `Password`
Configure using your [connection details][connection-info]. `Host URL` is in the format `<host>:<port>`.
- `TLS/SSL Mode`: select `require`.
- `PostgreSQL options`: enable `TimescaleDB`.
- Leave the default setting for all other fields.
1. Click `Save & test`.
Grafana checks that your details are set correctly.
===== PAGE: https://docs.tigerdata.com/tutorials/energy-data/query-energy/ =====
# Energy consumption data tutorial - query the data
When you have your dataset loaded, you can start constructing some queries to
discover what your data tells you.
This tutorial uses [TimescaleDB hyperfunctions][about-hyperfunctions] to construct
queries that are not possible in standard Postgres.
In this section, you learn how to construct queries, to answer these questions:
* [Energy consumption by hour of day](#what-is-the-energy-consumption-by-the-hour-of-the-day)
* [Energy consumption by weekday](#what-is-the-energy-consumption-by-the-day-of-the-week).
* [Energy consumption by month](#what-is-the-energy-consumption-on-a-monthly-basis).
## What is the energy consumption by the hour of the day?
When you have your database set up for energy consumption data, you can
construct a query to find the median and the maximum consumption of energy on an
hourly basis in a typical day.
### Finding how many kilowatts of energy is consumed on an hourly basis
1. Connect to the Tiger Cloud service that contains the energy consumption dataset.
1. At the psql prompt, use the TimescaleDB Toolkit functionality to get calculate
the fiftieth percentile or the median. Then calculate the maximum energy
consumed using the standard Postgres max function:
```sql
WITH per_hour AS (
SELECT
time,
value
FROM kwh_hour_by_hour
WHERE "time" at time zone 'Europe/Berlin' > date_trunc('month', time) - interval '1 year'
ORDER BY 1
), hourly AS (
SELECT
extract(HOUR FROM time) * interval '1 hour' as hour,
value
FROM per_hour
)
SELECT
hour,
approx_percentile(0.50, percentile_agg(value)) as median,
max(value) as maximum
FROM hourly
GROUP BY 1
ORDER BY 1;
```
1. The data you get back looks a bit like this:
```sql
hour | median | maximum
----------+--------------------+---------
00:00:00 | 0.5998949812512439 | 0.6
01:00:00 | 0.5998949812512439 | 0.6
02:00:00 | 0.5998949812512439 | 0.6
03:00:00 | 1.6015944383271534 | 1.9
04:00:00 | 2.5986701108275327 | 2.7
05:00:00 | 1.4007385207185301 | 3.4
06:00:00 | 0.5998949812512439 | 2.7
07:00:00 | 0.6997720645753496 | 0.8
08:00:00 | 0.6997720645753496 | 0.8
09:00:00 | 0.6997720645753496 | 0.8
10:00:00 | 0.9003240409125329 | 1.1
11:00:00 | 0.8001143897618259 | 0.9
```
## What is the energy consumption by the day of the week?
You can also check how energy consumption varies between weekends and weekdays.
### Finding energy consumption during the weekdays
1. Connect to the Tiger Cloud service that contains the energy consumption dataset.
1. At the psql prompt, use this query to find difference in consumption during
the weekdays and the weekends:
```sql
WITH per_day AS (
SELECT
time,
value
FROM kwh_day_by_day
WHERE "time" at time zone 'Europe/Berlin' > date_trunc('month', time) - interval '1 year'
ORDER BY 1
), daily AS (
SELECT
to_char(time, 'Dy') as day,
value
FROM per_day
), percentile AS (
SELECT
day,
approx_percentile(0.50, percentile_agg(value)) as value
FROM daily
GROUP BY 1
ORDER BY 1
)
SELECT
d.day,
d.ordinal,
pd.value
FROM unnest(array['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) WITH ORDINALITY AS d(day, ordinal)
LEFT JOIN percentile pd ON lower(pd.day) = lower(d.day);
```
1. The data you get back looks a bit like this:
```sql
day | ordinal | value
-----+---------+--------------------
Mon | 2 | 23.08078714975423
Sun | 1 | 19.511430831944395
Tue | 3 | 25.003118897837307
Wed | 4 | 8.09300571759772
Sat | 7 |
Fri | 6 |
Thu | 5 |
```
## What is the energy consumption on a monthly basis?
You may also want to check the energy consumption that occurs on a monthly basis.
### Finding energy consumption for each month of the year
1. Connect to the Tiger Cloud service that contains the energy consumption
dataset.
1. At the psql prompt, use this query to find consumption for each month of the
year:
```sql
WITH per_day AS (
SELECT
time,
value
FROM kwh_day_by_day
WHERE "time" > now() - interval '1 year'
ORDER BY 1
), per_month AS (
SELECT
to_char(time, 'Mon') as month,
sum(value) as value
FROM per_day
GROUP BY 1
)
SELECT
m.month,
m.ordinal,
pd.value
FROM unnest(array['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']) WITH ORDINALITY AS m(month, ordinal)
LEFT JOIN per_month pd ON lower(pd.month) = lower(m.month)
ORDER BY ordinal;
```
1. The data you get back looks a bit like this:
```sql
month | ordinal | value
-------+---------+-------------------
Jan | 1 |
Feb | 2 |
Mar | 3 |
Apr | 4 |
May | 5 | 75.69999999999999
Jun | 6 |
Jul | 7 |
Aug | 8 |
Sep | 9 |
Oct | 10 |
Nov | 11 |
Dec | 12 |
```
1. [](#) To visualize this in Grafana, create a new panel, and select
the `Bar Chart` visualization. Select the energy consumption dataset as your
data source, and type the query from the previous step. In the `Format as`
section, select `Table`.
1. [](#) Select a color scheme so that different consumptions are shown
in different colors. In the options panel, under `Standard options`, change
the `Color scheme` to a useful `by value` range.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-energy.webp"
width={1375} height={944}
alt="Visualizing energy consumptions in Grafana"
/>
===== PAGE: https://docs.tigerdata.com/tutorials/energy-data/index/ =====
# Energy consumption data tutorial
When you are planning to switch to a rooftop solar system, it isn't easy, even
with a specialist at hand. You need details of your power consumption, typical
usage hours, distribution over a year, and other information. Collecting consumption data at the
granularity of a few seconds and then getting insights on it is key - and this is what TimescaleDB is best at.
This tutorial uses energy consumption data from a typical household
for over a year. You construct queries that look at how many watts were
consumed, and when. Additionally, you can visualize the energy consumption data
in Grafana.
## Prerequisites
Before you begin, make sure you have:
* Signed up for a [free Tiger Data account][cloud-install].
* [](#) [Signed up for a Grafana account][grafana-setup] to graph queries.
## Steps in this tutorial
This tutorial covers:
1. [Setting up your dataset][dataset-energy]: Set up and connect to a
Tiger Cloud service, and load data into the database using `psql`.
1. [Querying your dataset][query-energy]: Analyze a dataset containing energy
consumption data using Tiger Cloud and Postgres, and visualize the
results in Grafana.
1. [Bonus: Store data efficiently][compress-energy]: Learn how to store and query your
energy consumption data more efficiently using compression feature of Timescale.
## About querying data with Timescale
This tutorial uses sample energy consumption data to show you how to construct
queries for time-series data. The analysis you do in this tutorial is
similar to the kind of analysis households might use to do things like plan
their solar installation, or optimize their energy use over time.
It starts by teaching you how to set up and connect to a Tiger Cloud service,
create tables, and load data into the tables using `psql`.
You then learn how to conduct analysis and monitoring on your dataset. It also walks
you through the steps to visualize the results in Grafana.
===== PAGE: https://docs.tigerdata.com/tutorials/energy-data/compress-energy/ =====
# Energy consumption data tutorial - set up compression
You have now seen how to create a hypertable for your energy consumption
dataset and query it. When ingesting a dataset like this
is seldom necessary to update old data and over time the amount of
data in the tables grows. Over time you end up with a lot of data and
since this is mostly immutable you can compress it to save space and
avoid incurring additional cost.
It is possible to use disk-oriented compression like the support
offered by ZFS and Btrfs but since TimescaleDB is build for handling
event-oriented data (such as time-series) it comes with support for
compressing data in hypertables.
TimescaleDB compression allows you to store the data in a vastly more
efficient format allowing up to 20x compression ratio compared to a
normal Postgres table, but this is of course highly dependent on the
data and configuration.
TimescaleDB compression is implemented natively in Postgres and does
not require special storage formats. Instead it relies on features of
Postgres to transform the data into columnar format before
compression. The use of a columnar format allows better compression
ratio since similar data is stored adjacently. For more details on how
the compression format looks, you can look at the [compression
design][compression-design] section.
A beneficial side-effect of compressing data is that certain queries
are significantly faster since less data has to be read into
memory.
## Compression setup
1. Connect to the Tiger Cloud service that contains the energy
dataset using, for example `psql`.
1. Enable compression on the table and pick suitable segment-by and
order-by column using the `ALTER TABLE` command:
```sql
ALTER TABLE metrics
SET (
timescaledb.compress,
timescaledb.compress_segmentby='type_id',
timescaledb.compress_orderby='created DESC'
);
```
Depending on the choice if segment-by and order-by column you can
get very different performance and compression ratio. To learn
more about how to pick the correct columns, see
[here][segment-by-columns].
1. You can manually compress all the chunks of the hypertable using
`compress_chunk` in this manner:
```sql
SELECT compress_chunk(c) from show_chunks('metrics') c;
```
You can also [automate compression][automatic-compression] by
adding a [compression policy][add_compression_policy] which will
be covered below.
1. Now that you have compressed the table you can compare the size of
the dataset before and after compression:
```sql
SELECT
pg_size_pretty(before_compression_total_bytes) as before,
pg_size_pretty(after_compression_total_bytes) as after
FROM hypertable_compression_stats('metrics');
```
This shows a significant improvement in data usage:
```sql
before | after
--------+-------
180 MB | 16 MB
(1 row)
```
## Add a compression policy
To avoid running the compression step each time you have some data to
compress you can set up a compression policy. The compression policy
allows you to compress data that is older than a particular age, for
example, to compress all chunks that are older than 8 days:
sql SELECT add_compression_policy('metrics', INTERVAL '8 days');
Compression policies run on a regular schedule, by default once every
day, which means that you might have up to 9 days of uncompressed data
with the setting above.
You can find more information on compression policies in the
[add_compression_policy][add_compression_policy] section.
## Taking advantage of query speedups
Previously, compression was set up to be segmented by `type_id` column value.
This means fetching data by filtering or grouping on that column will be
more efficient. Ordering is also set to `created` descending so if you run queries
which try to order data with that ordering, you should see performance benefits.
For instance, if you run the query example from previous section:
sql SELECT time_bucket('1 day', created, 'Europe/Berlin') AS "time",
round((last(value, created) - first(value, created)) *
100.) / 100. AS value FROM metrics WHERE type_id = 5 GROUP BY 1;
You should see a decent performance difference when the dataset is compressed and
when is decompressed. Try it yourself by running the previous query, decompressing
the dataset and running it again while timing the execution time. You can enable
timing query times in psql by running:
sql
\timing
To decompress the whole dataset, run:
sql
SELECT decompress_chunk(c) from show_chunks('metrics') c;
On an example setup, speedup performance observed was an order of magnitude,
30 ms when compressed vs 360 ms when decompressed.
Try it yourself and see what you get!
===== PAGE: https://docs.tigerdata.com/tutorials/financial-ingest-real-time/financial-ingest-dataset/ =====
# Ingest real-time financial websocket data - Set up the dataset
This tutorial uses a dataset that contains second-by-second stock-trade data for
the top 100 most-traded symbols, in a hypertable named `stocks_real_time`. It
also includes a separate table of company symbols and company names, in a
regular Postgres table named `company`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Connect to the websocket server
When you connect to the Twelve Data API through a websocket, you create a
persistent connection between your computer and the websocket server.
You set up a Python environment, and pass two arguments to create a
websocket object and establish the connection.
### Set up a new Python environment
Create a new Python virtual environment for this project and activate it. All
the packages you need to complete for this tutorial are installed in this environment.
1. Create and activate a Python virtual environment:
```bash
virtualenv env
source env/bin/activate
```
1. Install the Twelve Data Python
[wrapper library][twelve-wrapper]
with websocket support. This library allows you to make requests to the
API and maintain a stable websocket connection.
```bash
pip install twelvedata websocket-client
```
1. Install [Psycopg2][psycopg2] so that you can connect the
TimescaleDB from your Python script:
```bash
pip install psycopg2-binary
```
### Create the websocket connection
A persistent connection between your computer and the websocket server is used
to receive data for as long as the connection is maintained. You need to pass
two arguments to create a websocket object and establish connection.
#### Websocket arguments
* `on_event`
This argument needs to be a function that is invoked whenever there's a
new data record is received from the websocket:
```python
def on_event(event):
print(event) # prints out the data record (dictionary)
```
This is where you want to implement the ingestion logic so whenever
there's new data available you insert it into the database.
* `symbols`
This argument needs to be a list of stock ticker symbols (for example,
`MSFT`) or crypto trading pairs (for example, `BTC/USD`). When using a
websocket connection you always need to subscribe to the events you want to
receive. You can do this by using the `symbols` argument or if your
connection is already created you can also use the `subscribe()` function to
get data for additional symbols.
### Connect to the websocket server
1. Create a new Python file called `websocket_test.py` and connect to the
Twelve Data servers using the `<YOUR_API_KEY>`:
```python
import time
from twelvedata import TDClient
messages_history = []
def on_event(event):
print(event) # prints out the data record (dictionary)
messages_history.append(event)
td = TDClient(apikey="<YOUR_API_KEY>")
ws = td.websocket(symbols=["BTC/USD", "ETH/USD"], on_event=on_event)
ws.subscribe(['ETH/BTC', 'AAPL'])
ws.connect()
while True:
print('messages received: ', len(messages_history))
ws.heartbeat()
time.sleep(10)
```
1. Run the Python script:
```bash
python websocket_test.py
```
1. When you run the script, you receive a response from the server about the
status of your connection:
```bash
{'event': 'subscribe-status',
'status': 'ok',
'success': [
{'symbol': 'BTC/USD', 'exchange': 'Coinbase Pro', 'mic_code': 'Coinbase Pro', 'country': '', 'type': 'Digital Currency'},
{'symbol': 'ETH/USD', 'exchange': 'Huobi', 'mic_code': 'Huobi', 'country': '', 'type': 'Digital Currency'}
],
'fails': None
}
```
When you have established a connection to the websocket server,
wait a few seconds, and you can see data records, like this:
```bash
{'event': 'price', 'symbol': 'BTC/USD', 'currency_base': 'Bitcoin', 'currency_quote': 'US Dollar', 'exchange': 'Coinbase Pro', 'type': 'Digital Currency', 'timestamp': 1652438893, 'price': 30361.2, 'bid': 30361.2, 'ask': 30361.2, 'day_volume': 49153}
{'event': 'price', 'symbol': 'BTC/USD', 'currency_base': 'Bitcoin', 'currency_quote': 'US Dollar', 'exchange': 'Coinbase Pro', 'type': 'Digital Currency', 'timestamp': 1652438896, 'price': 30380.6, 'bid': 30380.6, 'ask': 30380.6, 'day_volume': 49157}
{'event': 'heartbeat', 'status': 'ok'}
{'event': 'price', 'symbol': 'ETH/USD', 'currency_base': 'Ethereum', 'currency_quote': 'US Dollar', 'exchange': 'Huobi', 'type': 'Digital Currency', 'timestamp': 1652438899, 'price': 2089.07, 'bid': 2089.02, 'ask': 2089.03, 'day_volume': 193818}
{'event': 'price', 'symbol': 'BTC/USD', 'currency_base': 'Bitcoin', 'currency_quote': 'US Dollar', 'exchange': 'Coinbase Pro', 'type': 'Digital Currency', 'timestamp': 1652438900, 'price': 30346.0, 'bid': 30346.0, 'ask': 30346.0, 'day_volume': 49167}
```
Each price event gives you multiple data points about the given trading pair
such as the name of the exchange, and the current price. You can also
occasionally see `heartbeat` events in the response; these events signal
the health of the connection over time.
At this point the websocket connection is working successfully to pass data.
## Optimize time-series data in a hypertable
Hypertables are Postgres tables in TimescaleDB that automatically partition your time-series data by time. Time-series data represents the way a system, process, or behavior changes over time. Hypertables enable TimescaleDB to work efficiently with time-series data. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range
of time, and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and
runs the query on it, instead of going through the entire table.
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
Because TimescaleDB is 100% Postgres, you can use all the standard Postgres tables, indexes, stored
procedures, and other objects alongside your hypertables. This makes creating and working with hypertables similar
to standard Postgres.
1. **Connect to your Tiger Cloud service**
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. You can also connect to your service using [psql][connect-using-psql].
1. **Create a hypertable to store the real-time cryptocurrency data**
Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data:
```sql
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
## Create a standard Postgres table for relational data
When you have relational data that enhances your time-series data, store that data in
standard Postgres relational tables.
1. **Add a table to store the asset symbol and name in a relational table**
```sql
CREATE TABLE crypto_assets (
symbol TEXT UNIQUE,
"name" TEXT
);
```
You now have two tables within your Tiger Cloud service. A hypertable named `crypto_ticks`, and a normal
Postgres table named `crypto_assets`.
When you ingest data into a transactional database like Timescale, it is more
efficient to insert data in batches rather than inserting data row-by-row. Using
one transaction to insert multiple rows can significantly increase the overall
ingest capacity and speed of your Tiger Cloud service.
## Batching in memory
A common practice to implement batching is to store new records in memory
first, then after the batch reaches a certain size, insert all the records
from memory into the database in one transaction. The perfect batch size isn't
universal, but you can experiment with different batch sizes
(for example, 100, 1000, 10000, and so on) and see which one fits your use case better.
Using batching is a fairly common pattern when ingesting data into TimescaleDB
from Kafka, Kinesis, or websocket connections.
To ingest the data into your Tiger Cloud service, you need to implement the
`on_event` function.
After the websocket connection is set up, you can use the `on_event` function
to ingest data into the database. This is a data pipeline that ingests real-time
financial data into your Tiger Cloud service.
You can implement a batching solution in Python with Psycopg2.
You can implement the ingestion logic within the `on_event` function that
you can then pass over to the websocket object.
This function needs to:
1. Check if the item is a data item, and not websocket metadata.
1. Adjust the data so that it fits the database schema, including the data
types, and order of columns.
1. Add it to the in-memory batch, which is a list in Python.
1. If the batch reaches a certain size, insert the data, and reset or empty the list.
## Ingest data in real-time
1. Update the Python script that prints out the current batch size, so you can
follow when data gets ingested from memory into your database. Use
the `<HOST>`, `<PASSWORD>`, and `<PORT>` details for the Tiger Cloud service
where you want to ingest the data and your API key from Twelve Data:
```python
import time
import psycopg2
from twelvedata import TDClient
from psycopg2.extras import execute_values
from datetime import datetime
class WebsocketPipeline():
DB_TABLE = "stocks_real_time"
DB_COLUMNS=["time", "symbol", "price", "day_volume"]
MAX_BATCH_SIZE=100
def __init__(self, conn):
"""Connect to the Twelve Data web socket server and stream
data into the database.
Args:
conn: psycopg2 connection object
"""
self.conn = conn
self.current_batch = []
self.insert_counter = 0
def _insert_values(self, data):
if self.conn is not None:
cursor = self.conn.cursor()
sql = f"""
INSERT INTO {self.DB_TABLE} ({','.join(self.DB_COLUMNS)})
VALUES %s;"""
execute_values(cursor, sql, data)
self.conn.commit()
def _on_event(self, event):
"""This function gets called whenever there's a new data record coming
back from the server.
Args:
event (dict): data record
"""
if event["event"] == "price":
timestamp = datetime.utcfromtimestamp(event["timestamp"])
data = (timestamp, event["symbol"], event["price"], event.get("day_volume"))
self.current_batch.append(data)
print(f"Current batch size: {len(self.current_batch)}")
if len(self.current_batch) == self.MAX_BATCH_SIZE:
self._insert_values(self.current_batch)
self.insert_counter += 1
print(f"Batch insert #{self.insert_counter}")
self.current_batch = []
def start(self, symbols):
"""Connect to the web socket server and start streaming real-time data
into the database.
Args:
symbols (list of symbols): List of stock/crypto symbols
"""
td = TDClient(apikey="<YOUR_API_KEY")
ws = td.websocket(on_event=self._on_event)
ws.subscribe(symbols)
ws.connect()
while True:
ws.heartbeat()
time.sleep(10)
onn = psycopg2.connect(database="tsdb",
host="<HOST>",
user="tsdbadmin",
password="<PASSWORD>",
port="<PORT>")
symbols = ["BTC/USD", "ETH/USD", "MSFT", "AAPL"]
websocket = WebsocketPipeline(conn)
websocket.start(symbols=symbols)
```
1. Run the script:
```bash
python websocket_test.py
```
You can even create separate Python scripts to start multiple websocket
connections for different types of symbols, for example, one for stock, and
another one for cryptocurrency prices.
### Troubleshooting
If you see an error message similar to this:
bash 2022-05-13 18:51:41,976 - ws-twelvedata - ERROR - TDWebSocket ERROR: Handshake status 200 OK
Then check that you use a proper API key received from Twelve Data.
## Connect Grafana to Tiger Cloud
To visualize the results of your queries, enable Grafana to read the data in your service:
1. **Log in to Grafana**
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
1. **Add your service as a data source**
1. Open `Connections` > `Data sources`, then click `Add new data source`.
1. Select `PostgreSQL` from the list.
1. Configure the connection:
- `Host URL`, `Database name`, `Username`, and `Password`
Configure using your [connection details][connection-info]. `Host URL` is in the format `<host>:<port>`.
- `TLS/SSL Mode`: select `require`.
- `PostgreSQL options`: enable `TimescaleDB`.
- Leave the default setting for all other fields.
1. Click `Save & test`.
Grafana checks that your details are set correctly.
===== PAGE: https://docs.tigerdata.com/tutorials/financial-ingest-real-time/financial-ingest-query/ =====
# Ingest real-time financial websocket data - Query the data
To look at OHLCV values, the most effective way is to create a continuous
aggregate. You can create a continuous aggregate to aggregate data
for each hour, then set the aggregate to refresh every hour, and aggregate
the last two hours' worth of data.
## Creating a continuous aggregate
1. Connect to the Tiger Cloud service `tsdb` that contains the Twelve Data
stocks dataset.
1. At the psql prompt, create the continuous aggregate to aggregate data every
minute:
```sql
CREATE MATERIALIZED VIEW one_hour_candle
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1 hour', time) AS bucket,
symbol,
FIRST(price, time) AS "open",
MAX(price) AS high,
MIN(price) AS low,
LAST(price, time) AS "close",
LAST(day_volume, time) AS day_volume
FROM crypto_ticks
GROUP BY bucket, symbol;
```
When you create the continuous aggregate, it refreshes by default.
1. Set a refresh policy to update the continuous aggregate every hour,
if there is new data available in the hypertable for the last two hours:
```sql
SELECT add_continuous_aggregate_policy('one_hour_candle',
start_offset => INTERVAL '3 hours',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '1 hour');
```
## Query the continuous aggregate
When you have your continuous aggregate set up, you can query it to get the
OHLCV values.
### Querying the continuous aggregate
1. Connect to the Tiger Cloud service that contains the Twelve Data
stocks dataset.
1. At the psql prompt, use this query to select all `AAPL` OHLCV data for the
past 5 hours, by time bucket:
```sql
SELECT * FROM one_hour_candle
WHERE symbol = 'AAPL' AND bucket >= NOW() - INTERVAL '5 hours'
ORDER BY bucket;
```
The result of the query looks like this:
```sql
bucket | symbol | open | high | low | close | day_volume
------------------------+---------+---------+---------+---------+---------+------------
2023-05-30 08:00:00+00 | AAPL | 176.31 | 176.31 | 176 | 176.01 |
2023-05-30 08:01:00+00 | AAPL | 176.27 | 176.27 | 176.02 | 176.2 |
2023-05-30 08:06:00+00 | AAPL | 176.03 | 176.04 | 175.95 | 176 |
2023-05-30 08:07:00+00 | AAPL | 175.95 | 176 | 175.82 | 175.91 |
2023-05-30 08:08:00+00 | AAPL | 175.92 | 176.02 | 175.8 | 176.02 |
2023-05-30 08:09:00+00 | AAPL | 176.02 | 176.02 | 175.9 | 175.98 |
2023-05-30 08:10:00+00 | AAPL | 175.98 | 175.98 | 175.94 | 175.94 |
2023-05-30 08:11:00+00 | AAPL | 175.94 | 175.94 | 175.91 | 175.91 |
2023-05-30 08:12:00+00 | AAPL | 175.9 | 175.94 | 175.9 | 175.94 |
```
## Graph OHLCV data
When you have extracted the raw OHLCV data, you can use it to graph the result
in a candlestick chart, using Grafana. To do this, you need to have Grafana set
up to connect to your self-hosted TimescaleDB instance.
### Graphing OHLCV data
1. Ensure you have Grafana installed, and you are using the TimescaleDB
database that contains the Twelve Data dataset set up as a
data source.
1. In Grafana, from the `Dashboards` menu, click `New Dashboard`. In the
`New Dashboard` page, click `Add a new panel`.
1. In the `Visualizations` menu in the top right corner, select `Candlestick`
from the list. Ensure you have set the Twelve Data dataset as
your data source.
1. Click `Edit SQL` and paste in the query you used to get the OHLCV values.
1. In the `Format as` section, select `Table`.
1. Adjust elements of the table as required, and click `Apply` to save your
graph to the dashboard.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/Grafana_candlestick_1day.webp"
alt="Creating a candlestick graph in Grafana using 1-day OHLCV tick data"
/>
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-geospatial/dataset-nyc/ =====
# Plot geospatial time-series data tutorial - set up dataset
This tutorial uses a dataset that contains historical data from the New York City Taxi and Limousine
Commission [NYC TLC][nyc-tlc], in a hypertable named `rides`. It also includes a separate
tables of payment types and rates, in a regular Postgres table named
`payment_types`, and `rates`.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Optimize time-series data in hypertables
Time-series data represents how a system, process, or behavior changes over time. [Hypertables][hypertables-section]
are Postgres tables that help you improve insert and query performance by automatically partitioning your data by
time. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time, and only
contains data from that range.
Hypertables exist alongside regular Postgres tables. You interact with hypertables and regular Postgres tables in the
same way. You use regular Postgres tables for relational data.
1. **Create a hypertable to store the taxi trip data**
```sql
CREATE TABLE "rides"(
vendor_id TEXT,
pickup_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
dropoff_datetime TIMESTAMP WITHOUT TIME ZONE NOT NULL,
passenger_count NUMERIC,
trip_distance NUMERIC,
pickup_longitude NUMERIC,
pickup_latitude NUMERIC,
rate_code INTEGER,
dropoff_longitude NUMERIC,
dropoff_latitude NUMERIC,
payment_type INTEGER,
fare_amount NUMERIC,
extra NUMERIC,
mta_tax NUMERIC,
tip_amount NUMERIC,
tolls_amount NUMERIC,
improvement_surcharge NUMERIC,
total_amount NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='pickup_datetime',
tsdb.create_default_indexes=false
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. **Add another dimension to partition your hypertable more efficiently**
```sql
SELECT add_dimension('rides', by_hash('payment_type', 2));
```
1. **Create an index to support efficient queries**
Index by vendor, rate code, and passenger count:
```sql
CREATE INDEX ON rides (vendor_id, pickup_datetime DESC);
CREATE INDEX ON rides (rate_code, pickup_datetime DESC);
CREATE INDEX ON rides (passenger_count, pickup_datetime DESC);
```
## Create standard Postgres tables for relational data
When you have other relational data that enhances your time-series data, you can
create standard Postgres tables just as you would normally. For this dataset,
there are two other tables of data, called `payment_types` and `rates`.
1. **Add a relational table to store the payment types data**
```sql
CREATE TABLE IF NOT EXISTS "payment_types"(
payment_type INTEGER,
description TEXT
);
INSERT INTO payment_types(payment_type, description) VALUES
(1, 'credit card'),
(2, 'cash'),
(3, 'no charge'),
(4, 'dispute'),
(5, 'unknown'),
(6, 'voided trip');
```
1. **Add a relational table to store the rates data**
```sql
CREATE TABLE IF NOT EXISTS "rates"(
rate_code INTEGER,
description TEXT
);
INSERT INTO rates(rate_code, description) VALUES
(1, 'standard rate'),
(2, 'JFK'),
(3, 'Newark'),
(4, 'Nassau or Westchester'),
(5, 'negotiated fare'),
(6, 'group ride');
```
You can confirm that the scripts were successful by running the `\dt` command in
the `psql` command line. You should see this:
sql
List of relations
Schema | Name | Type | Owner --------+---------------+-------+---------- public | payment_types | table | tsdbadmin public | rates | table | tsdbadmin public | rides | table | tsdbadmin (3 rows)
## Load trip data
When you have your database set up, you can load the taxi trip data into the
`rides` hypertable.
This is a large dataset, so it might take a long time, depending on your network
connection.
1. Download the dataset:
[nyc_data.tar.gz](https://assets.timescale.com/docs/downloads/nyc_data.tar.gz)
1. Use your file manager to decompress the downloaded dataset, and take a note
of the path to the `nyc_data_rides.csv` file.
1. At the psql prompt, copy the data from the `nyc_data_rides.csv` file into
your hypertable. Make sure you point to the correct path, if it is not in
your current working directory:
```sql
\COPY rides FROM nyc_data_rides.csv CSV;
```
You can check that the data has been copied successfully with this command:
sql SELECT * FROM rides LIMIT 5;
You should get five records that look like this:
sql -[ RECORD 1 ]---------+-------------------- vendor_id | 1 pickup_datetime | 2016-01-01 00:00:01 dropoff_datetime | 2016-01-01 00:11:55 passenger_count | 1 trip_distance | 1.20 pickup_longitude | -73.979423522949219 pickup_latitude | 40.744613647460938 rate_code | 1 dropoff_longitude | -73.992034912109375 dropoff_latitude | 40.753944396972656 payment_type | 2 fare_amount | 9 extra | 0.5 mta_tax | 0.5 tip_amount | 0 tolls_amount | 0 improvement_surcharge | 0.3 total_amount | 10.3
## Connect Grafana to Tiger Cloud
To visualize the results of your queries, enable Grafana to read the data in your service:
1. **Log in to Grafana**
In your browser, log in to either:
- Self-hosted Grafana: at `http://localhost:3000/`. The default credentials are `admin`, `admin`.
- Grafana Cloud: use the URL and credentials you set when you created your account.
1. **Add your service as a data source**
1. Open `Connections` > `Data sources`, then click `Add new data source`.
1. Select `PostgreSQL` from the list.
1. Configure the connection:
- `Host URL`, `Database name`, `Username`, and `Password`
Configure using your [connection details][connection-info]. `Host URL` is in the format `<host>:<port>`.
- `TLS/SSL Mode`: select `require`.
- `PostgreSQL options`: enable `TimescaleDB`.
- Leave the default setting for all other fields.
1. Click `Save & test`.
Grafana checks that your details are set correctly.
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-geospatial/index/ =====
# Plot geospatial time-series data tutorial
New York City is home to about 9 million people. This tutorial uses historical
data from New York's yellow taxi network, provided by the New York City Taxi and
Limousine Commission [NYC TLC][nyc-tlc]. The NYC TLC tracks over 200,000
vehicles making about 1 million trips each day. Because nearly all of this data
is time-series data, proper analysis requires a purpose-built time-series
database, like Timescale.
In the [beginner NYC taxis tutorial][beginner-fleet], you looked at
constructing queries that looked at how many rides were taken, and when. The NYC
taxi cab dataset also contains information about where each ride was picked up.
This is geospatial data, and you can use a Postgres extension called PostGIS
to examine where rides are originating from. Additionally, you can visualize
the data in Grafana, by overlaying it on a map.
## Prerequisites
Before you begin, make sure you have:
* Signed up for a [free Tiger Data account][cloud-install].
* [](#) If you want to graph your queries, signed up for a
[Grafana account][grafana-setup].
## Steps in this tutorial
This tutorial covers:
1. [Setting up your dataset][dataset-nyc]: Set up and connect to a Timescale
service, and load data into your database using `psql`.
1. [Querying your dataset][query-nyc]: Analyze a dataset containing NYC taxi
trip data using Tiger Cloud and Postgres, and plot the results in Grafana.
## About querying data with Timescale
This tutorial uses the [NYC taxi data][nyc-tlc] to show you how to construct
queries for geospatial time-series data. The analysis you do in this tutorial is
similar to the kind of analysis civic organizations do to plan
new roads and public services.
It starts by teaching you how to set up and connect to a Tiger Cloud service,
create tables, and load data into the tables using `psql`. If you have already
completed the [first NYC taxis tutorial][beginner-fleet], then you already
have the dataset loaded, and you can skip [straight to the queries][plot-nyc].
You then learn how to conduct analysis and monitoring on your dataset. It walks
you through using Postgres queries with the PostGIS extension to obtain
information, and plotting the results in Grafana.
===== PAGE: https://docs.tigerdata.com/tutorials/nyc-taxi-geospatial/plot-nyc/ =====
# Plot geospatial time-series data tutorial - query the data
When you have your dataset loaded, you can start constructing some queries to
discover what your data tells you. In this section, you learn how to combine the
data in the NYC taxi dataset with geospatial data from [PostGIS][postgis], to
answer these questions:
* [How many rides on New Year's Day 2016 originated from Times Square?](#how-many-rides-on-new-years-day-2016-originated-from-times-square)
* [Which rides traveled more than 5 miles in Manhattan?](#which-rides-traveled-more-than-5-miles-in-manhattan).
## Set up your dataset for PostGIS
To answer these geospatial questions, you need the ride count data from the NYC
taxi dataset, but you also need some geospatial data to work out which trips
originated where. TimescaleDB is compatible with all other Postgres extensions,
so you can use the [PostGIS][postgis] extension to slice the data by time and
location.
With the extension loaded, you alter your hypertable so it's ready for geospatial
queries. The `rides` table contains columns for pickup latitude and longitude,
but it needs to be converted into geometry coordinates so that it works well
with PostGIS.
### Setting up your dataset for PostGIS
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
1. At the psql prompt, add the PostGIS extension:
```sql
CREATE EXTENSION postgis;
```
You can check that PostGIS is installed properly by checking that it appears
in the extension list when you run the `\dx` command.
1. Alter the hypertable to add geometry columns for ride pick up and drop off
locations:
```sql
ALTER TABLE rides ADD COLUMN pickup_geom geometry(POINT,2163);
ALTER TABLE rides ADD COLUMN dropoff_geom geometry(POINT,2163);
```
1. Convert the latitude and longitude points into geometry coordinates, so that
they work well with PostGIS. This could take a while, as it needs to update
all the data in both columns:
```sql
UPDATE rides SET pickup_geom = ST_Transform(ST_SetSRID(ST_MakePoint(pickup_longitude,pickup_latitude),4326),2163),
dropoff_geom = ST_Transform(ST_SetSRID(ST_MakePoint(dropoff_longitude,dropoff_latitude),4326),2163);
```
## How many rides on New Year's Day 2016 originated from Times Square?
When you have your database set up for PostGIS data, you can construct a query
to return the number of rides on New Year's Day that originated in Times Square,
in 30-minute buckets.
### Finding how many rides on New Year's Day 2016 originated from Times Square
Times Square is located at (40.7589,-73.9851).
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
1. At the psql prompt, use this query to select all rides taken in the first
day of January 2016 that picked up within 400m of Times Square, and return a
count of rides for each 30 minute interval:
```sql
SELECT time_bucket('30 minutes', pickup_datetime) AS thirty_min,
COUNT(*) AS near_times_sq
FROM rides
WHERE ST_Distance(pickup_geom, ST_Transform(ST_SetSRID(ST_MakePoint(-73.9851,40.7589),4326),2163)) < 400
AND pickup_datetime < '2016-01-01 14:00'
GROUP BY thirty_min
ORDER BY thirty_min;
```
1. The data you get back looks a bit like this:
```sql
thirty_min | near_times_sq
---------------------+---------------
2016-01-01 00:00:00 | 74
2016-01-01 00:30:00 | 102
2016-01-01 01:00:00 | 120
2016-01-01 01:30:00 | 98
2016-01-01 02:00:00 | 112
```
## Which rides traveled more than 5 miles in Manhattan?
This query is especially well suited to plot on a map. It looks at
rides that were longer than 5 miles, within the city of Manhattan.
In this query, you want to return rides longer than 5 miles, but also include
the distance, so that you can visualize longer distances with different visual
treatments. The query also includes a `WHERE` clause to apply a geospatial
boundary, looking for trips within 2 km of Times Square. Finally, in the
`GROUP BY` clause, supply the `trip_distance` and location variables so that
Grafana can plot the data properly.
### Finding rides that traveled more than 5 miles in Manhattan
1. Connect to the Tiger Cloud service that contains the NYC taxi dataset.
1. At the psql prompt, use this query to find rides longer than 5 miles in
Manhattan:
```sql
SELECT time_bucket('5m', rides.pickup_datetime) AS time,
rides.trip_distance AS value,
rides.pickup_latitude AS latitude,
rides.pickup_longitude AS longitude
FROM rides
WHERE rides.pickup_datetime BETWEEN '2016-01-01T01:41:55.986Z' AND '2016-01-01T07:41:55.986Z' AND
ST_Distance(pickup_geom,
ST_Transform(ST_SetSRID(ST_MakePoint(-73.9851,40.7589),4326),2163)
) < 2000
GROUP BY time,
rides.trip_distance,
rides.pickup_latitude,
rides.pickup_longitude
ORDER BY time
LIMIT 500;
```
1. The data you get back looks a bit like this:
```sql
time | value | latitude | longitude
---------------------+-------+--------------------+---------------------
2016-01-01 01:40:00 | 0.00 | 40.752281188964844 | -73.975021362304688
2016-01-01 01:40:00 | 0.09 | 40.755722045898437 | -73.967872619628906
2016-01-01 01:40:00 | 0.15 | 40.752742767333984 | -73.977737426757813
2016-01-01 01:40:00 | 0.15 | 40.756877899169922 | -73.969779968261719
2016-01-01 01:40:00 | 0.18 | 40.756717681884766 | -73.967330932617188
...
```
1. [](#) To visualize this in Grafana, create a new panel, and select the
`Geomap` visualization. Select the NYC taxis dataset as your data source,
and type the query from the previous step. In the `Format as` section,
select `Table`. Your world map now shows a dot over New York, zoom in
to see the visualization.
1. [](#) To make this visualization more useful, change the way that the
rides are displayed. In the options panel, under `Data layer`, add a layer
called `Distance traveled` and select the `markers` option. In the `Color`
section, select `value`. You can also adjust the symbol and size here.
1. [](#) Select a color scheme so that different ride lengths are shown
in different colors. In the options panel, under `Standard options`, change
the `Color scheme` to a useful `by value` range. This example uses the
`Blue-Yellow-Red (by value)` option.
<img
class="main-content__illustration"
src="https://assets.timescale.com/docs/images/grafana-postgis.webp"
width={1375} height={944}
alt="Visualizing taxi journeys by distance in Grafana"
/>
===== PAGE: https://docs.tigerdata.com/api/configuration/tiger-postgres/ =====
# TimescaleDB configuration and tuning
Just as you can tune settings in Postgres, TimescaleDB provides a number of configuration
settings that may be useful to your specific installation and performance needs. These can
also be set within the `postgresql.conf` file or as command-line parameters
when starting Postgres.
## Query Planning and Execution
### `timescaledb.enable_chunkwise_aggregation (bool)`
If enabled, aggregations are converted into partial aggregations during query
planning. The first part of the aggregation is executed on a per-chunk basis.
Then, these partial results are combined and finalized. Splitting aggregations
decreases the size of the created hash tables and increases data locality, which
speeds up queries.
### `timescaledb.vectorized_aggregation (bool)`
Enables or disables the vectorized optimizations in the query executor. For
example, the `sum()` aggregation function on compressed chunks can be optimized
in this way.
### `timescaledb.enable_merge_on_cagg_refresh (bool)`
Set to `ON` to dramatically decrease the amount of data written on a continuous aggregate
in the presence of a small number of changes, reduce the i/o cost of refreshing a
[continuous aggregate][continuous-aggregates], and generate fewer Write-Ahead Logs (WAL). Only works for continuous aggregates that don't have compression enabled.
Please refer to the [Grand Unified Configuration (GUC) parameters][gucs] for a complete list.
## Policies
### `timescaledb.max_background_workers (int)`
Max background worker processes allocated to TimescaleDB. Set to at least 1 +
the number of databases loaded with the TimescaleDB extension in a Postgres instance. Default value is 16.
## Tiger Cloud service tuning
### `timescaledb.disable_load (bool)`
Disable the loading of the actual extension
## Administration
### `timescaledb.restoring (bool)`
Set TimescaleDB in restoring mode. It is disabled by default.
### `timescaledb.license (string)`
Change access to features based on the TimescaleDB license in use. For example,
setting `timescaledb.license` to `apache` limits TimescaleDB to features that
are implemented under the Apache 2 license. The default value is `timescale`,
which allows access to all features.
### `timescaledb.telemetry_level (enum)`
Telemetry settings level. Level used to determine which telemetry to
send. Can be set to `off` or `basic`. Defaults to `basic`.
### `timescaledb.last_tuned (string)`
Records last time `timescaledb-tune` ran.
### `timescaledb.last_tuned_version (string)`
Version of `timescaledb-tune` used to tune when it runs.
===== PAGE: https://docs.tigerdata.com/api/configuration/gucs/ =====
# Grand Unified Configuration (GUC) parameters
You use the following Grand Unified Configuration (GUC) parameters to optimize the behavior of your Tiger Cloud service.
The namespace of each GUC is `timescaledb`.
To set a GUC you specify `<namespace>.<GUC name>`. For example:
sql SET timescaledb.enable_tiered_reads = true;
| Name | Type | Default | Description |
| -- | -- | -- | -- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `GUC_CAGG_HIGH_WORK_MEM_NAME` | `INTEGER` | `GUC_CAGG_HIGH_WORK_MEM_VALUE` | The high working memory limit for the continuous aggregate invalidation processing.<br />min: `64`, max: `MAX_KILOBYTES` |
| `GUC_CAGG_LOW_WORK_MEM_NAME` | `INTEGER` | `GUC_CAGG_LOW_WORK_MEM_VALUE` | The low working memory limit for the continuous aggregate invalidation processing.<br />min: `64`, max: `MAX_KILOBYTES` |
| `auto_sparse_indexes` | `BOOLEAN` | `true` | The hypertable columns that are used as index keys will have suitable sparse indexes when compressed. Must be set at the moment of chunk compression, e.g. when the `compress_chunk()` is called. |
| `bgw_log_level` | `ENUM` | `WARNING` | Log level for the scheduler and workers of the background worker subsystem. Requires configuration reload to change. |
| `cagg_processing_wal_batch_size` | `INTEGER` | `10000` | Number of entries processed from the WAL at a go. Larger values take more memory but might be more efficient.<br />min: `1000`, max: `10000000` |
| `compress_truncate_behaviour` | `ENUM` | `COMPRESS_TRUNCATE_ONLY` | Defines how truncate behaves at the end of compression. 'truncate_only' forces truncation. 'truncate_disabled' deletes rows instead of truncate. 'truncate_or_delete' allows falling back to deletion. |
| `compression_batch_size_limit` | `INTEGER` | `1000` | Setting this option to a number between 1 and 999 will force compression to limit the size of compressed batches to that amount of uncompressed tuples.Setting this to 0 defaults to the max batch size of 1000.<br />min: `1`, max: `1000` |
| `compression_orderby_default_function` | `STRING` | `"_timescaledb_functions.get_orderby_defaults"` | Function to use for calculating default order_by setting for compression |
| `compression_segmentby_default_function` | `STRING` | `"_timescaledb_functions.get_segmentby_defaults"` | Function to use for calculating default segment_by setting for compression |
| `current_timestamp_mock` | `STRING` | `NULL` | this is for debugging purposes |
| `debug_allow_cagg_with_deprecated_funcs` | `BOOLEAN` | `false` | this is for debugging/testing purposes |
| `debug_bgw_scheduler_exit_status` | `INTEGER` | `0` | this is for debugging purposes<br />min: `0`, max: `255` |
| `debug_compression_path_info` | `BOOLEAN` | `false` | this is for debugging/information purposes |
| `debug_have_int128` | `BOOLEAN` | `#ifdef HAVE_INT128 true` | this is for debugging purposes |
| `debug_require_batch_sorted_merge` | `ENUM` | `DRO_Allow` | this is for debugging purposes |
| `debug_require_vector_agg` | `ENUM` | `DRO_Allow` | this is for debugging purposes |
| `debug_require_vector_qual` | `ENUM` | `DRO_Allow` | this is for debugging purposes, to let us check if the vectorized quals are used or not. EXPLAIN differs after PG15 for custom nodes, and using the test templates is a pain |
| `debug_skip_scan_info` | `BOOLEAN` | `false` | Print debug info about SkipScan distinct columns |
| `debug_toast_tuple_target` | `INTEGER` | `/* bootValue = */ 128` | this is for debugging purposes<br />min: `/* minValue = */ 1`, max: `/* maxValue = */ 65535` |
| `enable_bool_compression` | `BOOLEAN` | `true` | Enable bool compression |
| `enable_bulk_decompression` | `BOOLEAN` | `true` | Increases throughput of decompression, but might increase query memory usage |
| `enable_cagg_reorder_groupby` | `BOOLEAN` | `true` | Enable group by clause reordering for continuous aggregates |
| `enable_cagg_sort_pushdown` | `BOOLEAN` | `true` | Enable pushdown of ORDER BY clause for continuous aggregates |
| `enable_cagg_watermark_constify` | `BOOLEAN` | `true` | Enable constifying cagg watermark for real-time caggs |
| `enable_cagg_window_functions` | `BOOLEAN` | `false` | Allow window functions in continuous aggregate views |
| `enable_chunk_append` | `BOOLEAN` | `true` | Enable using chunk append node |
| `enable_chunk_skipping` | `BOOLEAN` | `false` | Enable using chunk column stats to filter chunks based on column filters |
| `enable_chunkwise_aggregation` | `BOOLEAN` | `true` | Enable the pushdown of aggregations to the chunk level |
| `enable_columnarscan` | `BOOLEAN` | `true` | A columnar scan replaces sequence scans for columnar-oriented storage and enables storage-specific optimizations like vectorized filters. Disabling columnar scan will make PostgreSQL fall back to regular sequence scans. |
| `enable_compressed_direct_batch_delete` | `BOOLEAN` | `true` | Enable direct batch deletion in compressed chunks |
| `enable_compressed_skipscan` | `BOOLEAN` | `true` | Enable SkipScan for distinct inputs over compressed chunks |
| `enable_compression_indexscan` | `BOOLEAN` | `false` | Enable indexscan during compression, if matching index is found |
| `enable_compression_ratio_warnings` | `BOOLEAN` | `true` | Enable warnings for poor compression ratio |
| `enable_compression_wal_markers` | `BOOLEAN` | `true` | Enable the generation of markers in the WAL stream which mark the start and end of compression operations |
| `enable_compressor_batch_limit` | `BOOLEAN` | `false` | Enable compressor batch limit for compressors which can go over the allocation limit (1 GB). This feature willlimit those compressors by reducing the size of the batch and thus avoid hitting the limit. |
| `enable_constraint_aware_append` | `BOOLEAN` | `true` | Enable constraint exclusion at execution time |
| `enable_constraint_exclusion` | `BOOLEAN` | `true` | Enable planner constraint exclusion |
| `enable_custom_hashagg` | `BOOLEAN` | `false` | Enable creating custom hash aggregation plans |
| `enable_decompression_sorted_merge` | `BOOLEAN` | `true` | Enable the merge of compressed batches to preserve the compression order by |
| `enable_delete_after_compression` | `BOOLEAN` | `false` | Delete all rows after compression instead of truncate |
| `enable_deprecation_warnings` | `BOOLEAN` | `true` | Enable warnings when using deprecated functionality |
| `enable_direct_compress_copy` | `BOOLEAN` | `false` | Enable experimental support for direct compression during COPY |
| `enable_direct_compress_copy_client_sorted` | `BOOLEAN` | `false` | Correct handling of data sorting by the user is required for this option. |
| `enable_direct_compress_copy_sort_batches` | `BOOLEAN` | `true` | Enable batch sorting during direct compress COPY |
| `enable_dml_decompression` | `BOOLEAN` | `true` | Enable DML decompression when modifying compressed hypertable |
| `enable_dml_decompression_tuple_filtering` | `BOOLEAN` | `true` | Recheck tuples during DML decompression to only decompress batches with matching tuples |
| `enable_event_triggers` | `BOOLEAN` | `false` | Enable event triggers for chunks creation |
| `enable_exclusive_locking_recompression` | `BOOLEAN` | `false` | Enable getting exclusive lock on chunk during segmentwise recompression |
| `enable_foreign_key_propagation` | `BOOLEAN` | `true` | Adjust foreign key lookup queries to target whole hypertable |
| `enable_job_execution_logging` | `BOOLEAN` | `false` | Retain job run status in logging table |
| `enable_merge_on_cagg_refresh` | `BOOLEAN` | `false` | Enable MERGE statement on cagg refresh |
| `enable_multikey_skipscan` | `BOOLEAN` | `true` | Enable SkipScan for multiple distinct inputs |
| `enable_now_constify` | `BOOLEAN` | `true` | Enable constifying now() in query constraints |
| `enable_null_compression` | `BOOLEAN` | `true` | Enable null compression |
| `enable_optimizations` | `BOOLEAN` | `true` | Enable TimescaleDB query optimizations |
| `enable_ordered_append` | `BOOLEAN` | `true` | Enable ordered append optimization for queries that are ordered by the time dimension |
| `enable_parallel_chunk_append` | `BOOLEAN` | `true` | Enable using parallel aware chunk append node |
| `enable_qual_propagation` | `BOOLEAN` | `true` | Enable propagation of qualifiers in JOINs |
| `enable_rowlevel_compression_locking` | `BOOLEAN` | `false` | Use only if you know what you are doing |
| `enable_runtime_exclusion` | `BOOLEAN` | `true` | Enable runtime chunk exclusion in ChunkAppend node |
| `enable_segmentwise_recompression` | `BOOLEAN` | `true` | Enable segmentwise recompression |
| `enable_skipscan` | `BOOLEAN` | `true` | Enable SkipScan for DISTINCT queries |
| `enable_skipscan_for_distinct_aggregates` | `BOOLEAN` | `true` | Enable SkipScan for DISTINCT aggregates |
| `enable_sparse_index_bloom` | `BOOLEAN` | `true` | This sparse index speeds up the equality queries on compressed columns, and can be disabled when not desired. |
| `enable_tiered_reads` | `BOOLEAN` | `true` | Enable reading of tiered data by including a foreign table representing the data in the object storage into the query plan |
| `enable_transparent_decompression` | `BOOLEAN` | `true` | Enable transparent decompression when querying hypertable |
| `enable_tss_callbacks` | `BOOLEAN` | `true` | Enable ts_stat_statements callbacks |
| `enable_uuid_compression` | `BOOLEAN` | `false` | Enable uuid compression |
| `enable_vectorized_aggregation` | `BOOLEAN` | `true` | Enable vectorized aggregation for compressed data |
| `last_tuned` | `STRING` | `NULL` | records last time timescaledb-tune ran |
| `last_tuned_version` | `STRING` | `NULL` | version of timescaledb-tune used to tune |
| `license` | `STRING` | `TS_LICENSE_DEFAULT` | Determines which features are enabled |
| `materializations_per_refresh_window` | `INTEGER` | `10` | The maximal number of individual refreshes per cagg refresh. If more refreshes need to be performed, they are merged into a larger single refresh.<br />min: `0`, max: `INT_MAX` |
| `max_cached_chunks_per_hypertable` | `INTEGER` | `1024` | Maximum number of chunks stored in the cache<br />min: `0`, max: `65536` |
| `max_open_chunks_per_insert` | `INTEGER` | `1024` | Maximum number of open chunk tables per insert<br />min: `0`, max: `PG_INT16_MAX` |
| `max_tuples_decompressed_per_dml_transaction` | `INTEGER` | `100000` | If the number of tuples exceeds this value, an error will be thrown and transaction rolled back. Setting this to 0 sets this value to unlimited number of tuples decompressed.<br />min: `0`, max: `2147483647` |
| `restoring` | `BOOLEAN` | `false` | In restoring mode all timescaledb internal hooks are disabled. This mode is required for restoring logical dumps of databases with timescaledb. |
| `shutdown_bgw_scheduler` | `BOOLEAN` | `false` | this is for debugging purposes |
| `skip_scan_run_cost_multiplier` | `REAL` | `1.0` | Default is 1.0 i.e. regularly estimated SkipScan run cost, 0.0 will make SkipScan to have run cost = 0<br />min: `0.0`, max: `1.0` |
| `telemetry_level` | `ENUM` | `TELEMETRY_DEFAULT` | Level used to determine which telemetry to send |
Version: [2.22.1](https://github.com/timescale/timescaledb/releases/tag/2.22.1)
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/uuid_timestamp/ =====
# uuid_timestamp()
Extract a Postgres timestamp with time zone from a UUIDv7 object.

`uuid` contains a millisecond unix timestamp and an optional sub-millisecond fraction.
This fraction is used to construct the Postgres timestamp.
To include the sub-millisecond fraction in the returned timestamp, call [`uuid_timestamp_micros`][uuid_timestamp_micros].
## Samples
sql
postgres=# SELECT uuid_timestamp('019913ce-f124-7835-96c7-a2df691caa');
Returns something like:
terminaloutput
2025-09-04 10:19:13.316+02
## Arguments
| Name | Type | Default | Required | Description |
|-|------------------|-|----------|-------------------------------------------------|
|`uuid`|UUID| - | ✔ | The UUID object to extract the timestamp from |
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/uuid_version/ =====
# uuid_version()
Extract the version number from a UUID object:

## Samples
sql
postgres=# SELECT uuid_version('019913ce-f124-7835-96c7-a2df691caa');
Returns something like:
terminaloutput
7
## Arguments
| Name | Type | Default | Required | Description |
|-|------------------|-|----------|----------------------------------------------------|
|`uuid`|UUID| - | ✔ | The UUID object to extract the version number from |
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/generate_uuidv7/ =====
# generate_uuidv7()
Generate a UUIDv7 object based on the current time.
The UUID contains a a UNIX timestamp split into millisecond and sub-millisecond parts, followed by
random bits.

You can use this function to generate a time-ordered series of UUIDs
suitable for use in a time-partitioned column in TimescaleDB.
## Samples
- **Generate a UUIDv7 object based on the current time**
```sql
postgres=# SELECT generate_uuidv7();
generate_uuidv7
--------------------------------------
019913ce-f124-7835-96c7-a2df691caa98
```
- **Insert a generated UUIDv7 object**
```sql
INSERT INTO alerts VALUES (generate_uuidv7(), 'high CPU');
```
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/to_uuidv7/ =====
# to_uuidv7()
Create a UUIDv7 object from a Postgres timestamp and random bits.
`ts` is converted to a UNIX timestamp split into millisecond and sub-millisecond parts.

## Samples
sql SELECT to_uuidv7(ts) FROM generate_series('2025-01-01:00:00:00'::timestamptz, '2025-01-01:00:00:03'::timestamptz, '1 microsecond'::interval) ts;
## Arguments
| Name | Type | Default | Required | Description |
|-|------------------|-|----------|--------------------------------------------------|
|`ts`|TIMESTAMPTZ| - | ✔ | The timestamp used to return a UUIDv7 object |
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/uuid_timestamp_micros/ =====
# uuid_timestamp_micros()
Extract a [Postgres timestamp with time zone][pg-timestamp-timezone] from a UUIDv7 object.
`uuid` contains a millisecond unix timestamp and an optional sub-millisecond fraction.

Unlike [`uuid_timestamp`][uuid_timestamp], the microsecond part of `uuid` is used to construct a
Postgres timestamp with microsecond precision.
Unless `uuid` is known to encode a valid sub-millisecond fraction, use [`uuid_timestamp`][uuid_timestamp].
## Samples
sql
postgres=# SELECT uuid_timestamp_micros('019913ce-f124-7835-96c7-a2df691caa');
Returns something like:
terminaloutput
2025-09-04 10:19:13.316512+02
## Arguments
| Name | Type | Default | Required | Description |
|-|------------------|-|----------|-------------------------------------------------|
|`uuid`|UUID| - | ✔ | The UUID object to extract the timestamp from |
===== PAGE: https://docs.tigerdata.com/api/uuid-functions/to_uuidv7_boundary/ =====
# to_uuidv7_boundary()
Create a UUIDv7 object from a Postgres timestamp for use in range queries.
`ts` is converted to a UNIX timestamp split into millisecond and sub-millisecond parts.

The random bits of the UUID are set to zero in order to create a "lower" boundary UUID.
For example, you can use the returned UUIDvs to find all rows with UUIDs where the timestamp is less than the
boundary UUID's timestamp.
## Samples
- **Create a boundary UUID from a timestamp**:
```sql
postgres=# SELECT to_uuidv7_boundary('2025-09-04 11:01');
```
Returns something like:
```terminaloutput
to_uuidv7_boundary
--------------------------------------
019913f5-30e0-7000-8000-000000000000
```
- **Use a boundary UUID to find all UUIDs with a timestamp below `'2025-09-04 10:00'`**:
```sql
SELECT * FROM uuid_events WHERE event_id < to_uuidv7_boundary('2025-09-04 10:00');
```
## Arguments
| Name | Type | Default | Required | Description |
|-|------------------|-|----------|--------------------------------------------------|
|`ts`|TIMESTAMPTZ| - | ✔ | The timestamp used to return a UUIDv7 object |
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/cleanup_copy_chunk_operation_experimental/ =====
# cleanup_copy_chunk_operation()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
You can [copy][copy_chunk] or [move][move_chunk] a
chunk to a new location within a multi-node environment. The
operation happens over multiple transactions so, if it fails, it
is manually cleaned up using this function. Without cleanup,
the failed operation might hold a replication slot open, which in turn
prevents storage from being reclaimed. The operation ID is logged in
case of a failed copy or move operation and is required as input to
the cleanup function.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Required arguments
|Name|Type|Description|
|-|-|-|
|`operation_id`|NAME|ID of the failed operation|
## Sample usage
Clean up a failed operation:
sql CALL timescaledb_experimental.cleanup_copy_chunk_operation('ts_copy_1_31');
Get a list of running copy or move operations:
sql SELECT * FROM _timescaledb_catalog.chunk_copy_operation;
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/create_distributed_restore_point/ =====
# create_distributed_restore_point()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Creates a same-named marker record, for example `restore point`, in the
write-ahead logs of all nodes in a multi-node TimescaleDB cluster.
The restore point can be used as a recovery target on each node, ensuring the
entire multi-node cluster can be restored to a consistent state. The function
returns the write-ahead log locations for all nodes where the marker record was
written.
This function is similar to the Postgres function
[`pg_create_restore_point`][pg-create-restore-point], but it has been modified
to work with a distributed database.
This function can only be run on the access node, and requires superuser
privileges.
## Required arguments
|Name|Description|
|-|-|
|`name`|The restore point name|
## Returns
|Column|Type|Description|
|-|-|-|
|`node_name`|NAME|Node name, or `NULL` for access node|
|`node_type`|TEXT|Node type name: `access_node` or `data_node`|
|`restore_point`|[PG_LSN][pg-lsn]|Restore point log sequence number|
### Errors
An error is given if:
* The restore point `name` is more than 64 characters
* A recovery is in progress
* The current WAL level is not set to `replica` or `logical`
* The current user is not a superuser
* The current server is not the access node
* TimescaleDB's 2PC transactions are not enabled
## Sample usage
This example create a restore point called `pitr` across three data nodes and
the access node:
sql SELECT * FROM create_distributed_restore_point('pitr'); node_name | node_type | restore_point -----------+-------------+---------------
| access_node | 0/3694A30
dn1 | data_node | 0/3694A98 dn2 | data_node | 0/3694B00 dn3 | data_node | 0/3694B68 (4 rows)
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/copy_chunk_experimental/ =====
# copy_chunk()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
TimescaleDB allows you to copy existing chunks to a new location within a
multi-node environment. This allows each data node to work both as a primary for
some chunks and backup for others. If a data node fails, its chunks already
exist on other nodes that can take over the responsibility of serving them.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Required arguments
|Name|Type|Description|
|-|-|-|
|`chunk`|REGCLASS|Name of chunk to be copied|
|`source_node`|NAME|Data node where the chunk currently resides|
|`destination_node`|NAME|Data node where the chunk is to be copied|
## Required settings
When copying a chunk, the destination data node needs a way to
authenticate with the data node that holds the source chunk. It is
currently recommended to use a [password file][password-config] on the
data node.
The `wal_level` setting must also be set to `logical` or higher on
data nodes from which chunks are copied. If you are copying or moving
many chunks in parallel, you can increase `max_wal_senders` and
`max_replication_slots`.
## Failures
When a copy operation fails, it sometimes creates objects and metadata on
the destination data node. It can also hold a replication slot open on the
source data node. To clean up these objects and metadata, use
[`cleanup_copy_chunk_operation`][cleanup_copy_chunk].
## Sample usage
sql CALL timescaledb_experimental.copy_chunk('_timescaledb_internal._dist_hyper_1_1_chunk', 'data_node_2', 'data_node_3');
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/alter_data_node/ =====
# alter_data_node()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Change the configuration of a data node that was originally set up with
[`add_data_node`][add_data_node] on the access node.
Only users with certain privileges can alter data nodes. When you alter
the connection details for a data node, make sure that the altered
configuration is reachable and can be authenticated by the access node.
## Required arguments
|Name|Description|
|-|-|
|`node_name`|Name for the data node|
## Optional arguments
|Name|Description|
|-|-|
|`host`|Host name for the remote data node|
|`database`|Database name where remote hypertables are created. The default is the database name that was provided in `add_data_node`|
|`port`|Port to use on the remote data node. The default is the Postgres port that was provided in `add_data_node`|
|`available`|Configure availability of the remote data node. The default is `true` meaning that the data node is available for read/write queries|
## Returns
|Column|Description|
|-|-|
|`node_name`|Local name to use for the data node|
|`host`|Host name for the remote data node|
|`port`|Port for the remote data node|
|`database`|Database name used on the remote data node|
|`available`|Availability of the remote data node for read/write queries|
### Errors
An error is given if:
* A remote data node with the provided `node_name` argument does not exist.
### Privileges
To alter a data node, you must have the correct permissions, or be the owner of the remote server.
Additionally, you must have the `USAGE` privilege on the `timescaledb_fdw` foreign data
wrapper.
## Sample usage
To change the port number and host information for an existing data node `dn1`:
sql SELECT alter_data_node('dn1', host => 'dn1.example.com', port => 6999);
Data nodes are available for read/write queries by default. If the data node
becomes unavailable for some reason, the read/write query gives an error. This
API provides an optional argument, `available`, to mark an existing data node
as available or unavailable for read/write queries. By marking a data node as
unavailable you can allow read/write queries to proceed in the cluster. For
more information, see the [multi-node HA section][multi-node-ha]
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/move_chunk_experimental/ =====
# move_chunk()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
TimescaleDB allows you to move chunks to other data nodes. Moving
chunks is useful in order to rebalance a multi-node cluster or remove
a data node from the cluster.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Required arguments
|Name|Type|Description|
|-|-|-|
|`chunk`|REGCLASS|Name of chunk to be copied|
|`source_node`|NAME|Data node where the chunk currently resides|
|`destination_node`|NAME|Data node where the chunk is to be copied|
## Required settings
When moving a chunk, the destination data node needs a way to
authenticate with the data node that holds the source chunk. It is
currently recommended to use a [password file][password-config] on the
data node.
The `wal_level` setting must also be set to `logical` or higher on
data nodes from which chunks are moved. If you are copying or moving
many chunks in parallel, you can increase `max_wal_senders` and
`max_replication_slots`.
## Failures
When a move operation fails, it sometimes creates objects and metadata on
the destination data node. It can also hold a replication slot open on the
source data node. To clean up these objects and metadata, use
[`cleanup_copy_chunk_operation`][cleanup_copy_chunk].
## Sample usage
sql CALL timescaledb_experimental.move_chunk('_timescaledb_internal._dist_hyper_1_1_chunk', 'data_node_2', 'data_node_3');
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/distributed_exec/ =====
# distributed_exec()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
This procedure is used on an access node to execute a SQL command
across the data nodes of a distributed database. For instance, one use
case is to create the roles and permissions needed in a distributed
database.
The procedure can run distributed commands transactionally, so a command
is executed either everywhere or nowhere. However, not all SQL commands can run in a
transaction. This can be toggled with the argument `transactional`. Note if the execution
is not transactional, a failure on one of the data node requires manual dealing with
any introduced inconsistency.
Note that the command is _not_ executed on the access node itself and
it is not possible to chain multiple commands together in one call.
You cannot run `distributed_exec` with some SQL commands. For example, `ALTER
EXTENSION` doesn't work because it can't be called after the TimescaleDB
extension is already loaded.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `query` | TEXT | The command to execute on data nodes. |
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `node_list` | ARRAY | An array of data nodes where the command should be executed. Defaults to all data nodes if not specified. |
| `transactional` | BOOLEAN | Allows to specify if the execution of the statement should be transactional or not. Defaults to TRUE. |
## Sample usage
Create the role `testrole` across all data nodes in a distributed database:
sql CALL distributed_exec($$ CREATE USER testrole WITH LOGIN $$);
Create the role `testrole` on two specific data nodes:
sql CALL distributed_exec($$ CREATE USER testrole WITH LOGIN $$, node_list => '{ "dn1", "dn2" }');
Create the table `example` on all data nodes:
sql CALL distributed_exec($$ CREATE TABLE example (ts TIMESTAMPTZ, value INTEGER) $$);
Create new databases `dist_database` on data nodes, which requires setting
`transactional` to FALSE:
sql CALL distributed_exec('CREATE DATABASE dist_database', transactional => FALSE);
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/create_distributed_hypertable/ =====
# create_distributed_hypertable()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Create a TimescaleDB hypertable distributed across a multinode environment.
`create_distributed_hypertable()` replaces [`create_hypertable() (old interface)`][create-hypertable-old]. Distributed tables use the old API. The new generalized [`create_hypertable`][create-hypertable-new] API was introduced in TimescaleDB v2.13.
## Required arguments
|Name|Type| Description |
|---|---|----------------------------------------------------------------------------------------------|
| `relation` | REGCLASS | Identifier of the table you want to convert to a hypertable. |
| `time_column_name` | TEXT | Name of the column that contains time values, as well as the primary column to partition by. |
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `partitioning_column` | TEXT | Name of an additional column to partition by. |
| `number_partitions` | INTEGER | Number of hash partitions to use for `partitioning_column`. Must be > 0. Default is the number of `data_nodes`. |
| `associated_schema_name` | TEXT | Name of the schema for internal hypertable tables. Default is `_timescaledb_internal`. |
| `associated_table_prefix` | TEXT | Prefix for internal hypertable chunk names. Default is `_hyper`. |
| `chunk_time_interval` | INTERVAL | Interval in event time that each chunk covers. Must be > 0. Default is 7 days. |
| `create_default_indexes` | BOOLEAN | Boolean whether to create default indexes on time/partitioning columns. Default is TRUE. |
| `if_not_exists` | BOOLEAN | Boolean whether to print warning if table already converted to hypertable or raise exception. Default is FALSE. |
| `partitioning_func` | REGCLASS | The function to use for calculating a value's partition.|
| `migrate_data` | BOOLEAN | Set to TRUE to migrate any existing data from the `relation` table to chunks in the new hypertable. A non-empty table generates an error without this option. Large tables may take significant time to migrate. Default is FALSE. |
| `time_partitioning_func` | REGCLASS | Function to convert incompatible primary time column values to compatible ones. The function must be `IMMUTABLE`. |
| `replication_factor` | INTEGER | The number of data nodes to which the same data is written to. This is done by creating chunk copies on this amount of data nodes. Must be >= 1; If not set, the default value is determined by the `timescaledb.hypertable_replication_factor_default` GUC. Read [the best practices][best-practices] before changing the default. |
| `data_nodes` | ARRAY | The set of data nodes used for the distributed hypertable. If not present, defaults to all data nodes known by the access node (the node on which the distributed hypertable is created). |
## Returns
|Column|Type|Description|
|---|---|---|
| `hypertable_id` | INTEGER | ID of the hypertable in TimescaleDB. |
| `schema_name` | TEXT | Schema name of the table converted to hypertable. |
| `table_name` | TEXT | Table name of the table converted to hypertable. |
| `created` | BOOLEAN | TRUE if the hypertable was created, FALSE when `if_not_exists` is TRUE and no hypertable was created. |
## Sample usage
Create a table `conditions` which is partitioned across data
nodes by the 'location' column. Note that the number of space
partitions is automatically equal to the number of data nodes assigned
to this hypertable (all configured data nodes in this case, as
`data_nodes` is not specified).
sql SELECT create_distributed_hypertable('conditions', 'time', 'location');
Create a table `conditions` using a specific set of data nodes.
sql SELECT create_distributed_hypertable('conditions', 'time', 'location',
data_nodes => '{ "data_node_1", "data_node_2", "data_node_4", "data_node_7" }');
### Best practices
* **Hash partitions**: Best practice for distributed hypertables is to enable [hash partitions](https://www.techopedia.com/definition/31996/hash-partitioning).
With hash partitions, incoming data is divided between the data nodes. Without hash partition, all
data for each time slice is written to a single data node.
* **Time intervals**: Follow the guidelines for `chunk_time_interval` defined in [`create_hypertable`]
[create-hypertable-old].
When you enable hash partitioning, the hypertable is evenly distributed across the data nodes. This
means you can set a larger time interval. For example, you ingest 10 GB of data per day shared over
five data nodes, each node has 64 GB of memory. If this is the only table being served by these data nodes, use a time interval of 1 week:
7 days * 10 GB 70 -------------------- == --- ~= 22% of main memory used for the most recent chunks 5 data nodes * 64 GB 320
If you do not enable hash partitioning, use the same `chunk_time_interval` settings as a non-distributed
instance. This is because all incoming data is handled by a single node.
* **Replication factor**: `replication_factor` defines the number of data nodes a newly created chunk is
replicated in. For example, when you set `replication_factor` to `3`, each chunk exists on 3 separate
data nodes. Rows written to a chunk are inserted into all data notes in a two-phase commit protocol.
If a data node fails or is removed, no data is lost. Writes succeed on the other data nodes. However, the
chunks on the lost data node are now under-replicated. When the failed data node becomes available, rebalance the chunks with a call to [copy_chunk][copy_chunk].
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/attach_data_node/ =====
# attach_data_node()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Attach a data node to a hypertable. The data node should have been
previously created using [`add_data_node`][add_data_node].
When a distributed hypertable is created, by default it uses all
available data nodes for the hypertable, but if a data node is added
*after* a hypertable is created, the data node is not automatically
used by existing distributed hypertables.
If you want a hypertable to use a data node that was created later,
you must attach the data node to the hypertable using this
function.
## Required arguments
| Name | Description |
|-------------------|-----------------------------------------------|
| `node_name` | Name of data node to attach |
| `hypertable` | Name of distributed hypertable to attach node to |
## Optional arguments
| Name | Description |
|-------------------|-----------------------------------------------|
| `if_not_attached` | Prevents error if the data node is already attached to the hypertable. A notice is printed that the data node is attached. Defaults to `FALSE`. |
| `repartition` | Change the partitioning configuration so that all the attached data nodes are used. Defaults to `TRUE`. |
## Returns
| Column | Description |
|-------------------|-----------------------------------------------|
| `hypertable_id` | Hypertable id of the modified hypertable |
| `node_hypertable_id` | Hypertable id on the remote data node |
| `node_name` | Name of the attached data node |
## Sample usage
Attach a data node `dn3` to a distributed hypertable `conditions`
previously created with
[`create_distributed_hypertable`][create_distributed_hypertable].
sql SELECT * FROM attach_data_node('dn3','conditions');
hypertable_id | node_hypertable_id | node_name --------------+--------------------+-------------
5 | 3 | dn3
(1 row)
You must add a data node to your distributed database first
with [`add_data_node`](https://docs.tigerdata.com/api/latest/distributed-hypertables/add_data_node/) first before attaching it.
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/set_number_partitions/ =====
# set_number_partitions()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Sets the number of partitions (slices) of a space dimension on a
hypertable. The new partitioning only affects new chunks.
## Required arguments
| Name | Type | Description |
| --- | --- | --- |
| `hypertable`| REGCLASS | Hypertable to update the number of partitions for.|
| `number_partitions` | INTEGER | The new number of partitions for the dimension. Must be greater than 0 and less than 32,768. |
## Optional arguments
| Name | Type | Description |
| --- | --- | --- |
| `dimension_name` | REGCLASS | The name of the space dimension to set the number of partitions for. |
The `dimension_name` needs to be explicitly specified only if the
hypertable has more than one space dimension. An error is thrown
otherwise.
## Sample usage
For a table with a single space dimension:
sql SELECT set_number_partitions('conditions', 2);
For a table with more than one space dimension:
sql SELECT set_number_partitions('conditions', 2, 'device_id');
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/add_data_node/ =====
# add_data_node()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Add a new data node on the access node to be used by distributed
hypertables. The data node is automatically used by distributed
hypertables that are created after the data node has been added, while
existing distributed hypertables require an additional
[`attach_data_node`][attach_data_node].
If the data node already exists, the command aborts with either an
error or a notice depending on the value of `if_not_exists`.
For security purposes, only superusers or users with necessary
privileges can add data nodes (see below for details). When adding a
data node, the access node also tries to connect to the data node
and therefore needs a way to authenticate with it. TimescaleDB
currently supports several different such authentication methods for
flexibility (including trust, user mappings, password, and certificate
methods). Refer to [Setting up Multi-Node TimescaleDB][multinode] for more
information about node-to-node authentication.
Unless `bootstrap` is false, the function attempts to bootstrap
the data node by:
1. Creating the database given in `database` that serve as the
new data node.
1. Loading the TimescaleDB extension in the new database.
1. Setting metadata to make the data node part of the distributed
database.
Note that user roles are not automatically created on the new data
node during bootstrapping. The [`distributed_exec`][distributed_exec]
procedure can be used to create additional roles on the data node
after it is added.
## Required arguments
| Name | Description |
| ----------- | ----------- |
| `node_name` | Name for the data node. |
| `host` | Host name for the remote data node. |
## Optional arguments
| Name | Description |
|----------------------|-------------------------------------------------------|
| `database` | Database name where remote hypertables are created. The default is the current database name. |
| `port` | Port to use on the remote data node. The default is the Postgres port used by the access node on which the function is executed. |
| `if_not_exists` | Do not fail if the data node already exists. The default is `FALSE`. |
| `bootstrap` | Bootstrap the remote data node. The default is `TRUE`. |
| `password` | Password for authenticating with the remote data node during bootstrapping or validation. A password only needs to be provided if the data node requires password authentication and a password for the user does not exist in a local password file on the access node. If password authentication is not used, the specified password is ignored. |
## Returns
| Column | Description |
|---------------------|---------------------------------------------------|
| `node_name` | Local name to use for the data node |
| `host` | Host name for the remote data node |
| `port` | Port for the remote data node |
| `database` | Database name used on the remote data node |
| `node_created` | Was the data node created locally |
| `database_created` | Was the database created on the remote data node |
| `extension_created` | Was the extension created on the remote data node |
### Errors
An error is given if:
* The function is executed inside a transaction.
* The function is executed in a database that is already a data node.
* The data node already exists and `if_not_exists` is `FALSE`.
* The access node cannot connect to the data node due to a network
failure or invalid configuration (for example, wrong port, or there is no
way to authenticate the user).
* If `bootstrap` is `FALSE` and the database was not previously
bootstrapped.
### Privileges
To add a data node, you must be a superuser or have the `USAGE`
privilege on the `timescaledb_fdw` foreign data wrapper. To grant such
privileges to a regular user role, do:
sql GRANT USAGE ON FOREIGN DATA WRAPPER timescaledb_fdw TO ;
Note, however, that superuser privileges might still be necessary on
the data node in order to bootstrap it, including creating the
TimescaleDB extension on the data node unless it is already installed.
## Sample usage
If you have an existing hypertable `conditions` and want to use `time`
as the range partitioning column and `location` as the hash partitioning
column. You also want to distribute the chunks of the hypertable on two
data nodes `dn1.example.com` and `dn2.example.com`:
sql SELECT add_data_node('dn1', host => 'dn1.example.com'); SELECT add_data_node('dn2', host => 'dn2.example.com'); SELECT create_distributed_hypertable('conditions', 'time', 'location');
If you want to create a distributed database with the two data nodes
local to this instance, you can write:
sql SELECT add_data_node('dn1', host => 'localhost', database => 'dn1'); SELECT add_data_node('dn2', host => 'localhost', database => 'dn2'); SELECT create_distributed_hypertable('conditions', 'time', 'location');
Note that this does not offer any performance advantages over using a
regular hypertable, but it can be useful for testing.
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/detach_data_node/ =====
# detach_data_node()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Detach a data node from one hypertable or from all hypertables.
Reasons for detaching a data node include:
* A data node should no longer be used by a hypertable and needs to be
removed from all hypertables that use it
* You want to have fewer data nodes for a distributed hypertable to
partition across
## Required arguments
| Name | Type|Description |
|-------------|----|-------------------------------|
| `node_name` | TEXT | Name of data node to detach from the distributed hypertable |
## Optional arguments
| Name | Type|Description |
|---------------|---|-------------------------------------|
| `hypertable` | REGCLASS | Name of the distributed hypertable where the data node should be detached. If NULL, the data node is detached from all hypertables. |
| `if_attached` | BOOLEAN | Prevent error if the data node is not attached. Defaults to false. |
| `force` | BOOLEAN | Force detach of the data node even if that means that the replication factor is reduced below what was set. Note that it is never allowed to reduce the replication factor below 1 since that would cause data loss. |
| `repartition` | BOOLEAN | Make the number of hash partitions equal to the new number of data nodes (if such partitioning exists). This ensures that the remaining data nodes are used evenly. Defaults to true. |
## Returns
The number of hypertables the data node was detached from.
### Errors
Detaching a node is not permitted:
* If it would result in data loss for the hypertable due to the data node
containing chunks that are not replicated on other data nodes
* If it would result in under-replicated chunks for the distributed hypertable
(without the `force` argument)
Replication is currently experimental, and not a supported feature
Detaching a data node is under no circumstances possible if that would
mean data loss for the hypertable. Nor is it possible to detach a data node,
unless forced, if that would mean that the distributed hypertable would end
up with under-replicated chunks.
The only safe way to detach a data node is to first safely delete any
data on it or replicate it to another data node.
## Sample usage
Detach data node `dn3` from `conditions`:
sql SELECT detach_data_node('dn3', 'conditions');
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/set_replication_factor/ =====
# set_replication_factor()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
Sets the replication factor of a distributed hypertable to the given value.
Changing the replication factor does not affect the number of replicas for existing chunks.
Chunks created after changing the replication factor are replicated
in accordance with new value of the replication factor. If the replication factor cannot be
satisfied, since the amount of attached data nodes is less than new replication factor,
the command aborts with an error.
If existing chunks have less replicas than new value of the replication factor,
the function prints a warning.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Distributed hypertable to update the replication factor for.|
| `replication_factor` | INTEGER | The new value of the replication factor. Must be greater than 0, and smaller than or equal to the number of attached data nodes.|
### Errors
An error is given if:
* `hypertable` is not a distributed hypertable.
* `replication_factor` is less than `1`, which cannot be set on a distributed hypertable.
* `replication_factor` is bigger than the number of attached data nodes.
If a bigger replication factor is desired, it is necessary to attach more data nodes
by using [attach_data_node][attach_data_node].
## Sample usage
Update the replication factor for a distributed hypertable to `2`:
sql SELECT set_replication_factor('conditions', 2);
Example of the warning if any existing chunk of the distributed hypertable has less than 2 replicas:
WARNING: hypertable "conditions" is under-replicated DETAIL: Some chunks have less than 2 replicas.
Example of providing too big of a replication factor for a hypertable with 2 attached data nodes:
sql SELECT set_replication_factor('conditions', 3); ERROR: too big replication factor for hypertable "conditions" DETAIL: The hypertable has 2 data nodes attached, while the replication factor is 3. HINT: Decrease the replication factor or attach more data nodes to the hypertable.
===== PAGE: https://docs.tigerdata.com/api/distributed-hypertables/delete_data_node/ =====
# delete_data_node()
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
This function is executed on an access node to remove a data
node from the local database. As part of the deletion, the data node
is detached from all hypertables that are using it, if permissions
and data integrity requirements are satisfied. For more information,
see [`detach_data_node`][detach_data_node].
Deleting a data node is strictly a local operation; the data
node itself is not affected and the corresponding remote database
on the data node is left intact, including all its data. The
operation is local to ensure it can complete even if the remote
data node is not responding and to avoid unintentional data loss on
the data node.
It is not possible to use
[`add_data_node`](https://docs.tigerdata.com/api/latest/distributed-hypertables/add_data_node) to add the
same data node again without first deleting the database on the data
node or using another database. This is to prevent adding a data node
that was previously part of the same or another distributed database
but is no longer synchronized.
### Errors
An error is generated if the data node cannot be detached from
all attached hypertables.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `node_name` | TEXT | Name of the data node. |
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `if_exists` | BOOLEAN | Prevent error if the data node does not exist. Defaults to false. |
| `force` | BOOLEAN | Force removal of data nodes from hypertables unless that would result in data loss. Defaults to false. |
| `repartition` | BOOLEAN | Make the number of hash partitions equal to the new number of data nodes (if such partitioning exists). This ensures that the remaining data nodes are used evenly. Defaults to true. |
## Returns
A boolean indicating if the operation was successful or not.
## Sample usage
To delete a data node named `dn1`:
sql SELECT delete_data_node('dn1');
===== PAGE: https://docs.tigerdata.com/api/informational-views/chunk_compression_settings/ =====
# timescaledb_information.chunk_compression_settings
Shows information about compression settings for each chunk that has compression enabled on it.
## Samples
Show compression settings for all chunks:
sql SELECT * FROM timescaledb_information.chunk_compression_settings' hypertable | measurements chunk | _timescaledb_internal._hyper_1_1_chunk segmentby | orderby | "time" DESC
Find all chunk compression settings for a specific hypertable:
sql SELECT * FROM timescaledb_information.chunk_compression_settings WHERE hypertable::TEXT LIKE 'metrics'; hypertable | metrics chunk | _timescaledb_internal._hyper_2_3_chunk segmentby | metric_id orderby | "time"
## Arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|`REGCLASS`|Hypertable which has compression enabled|
|`chunk`|`REGCLASS`|Chunk which has compression enabled|
|`segmentby`|`TEXT`|List of columns used for segmenting the compressed data|
|`orderby`|`TEXT`| List of columns used for ordering compressed data along with ordering and NULL ordering information|
===== PAGE: https://docs.tigerdata.com/api/informational-views/jobs/ =====
# timescaledb_information.jobs
Shows information about all jobs registered with the automation framework.
## Samples
Shows a job associated with the refresh policy for continuous aggregates:
sql SELECT * FROM timescaledb_information.jobs; job_id | 1001 application_name | Refresh Continuous Aggregate Policy [1001] schedule_interval | 01:00:00 max_runtime | 00:00:00 max_retries | -1 retry_period | 01:00:00 proc_schema | _timescaledb_internal proc_name | policy_refresh_continuous_aggregate owner | postgres scheduled | t config | {"start_offset": "20 days", "end_offset": "10 days", "mat_hypertable_id": 2} next_start | 2020-10-02 12:38:07.014042-04 hypertable_schema | _timescaledb_internal hypertable_name | _materialized_hypertable_2 check_schema | _timescaledb_internal check_name | policy_refresh_continuous_aggregate_check
Find all jobs related to compression policies (before TimescaleDB v2.20):
sql SELECT * FROM timescaledb_information.jobs where application_name like 'Compression%'; -[ RECORD 1 ]-----+-------------------------------------------------- job_id | 1002 application_name | Compression Policy [1002] schedule_interval | 15 days 12:00:00 max_runtime | 00:00:00 max_retries | -1 retry_period | 01:00:00 proc_schema | _timescaledb_internal proc_name | policy_compression owner | postgres scheduled | t config | {"hypertable_id": 3, "compress_after": "60 days"} next_start | 2020-10-18 01:31:40.493764-04 hypertable_schema | public hypertable_name | conditions check_schema | _timescaledb_internal check_name | policy_compression_check
Find all jobs related to columnstore policies (TimescaleDB v2.20 and later):
sql SELECT * FROM timescaledb_information.jobs where application_name like 'Columnstore%'; -[ RECORD 1 ]-----+-------------------------------------------------- job_id | 1002 application_name | Columnstore Policy [1002] schedule_interval | 15 days 12:00:00 max_runtime | 00:00:00 max_retries | -1 retry_period | 01:00:00 proc_schema | _timescaledb_internal proc_name | policy_compression owner | postgres scheduled | t config | {"hypertable_id": 3, "compress_after": "60 days"} next_start | 2025-10-18 01:31:40.493764-04 hypertable_schema | public hypertable_name | conditions check_schema | _timescaledb_internal check_name | policy_compression_check
Find custom jobs:
sql SELECT * FROM timescaledb_information.jobs where application_name like 'User-Define%'; -[ RECORD 1 ]-----+------------------------------ job_id | 1003 application_name | User-Defined Action [1003] schedule_interval | 01:00:00 max_runtime | 00:00:00 max_retries | -1 retry_period | 00:05:00 proc_schema | public proc_name | custom_aggregation_func owner | postgres scheduled | t config | {"type": "function"} next_start | 2020-10-02 14:45:33.339885-04 hypertable_schema | hypertable_name | check_schema | NULL check_name | NULL -[ RECORD 2 ]-----+------------------------------ job_id | 1004 application_name | User-Defined Action [1004] schedule_interval | 01:00:00 max_runtime | 00:00:00 max_retries | -1 retry_period | 00:05:00 proc_schema | public proc_name | custom_retention_func owner | postgres scheduled | t config | {"type": "function"} next_start | 2020-10-02 14:45:33.353733-04 hypertable_schema | hypertable_name | check_schema | NULL check_name | NULL
## Arguments
|Name|Type| Description |
|-|-|--------------------------------------------------------------------------------------------------------------|
|`job_id`|`INTEGER`| The ID of the background job |
|`application_name`|`TEXT`| Name of the policy or job |
|`schedule_interval`|`INTERVAL`| The interval at which the job runs. Defaults to 24 hours |
|`max_runtime`|`INTERVAL`| The maximum amount of time the job is allowed to run by the background worker scheduler before it is stopped |
|`max_retries`|`INTEGER`| The number of times the job is retried if it fails |
|`retry_period`|`INTERVAL`| The amount of time the scheduler waits between retries of the job on failure |
|`proc_schema`|`TEXT`| Schema name of the function or procedure executed by the job |
|`proc_name`|`TEXT`| Name of the function or procedure executed by the job |
|`owner`|`TEXT`| Owner of the job |
|`scheduled`|`BOOLEAN`| Set to `true` to run the job automatically |
|`fixed_schedule`|BOOLEAN| Set to `true` for jobs executing at fixed times according to a schedule interval and initial start |
|`config`|`JSONB`| Configuration passed to the function specified by `proc_name` at execution time |
|`next_start`|`TIMESTAMP WITH TIME ZONE`| Next start time for the job, if it is scheduled to run automatically |
|`initial_start`|`TIMESTAMP WITH TIME ZONE`| Time the job is first run and also the time on which execution times are aligned for jobs with fixed schedules |
|`hypertable_schema`|`TEXT`| Schema name of the hypertable. Set to `NULL` for a job |
|`hypertable_name`|`TEXT`| Table name of the hypertable. Set to `NULL` for a job |
|`check_schema`|`TEXT`| Schema name of the optional configuration validation function, set when the job is created or updated |
|`check_name`|`TEXT`| Name of the optional configuration validation function, set when the job is created or updated |
===== PAGE: https://docs.tigerdata.com/api/informational-views/hypertables/ =====
# timescaledb_information.hypertables
Get metadata information about hypertables.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get information about a hypertable.
sql CREATE TABLE metrics(time timestamptz, device int, temp float); SELECT create_hypertable('metrics','time');
SELECT * from timescaledb_information.hypertables WHERE hypertable_name = 'metrics';
-[ RECORD 1 ]-------+-------- hypertable_schema | public hypertable_name | metrics owner | sven num_dimensions | 1 num_chunks | 0 compression_enabled | f tablespaces | NULL
## Available columns
|Name|Type| Description |
|-|-|-------------------------------------------------------------------|
|`hypertable_schema`|TEXT| Schema name of the hypertable |
|`hypertable_name`|TEXT| Table name of the hypertable |
|`owner`|TEXT| Owner of the hypertable |
|`num_dimensions`|SMALLINT| Number of dimensions |
|`num_chunks`|BIGINT| Number of chunks |
|`compression_enabled`|BOOLEAN| Is compression enabled on the hypertable? |
|`is_distributed`|BOOLEAN| Sunsetted since TimescaleDB v2.14.0 Is the hypertable distributed? |
|`replication_factor`|SMALLINT| Sunsetted since TimescaleDB v2.14.0 Replication factor for a distributed hypertable |
|`data_nodes`|TEXT| Sunsetted since TimescaleDB v2.14.0 Nodes on which hypertable is distributed |
|`tablespaces`|TEXT| Tablespaces attached to the hypertable |
===== PAGE: https://docs.tigerdata.com/api/informational-views/policies/ =====
# timescaledb_experimental.policies
<!-- vale Google.Headings = NO -->
<!-- markdownlint-disable-next-line line-length -->
<!-- vale Google.Headings = YES -->
The `policies` view provides information on all policies set on continuous
aggregates.
Only policies applying to continuous aggregates are shown in this view. Policies
applying to regular hypertables or regular materialized views are not displayed.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Samples
Select from the `timescaledb_experimental.policies` table to view it:
sql SELECT * FROM timescaledb_experimental.policies;
Example of the returned output:
sql -[ RECORD 1 ]-------------------------------------------------------------------- relation_name | mat_m1 relation_schema | public schedule_interval | @ 1 hour proc_schema | _timescaledb_internal proc_name | policy_refresh_continuous_aggregate config | {"end_offset": 1, "start_offset", 10, "mat_hypertable_id": 2} hypertable_schema | _timescaledb_internal hypertable_name | _materialized_hypertable_2 -[ RECORD 2 ]-------------------------------------------------------------------- relation_name | mat_m1 relation_schema | public schedule_interval | @ 1 day proc_schema | _timescaledb_internal proc_name | policy_compression config | {"hypertable_id": 2, "compress_after", 11} hypertable_schema | _timescaledb_internal hypertable_name | _materialized_hypertable_2 -[ RECORD 3 ]-------------------------------------------------------------------- relation_name | mat_m1 relation_schema | public schedule_interval | @ 1 day proc_schema | _timescaledb_internal proc_name | policy_retention config | {"drop_after": 20, "hypertable_id": 2} hypertable_schema | _timescaledb_internal hypertable_name | _materialized_hypertable_2
## Available columns
|Column|Type|Description|
|-|-|-|
|`relation_name`|Name of the continuous aggregate|
|`relation_schema`|Schema of the continuous aggregate|
|`schedule_interval`|How often the policy job runs|
|`proc_schema`|Schema of the policy job|
|`proc_name`|Name of the policy job|
|`config`|Configuration details for the policy job|
|`hypertable_schema`|Schema of the hypertable that contains the actual data for the continuous aggregate view|
|`hypertable_name`|Name of the hypertable that contains the actual data for the continuous aggregate view|
===== PAGE: https://docs.tigerdata.com/api/informational-views/chunks/ =====
# timescaledb_information.chunks
Get metadata about the chunks of hypertables.
This view shows metadata for the chunk's primary time-based dimension.
For information about a hypertable's secondary dimensions,
the [dimensions view][dimensions] should be used instead.
If the chunk's primary dimension is of a time datatype, `range_start` and
`range_end` are set. Otherwise, if the primary dimension type is integer based,
`range_start_integer` and `range_end_integer` are set.
## Samples
Get information about the chunks of a hypertable.
Dimension builder `by_range` was introduced in TimescaleDB 2.13.
The `chunk_creation_time` metadata was introduced in TimescaleDB 2.13.
sql CREATE TABLESPACE tablespace1 location '/usr/local/pgsql/data1';
CREATE TABLE hyper_int (a_col integer, b_col integer, c integer); SELECT table_name from create_hypertable('hyper_int', by_range('a_col', 10)); CREATE OR REPLACE FUNCTION integer_now_hyper_int() returns int LANGUAGE SQL STABLE as $$ SELECT coalesce(max(a_col), 0) FROM hyper_int $$; SELECT set_integer_now_func('hyper_int', 'integer_now_hyper_int');
INSERT INTO hyper_int SELECT generate_series(1,5,1), 10, 50;
SELECT attach_tablespace('tablespace1', 'hyper_int'); INSERT INTO hyper_int VALUES( 25 , 14 , 20), ( 25, 15, 20), (25, 16, 20);
SELECT * FROM timescaledb_information.chunks WHERE hypertable_name = 'hyper_int';
-[ RECORD 1 ]----------+---------------------- hypertable_schema | public hypertable_name | hyper_int chunk_schema | _timescaledb_internal chunk_name | _hyper_7_10_chunk primary_dimension | a_col primary_dimension_type | integer range_start | range_end | range_start_integer | 0 range_end_integer | 10 is_compressed | f chunk_tablespace | data_nodes | -[ RECORD 2 ]----------+---------------------- hypertable_schema | public hypertable_name | hyper_int chunk_schema | _timescaledb_internal chunk_name | _hyper_7_11_chunk primary_dimension | a_col primary_dimension_type | integer range_start | range_end | range_start_integer | 20 range_end_integer | 30 is_compressed | f chunk_tablespace | tablespace1 data_nodes |
## Available columns
|Name|Type|Description|
|---|---|---|
| `hypertable_schema` | TEXT | Schema name of the hypertable |
| `hypertable_name` | TEXT | Table name of the hypertable |
| `chunk_schema` | TEXT | Schema name of the chunk |
| `chunk_name` | TEXT | Name of the chunk |
| `primary_dimension` | TEXT | Name of the column that is the primary dimension|
| `primary_dimension_type` | REGTYPE | Type of the column that is the primary dimension|
| `range_start` | TIMESTAMP WITH TIME ZONE | Start of the range for the chunk's dimension |
| `range_end` | TIMESTAMP WITH TIME ZONE | End of the range for the chunk's dimension |
| `range_start_integer` | BIGINT | Start of the range for the chunk's dimension, if the dimension type is integer based |
| `range_end_integer` | BIGINT | End of the range for the chunk's dimension, if the dimension type is integer based |
| `is_compressed` | BOOLEAN | Is the data in the chunk compressed? <br/><br/> Note that for distributed hypertables, this is the cached compression status of the chunk on the access node. The cached status on the access node and data node is not in sync in some scenarios. For example, if a user compresses or decompresses the chunk on the data node instead of the access node, or sets up compression policies directly on data nodes. <br/><br/> Use `chunk_compression_stats()` function to get real-time compression status for distributed chunks.|
| `chunk_tablespace` | TEXT | Tablespace used by the chunk|
| `data_nodes` | ARRAY | Nodes on which the chunk is replicated. This is applicable only to chunks for distributed hypertables |
| `chunk_creation_time` | TIMESTAMP WITH TIME ZONE | The time when this chunk was created for data addition |
===== PAGE: https://docs.tigerdata.com/api/informational-views/data_nodes/ =====
# timescaledb_information.data_nodes
Get information on data nodes. This function is specific to running
TimescaleDB in a multi-node setup.
[Multi-node support is sunsetted][multi-node-deprecation].
TimescaleDB v2.13 is the last release that includes multi-node support for Postgres
versions 13, 14, and 15.
## Samples
Get metadata related to data nodes.
sql SELECT * FROM timescaledb_information.data_nodes;
node_name | owner | options --------------+------------+-------------------------------- dn1 | postgres | {host=localhost,port=15431,dbname=test} dn2 | postgres | {host=localhost,port=15432,dbname=test} (2 rows)
## Available columns
|Name|Type|Description|
|---|---|---|
| `node_name` | TEXT | Data node name. |
| `owner` | REGCLASS | Oid of the user, who added the data node. |
| `options` | JSONB | Options used when creating the data node. |
===== PAGE: https://docs.tigerdata.com/api/informational-views/hypertable_compression_settings/ =====
# timescaledb_information.hypertable_compression_settings
Shows information about compression settings for each hypertable chunk that has compression enabled on it.
## Samples
Show compression settings for all hypertables:
sql SELECT * FROM timescaledb_information.hypertable_compression_settings; hypertable | measurements chunk | _timescaledb_internal._hyper_2_97_chunk segmentby | orderby | time DESC
Find compression settings for a specific hypertable:
sql SELECT * FROM timescaledb_information.hypertable_compression_settings WHERE hypertable::TEXT LIKE 'metrics'; hypertable | metrics chunk | _timescaledb_internal._hyper_1_12_chunk segmentby | metric_id orderby | time DESC
## Arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|`REGCLASS`|Hypertable which has compression enabled|
|`chunk`|`REGCLASS`|Hypertable chunk which has compression enabled|
|`segmentby`|`TEXT`|List of columns used for segmenting the compressed data|
|`orderby`|`TEXT`| List of columns used for ordering compressed data along with ordering and NULL ordering information|
===== PAGE: https://docs.tigerdata.com/api/informational-views/compression_settings/ =====
# timescaledb_information.compression_settings
This view exists for backwards compatibility. The supported views to retrieve information about compression are:
- [timescaledb_information.hypertable_compression_settings][hypertable_compression_settings]
- [timescaledb_information.chunk_compression_settings][chunk_compression_settings].
This section describes a feature that is deprecated. We strongly
recommend that you do not use this feature in a production environment. If you
need more information, [contact us](https://www.tigerdata.com/contact/).
Get information about compression-related settings for hypertables.
Each row of the view provides information about individual `orderby`
and `segmentby` columns used by compression.
How you use `segmentby` is the single most important thing for compression. It
affects compresion rates, query performance, and what is compressed or
decompressed by mutable compression.
## Samples
sql CREATE TABLE hypertab (a_col integer, b_col integer, c_col integer, d_col integer, e_col integer); SELECT table_name FROM create_hypertable('hypertab', by_range('a_col', 864000000));
ALTER TABLE hypertab SET (timescaledb.compress, timescaledb.compress_segmentby = 'a_col,b_col', timescaledb.compress_orderby = 'c_col desc, d_col asc nulls last');
SELECT * FROM timescaledb_information.compression_settings WHERE hypertable_name = 'hypertab';
-[ RECORD 1 ]----------+--------- hypertable_schema | public hypertable_name | hypertab attname | a_col segmentby_column_index | 1 orderby_column_index | orderby_asc | orderby_nullsfirst | -[ RECORD 2 ]----------+--------- hypertable_schema | public hypertable_name | hypertab attname | b_col segmentby_column_index | 2 orderby_column_index | orderby_asc | orderby_nullsfirst | -[ RECORD 3 ]----------+--------- hypertable_schema | public hypertable_name | hypertab attname | c_col segmentby_column_index | orderby_column_index | 1 orderby_asc | f orderby_nullsfirst | t -[ RECORD 4 ]----------+--------- hypertable_schema | public hypertable_name | hypertab attname | d_col segmentby_column_index | orderby_column_index | 2 orderby_asc | t orderby_nullsfirst | f
The `by_range` dimension builder is an addition to TimescaleDB 2.13.
## Available columns
|Name|Type|Description|
|---|---|---|
| `hypertable_schema` | TEXT | Schema name of the hypertable |
| `hypertable_name` | TEXT | Table name of the hypertable |
| `attname` | TEXT | Name of the column used in the compression settings |
| `segmentby_column_index` | SMALLINT | Position of attname in the compress_segmentby list |
| `orderby_column_index` | SMALLINT | Position of attname in the compress_orderby list |
| `orderby_asc` | BOOLEAN | True if this is used for order by ASC, False for order by DESC |
| `orderby_nullsfirst` | BOOLEAN | True if nulls are ordered first for this column, False if nulls are ordered last|
===== PAGE: https://docs.tigerdata.com/api/informational-views/dimensions/ =====
# timescaledb_information.dimensions
Returns information about the dimensions of a hypertable. Hypertables can be
partitioned on a range of different dimensions. By default, all hypertables are
partitioned on time, but it is also possible to partition on other dimensions in
addition to time.
For hypertables that are partitioned solely on time,
`timescaledb_information.dimensions` returns a single row of metadata. For
hypertables that are partitioned on more than one dimension, the call returns a
row for each dimension.
For time-based dimensions, the metadata returned indicates the integer datatype,
such as BIGINT, INTEGER, or SMALLINT, and the time-related datatype, such as
TIMESTAMPTZ, TIMESTAMP, or DATE. For space-based dimension, the metadata
returned specifies the number of `num_partitions`.
If the hypertable uses time data types, the `time_interval` column is defined.
Alternatively, if the hypertable uses integer data types, the `integer_interval`
and `integer_now_func` columns are defined.
## Samples
Get information about the dimensions of hypertables.
sql -- Create a range and hash partitioned hypertable CREATE TABLE dist_table(time timestamptz, device int, temp float); SELECT create_hypertable('dist_table', by_range('time', INTERVAL '7 days')); SELECT add_dimension('dist_table', by_hash('device', 3));
SELECT * from timescaledb_information.dimensions ORDER BY hypertable_name, dimension_number;
-[ RECORD 1 ]-----+------------------------- hypertable_schema | public hypertable_name | dist_table dimension_number | 1 column_name | time column_type | timestamp with time zone dimension_type | Time time_interval | 7 days integer_interval | integer_now_func | num_partitions | -[ RECORD 2 ]-----+------------------------- hypertable_schema | public hypertable_name | dist_table dimension_number | 2 column_name | device column_type | integer dimension_type | Space time_interval | integer_interval | integer_now_func | num_partitions | 2
The `by_range` and `by_hash` dimension builders are an addition to TimescaleDB 2.13.
Get information about dimensions of a hypertable that has two time-based dimensions.
sql CREATE TABLE hyper_2dim (a_col date, b_col timestamp, c_col integer); SELECT table_name from create_hypertable('hyper_2dim', by_range('a_col')); SELECT add_dimension('hyper_2dim', by_range('b_col', INTERVAL '7 days'));
SELECT * FROM timescaledb_information.dimensions WHERE hypertable_name = 'hyper_2dim';
-[ RECORD 1 ]-----+---------------------------- hypertable_schema | public hypertable_name | hyper_2dim dimension_number | 1 column_name | a_col column_type | date dimension_type | Time time_interval | 7 days integer_interval | integer_now_func | num_partitions | -[ RECORD 2 ]-----+---------------------------- hypertable_schema | public hypertable_name | hyper_2dim dimension_number | 2 column_name | b_col column_type | timestamp without time zone dimension_type | Time time_interval | 7 days integer_interval | integer_now_func | num_partitions |
## Available columns
|Name|Type|Description|
|-|-|-|
|`hypertable_schema`|TEXT|Schema name of the hypertable|
|`hypertable_name`|TEXT|Table name of the hypertable|
|`dimension_number`|BIGINT|Dimension number of the hypertable, starting from 1|
|`column_name`|TEXT|Name of the column used to create this dimension|
|`column_type`|REGTYPE|Type of the column used to create this dimension|
|`dimension_type`|TEXT|Is this a time based or space based dimension|
|`time_interval`|INTERVAL|Time interval for primary dimension if the column type is a time datatype|
|`integer_interval`|BIGINT|Integer interval for primary dimension if the column type is an integer datatype|
|`integer_now_func`|TEXT|`integer_now`` function for primary dimension if the column type is an integer datatype|
|`num_partitions`|SMALLINT|Number of partitions for the dimension|
The `time_interval` and `integer_interval` columns are not applicable for space
based dimensions.
===== PAGE: https://docs.tigerdata.com/api/informational-views/job_errors/ =====
# timescaledb_information.job_errors
Shows information about runtime errors encountered by jobs run by the automation framework.
This includes custom jobs and jobs run by policies
created to manage data retention, continuous aggregates, columnstore, and
other automation policies. For more information about automation policies,
see the [policies][jobs] section.
## Samples
See information about recent job failures:
sql SELECT job_id, proc_schema, proc_name, pid, sqlerrcode, err_message from timescaledb_information.job_errors ;
job_id | proc_schema | proc_name | pid | sqlerrcode | err_message --------+-------------+--------------+-------+------------+----------------------------------------------------- 1001 | public | custom_proc2 | 83111 | 40001 | could not serialize access due to concurrent update 1003 | public | job_fail | 83134 | 57014 | canceling statement due to user request 1005 | public | job_fail | | | job crash detected, see server logs (3 rows)
## Available columns
|Name|Type|Description|
|-|-|-|
|`job_id`|INTEGER|The ID of the background job created to implement the policy|
|`proc_schema`|TEXT|Schema name of the function or procedure executed by the job|
|`proc_name`|TEXT|Name of the function or procedure executed by the job|
|`pid`|INTEGER|The process ID of the background worker executing the job. This is `NULL` in the case of a job crash|
|`start_time`|TIMESTAMP WITH TIME ZONE|Start time of the job|
|`finish_time`|TIMESTAMP WITH TIME ZONE|Time when error was reported|
|`sqlerrcode`|TEXT|The error code associated with this error, if any. See the [official Postgres documentation](https://www.postgresql.org/docs/current/errcodes-appendix.html) for a full list of error codes|
|`err_message`|TEXT|The detailed error message|
## Error retention policy
The informational view `timescaledb_information.job_errors` is defined on top
of the table `_timescaledb_internal.job_errors` in the internal schema. To
prevent this table from growing too large, a system background job
`Error Log Retention Policy [2]` is enabled by default,
with this configuration:
sql
id | 2
application_name | Error Log Retention Policy [2]
schedule_interval | 1 mon
max_runtime | 01:00:00
max_retries | -1
retry_period | 01:00:00
proc_schema | _timescaledb_internal
proc_name | policy_job_error_retention
owner | owner must be a user with WRITE privilege on the table _timescaledb_internal.job_errors
scheduled | t
fixed_schedule | t
initial_start | 2000-01-01 02:00:00+02
hypertable_id |
config | {"drop_after": "1 month"}
check_schema | _timescaledb_internal
check_name | policy_job_error_retention_check
timezone |
On TimescaleDB and Managed Service for TimescaleDB, the owner of the error
retention job is `tsdbadmin`. In an on-premise installation, the owner of the
job is the same as the extension owner.
The owner of the retention job can alter it and delete it.
For example, the owner can change the retention interval like this:
sql SELECT alter_job(id,config:=jsonb_set(config,'{drop_after}', '"2 weeks"')) FROM _timescaledb_config.bgw_job WHERE id = 2;
===== PAGE: https://docs.tigerdata.com/api/informational-views/job_history/ =====
# timescaledb_information.history
Shows information about the jobs run by the automation framework.
This includes custom jobs and jobs run by policies
created to manage data retention, continuous aggregates, columnstore, and
other automation policies. For more information about automation policies,
see [jobs][jobs].
## Samples
To retrieve information about recent jobs:
sql SELECT job_id, pid, proc_schema, proc_name, succeeded, config, sqlerrcode, err_message FROM timescaledb_information.job_history ORDER BY id, job_id; job_id | pid | proc_schema | proc_name | succeeded | config | sqlerrcode | err_message --------+---------+-------------+------------------+-----------+------------+------------+------------------ 1001 | 1779278 | public | custom_job_error | f | | 22012 | division by zero 1000 | 1779407 | public | custom_job_ok | t | | | 1001 | 1779408 | public | custom_job_error | f | | 22012 | division by zero 1000 | 1779467 | public | custom_job_ok | t | {"foo": 1} | | 1001 | 1779468 | public | custom_job_error | f | {"bar": 1} | 22012 | division by zero (5 rows)
## Available columns
|Name|Type|Description|
|-|-|-|
|`id`|INTEGER|The sequencial ID to identify the job execution|
|`job_id`|INTEGER|The ID of the background job created to implement the policy|
|`succeeded`|BOOLEAN|`TRUE` when the job ran successfully, `FALSE` for failed executions|
|`proc_schema`|TEXT| The schema name of the function or procedure executed by the job|
|`proc_name`|TEXT| The name of the function or procedure executed by the job|
|`pid`|INTEGER|The process ID of the background worker executing the job. This is `NULL` in the case of a job crash|
|`start_time`|TIMESTAMP WITH TIME ZONE| The time the job started|
|`finish_time`|TIMESTAMP WITH TIME ZONE| The time when the error was reported|
|`config`|JSONB| The job configuration at the moment of execution|
|`sqlerrcode`|TEXT|The error code associated with this error, if any. See the [official Postgres documentation](https://www.postgresql.org/docs/current/errcodes-appendix.html) for a full list of error codes|
|`err_message`|TEXT|The detailed error message|
## Error retention policy
The `timescaledb_information.job_history` informational view is defined on top
of the `_timescaledb_internal.bgw_job_stat_history` table in the internal schema. To
prevent this table from growing too large, the
`Job History Log Retention Policy [3]` system background job is enabled by default,
with this configuration:
sql
job_id | 3
application_name | Job History Log Retention Policy [3]
schedule_interval | 1 mon
max_runtime | 01:00:00
max_retries | -1
retry_period | 01:00:00
proc_schema | _timescaledb_functions
proc_name | policy_job_stat_history_retention
owner | owner must be a user with WRITE privilege on the table _timescaledb_internal.bgw_job_stat_history
scheduled | t
fixed_schedule | t
config | {"drop_after": "1 month"}
next_start | 2024-06-01 01:00:00+00
initial_start | 2000-01-01 00:00:00+00
hypertable_schema |
hypertable_name |
check_schema | _timescaledb_functions
check_name | policy_job_stat_history_retention_check
On TimescaleDB and Managed Service for TimescaleDB, the owner of the job history
retention job is `tsdbadmin`. In an on-premise installation, the owner of the
job is the same as the extension owner.
The owner of the retention job can alter it and delete it.
For example, the owner can change the retention interval like this:
sql SELECT alter_job(id,config:=jsonb_set(config,'{drop_after}', '"2 weeks"')) FROM _timescaledb_config.bgw_job WHERE id = 3;
===== PAGE: https://docs.tigerdata.com/api/informational-views/job_stats/ =====
# timescaledb_information.job_stats
Shows information and statistics about jobs run by the automation framework.
This includes jobs set up for user defined actions and jobs run by policies
created to manage data retention, continuous aggregates, columnstore, and
other automation policies. (See [policies][actions]).
The statistics include information useful for administering jobs and determining
whether they ought be rescheduled, such as: when and whether the background job
used to implement the policy succeeded and when it is scheduled to run next.
## Samples
Get job success/failure information for a specific hypertable.
sql SELECT job_id, total_runs, total_failures, total_successes FROM timescaledb_information.job_stats WHERE hypertable_name = 'test_table';
job_id | total_runs | total_failures | total_successes --------+------------+----------------+----------------- 1001 | 1 | 0 | 1 1004 | 1 | 0 | 1 (2 rows)
Get information about continuous aggregate policy related statistics
sql SELECT js.* FROM timescaledb_information.job_stats js, timescaledb_information.continuous_aggregates cagg WHERE cagg.view_name = 'max_mat_view_timestamp' and cagg.materialization_hypertable_name = js.hypertable_name;
-[ RECORD 1 ]----------+------------------------------ hypertable_schema | _timescaledb_internal hypertable_name | _materialized_hypertable_2 job_id | 1001 last_run_started_at | 2020-10-02 09:38:06.871953-04 last_successful_finish | 2020-10-02 09:38:06.932675-04 last_run_status | Success job_status | Scheduled last_run_duration | 00:00:00.060722 next_start | 2020-10-02 10:38:06.932675-04 total_runs | 1 total_successes | 1 total_failures | 0
## Available columns
<!-- vale Google.Acronyms = NO -->
|Name|Type|Description|
|---|---|---|
|`hypertable_schema` | TEXT | Schema name of the hypertable |
|`hypertable_name` | TEXT | Table name of the hypertable |
|`job_id` | INTEGER | The id of the background job created to implement the policy |
|`last_run_started_at`| TIMESTAMP WITH TIME ZONE | Start time of the last job|
|`last_successful_finish`| TIMESTAMP WITH TIME ZONE | Time when the job completed successfully|
|`last_run_status` | TEXT | Whether the last run succeeded or failed |
|`job_status`| TEXT | Status of the job. Valid values are 'Running', 'Scheduled' and 'Paused'|
|`last_run_duration`| INTERVAL | Duration of last run of the job|
|`next_start` | TIMESTAMP WITH TIME ZONE | Start time of the next run |
|`total_runs` | BIGINT | The total number of runs of this job|
|`total_successes` | BIGINT | The total number of times this job succeeded |
|`total_failures` | BIGINT | The total number of times this job failed |
<!-- vale Google.Acronyms = YES -->
===== PAGE: https://docs.tigerdata.com/api/informational-views/continuous_aggregates/ =====
# timescaledb_information.continuous_aggregates
Get metadata and settings information for continuous aggregates.
## Samples
sql SELECT * FROM timescaledb_information.continuous_aggregates;
-[ RECORD 1 ]---------------------+------------------------------------------------- hypertable_schema | public hypertable_name | foo view_schema | public view_name | contagg_view view_owner | postgres materialized_only | f compression_enabled | f materialization_hypertable_schema | _timescaledb_internal materialization_hypertable_name | _materialized_hypertable_2 view_definition | SELECT foo.a, +
| COUNT(foo.b) AS countb +
| FROM foo +
| GROUP BY (time_bucket('1 day', foo.a)), foo.a;
finalized | t
## Available columns
|Name|Type|Description|
|---|---|---|
|`hypertable_schema` | TEXT | Schema of the hypertable from the continuous aggregate view|
|`hypertable_name` | TEXT | Name of the hypertable from the continuous aggregate view|
|`view_schema` | TEXT | Schema for continuous aggregate view |
|`view_name` | TEXT | User supplied name for continuous aggregate view |
|`view_owner` | TEXT | Owner of the continuous aggregate view|
|`materialized_only` | BOOLEAN | Return only materialized data when querying the continuous aggregate view|
|`compression_enabled` | BOOLEAN | Is compression enabled for the continuous aggregate view?|
|`materialization_hypertable_schema` | TEXT | Schema of the underlying materialization table|
|`materialization_hypertable_name` | TEXT | Name of the underlying materialization table|
|`view_definition` | TEXT | `SELECT` query for continuous aggregate view|
|`finalized`| BOOLEAN | Whether the continuous aggregate stores data in finalized or partial form. Since TimescaleDB 2.7, the default is finalized. |
===== PAGE: https://docs.tigerdata.com/api/jobs-automation/alter_job/ =====
# alter_job()
Jobs scheduled using the TimescaleDB automation framework run periodically in
a background worker. You can change the schedule of these jobs with the
`alter_job` function. To alter an existing job, refer to it by `job_id`. The
`job_id` runs a given job, and its current schedule can be found in the
`timescaledb_information.jobs` view, which lists information about every
scheduled jobs, as well as in `timescaledb_information.job_stats`. The
`job_stats` view also gives information about when each job was last run and
other useful statistics for deciding what the new schedule should be.
## Samples
Reschedules job ID `1000` so that it runs every two days:
sql SELECT alter_job(1000, schedule_interval => INTERVAL '2 days');
Disables scheduling of the compression policy on the `conditions` hypertable:
sql SELECT alter_job(job_id, scheduled => false) FROM timescaledb_information.jobs WHERE proc_name = 'policy_compression' AND hypertable_name = 'conditions'
Reschedules continuous aggregate job ID `1000` so that it next runs at 9:00:00 on 15 March, 2020:
sql SELECT alter_job(1000, next_start => '2020-03-15 09:00:00.0+00');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`job_id`|`INTEGER`|The ID of the policy job being modified|
## Optional arguments
|Name|Type| Description |
|-|-|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`schedule_interval`|`INTERVAL`| The interval at which the job runs. Defaults to 24 hours. |
|`max_runtime`|`INTERVAL`| The maximum amount of time the job is allowed to run by the background worker scheduler before it is stopped. |
|`max_retries`|`INTEGER`| The number of times the job is retried if it fails. |
|`retry_period`|`INTERVAL`| The amount of time the scheduler waits between retries of the job on failure. |
|`scheduled`|`BOOLEAN`| Set to `FALSE` to exclude this job from being run as background job. |
|`config`|`JSONB`| Job-specific configuration, passed to the function when it runs. This includes: <li><code>verbose_log</code>: boolean, defaults to <code>false</code>. Enable verbose logging output when running the compression policy.</li><li><code>maxchunks_to_compress</code>: integer, defaults to <code>0</code> (no limit). The maximum number of chunks to compress during a policy run.</li><li><code>recompress</code>: boolean, defaults to <code>true</code>. Recompress partially compressed chunks.</li><li><code>compress_after</code>: see <code>[add_compression_policy][add-policy]</code>.</li><li><code>compress_created_before</code>: see <code>[add_compression_policy][add-policy]</code>.</li> |
|`next_start`|`TIMESTAMPTZ`| The next time at which to run the job. The job can be paused by setting this value to `infinity`, and restarted with a value of `now()`. |
|`if_exists`|`BOOLEAN`| Set to `true`to issue a notice instead of an error if the job does not exist. Defaults to false. |
|`check_config`|`REGPROC`| A function that takes a single argument, the `JSONB` `config` structure. The function is expected to raise an error if the configuration is not valid, and return nothing otherwise. Can be used to validate the configuration when updating a job. Only functions, not procedures, are allowed as values for `check_config`. |
|`fixed_schedule`|`BOOLEAN`| To enable fixed scheduled job runs, set to `TRUE`. |
|`initial_start`|`TIMESTAMPTZ`| Set the time when the `fixed_schedule` job run starts. For example, `19:10:25-07`. |
|`timezone`|`TEXT`| Address the 1-hour shift in start time when clocks change from [Daylight Saving Time to Standard Time](https://en.wikipedia.org/wiki/Daylight_saving_time). For example, `America/Sao_Paulo`. |
When a job begins, the `next_start` parameter is set to `infinity`. This
prevents the job from attempting to be started again while it is running. When
the job completes, whether or not the job is successful, the parameter is
automatically updated to the next computed start time.
Note that altering the `next_start` value is only effective for the next
execution of the job in case of fixed schedules. On the next execution, it will
automatically return to the schedule.
## Returns
|Column|Type| Description |
|-|-|---------------------------------------------------------------------------------------------------------------|
|`job_id`|`INTEGER`| The ID of the job being modified |
|`schedule_interval`|`INTERVAL`| The interval at which the job runs. Defaults to 24 hours |
|`max_runtime`|`INTERVAL`| The maximum amount of time the job is allowed to run by the background worker scheduler before it is stopped |
|`max_retries`|INTEGER| The number of times the job is retried if it fails |
|`retry_period`|`INTERVAL`| The amount of time the scheduler waits between retries of the job on failure |
|`scheduled`|`BOOLEAN`| Returns `true` if the job is executed by the TimescaleDB scheduler |
|`config`|`JSONB`| Jobs-specific configuration, passed to the function when it runs |
|`next_start`|`TIMESTAMPTZ`| The next time to run the job |
|`check_config`|`TEXT`| The function used to validate updated job configurations |
## Calculation of next start on failure
When a job run results in a runtime failure, the next start of the job is calculated taking into account both its `retry_period` and `schedule_interval`.
The `next_start` time is calculated using the following formula:
next_start = finish_time + consecutive_failures * retry_period ± jitter
where jitter (± 13%) is added to avoid the "thundering herds" effect.
To ensure that the `next_start` time is not put off indefinitely or produce timestamps so large they end up out of range, it is capped at 5*`schedule_interval`.
Also, more than 20 consecutive failures are not considered, so if the number of consecutive failures is higher, then it multiplies by 20.
Additionally, for jobs with fixed schedules, the system ensures that if the next start ( calculated as specified), surpasses the next scheduled execution, the job is executed again at the next scheduled slot and not after that. This ensures that the job does not miss scheduled executions.
There is a distinction between runtime failures that do not cause the job to crash and job crashes.
In the event of a job crash, the next start calculation follows the same formula,
but it is always at least 5 minutes after the job's last finish, to give an operator enough time to disable it before another crash.
===== PAGE: https://docs.tigerdata.com/api/jobs-automation/delete_job/ =====
# delete_job()
Delete a job registered with the automation framework.
This works for jobs as well as policies.
If the job is currently running, the process is terminated.
## Samples
Delete the job with the job id 1000:
sql SELECT delete_job(1000);
## Required arguments
|Name|Type|Description|
|---|---|---|
|`job_id`| INTEGER | TimescaleDB background job id |
===== PAGE: https://docs.tigerdata.com/api/jobs-automation/run_job/ =====
# run_job()
Run a previously registered job in the current session.
This works for job as well as policies.
Since `run_job` is implemented as stored procedure it cannot be executed
inside a SELECT query but has to be executed with `CALL`.
Any background worker job can be run in the foreground when executed with
`run_job`. You can use this with an increased log level to help debug problems.
## Samples
Set log level shown to client to `DEBUG1` and run the job with the job ID 1000:
sql SET client_min_messages TO DEBUG1; CALL run_job(1000);
## Required arguments
|Name|Description|
|---|---|
|`job_id`| (INTEGER) TimescaleDB background job ID |
===== PAGE: https://docs.tigerdata.com/api/jobs-automation/add_job/ =====
# add_job()
Register a job for scheduling by the automation framework. For more information about scheduling, including example jobs, see the [jobs documentation section][using-jobs].
## Samples
Register the `user_defined_action` procedure to run every hour:
sql CREATE OR REPLACE PROCEDURE user_defined_action(job_id int, config jsonb) LANGUAGE PLPGSQL AS $$ BEGIN RAISE NOTICE 'Executing action % with config %', job_id, config; END $$;
SELECT add_job('user_defined_action','1h'); SELECT add_job('user_defined_action','1h', fixed_schedule => false);
Register the `user_defined_action` procedure to run at midnight every Sunday.
The `initial_start` provided must satisfy these requirements, so it must be a Sunday midnight:
sql -- December 4, 2022 is a Sunday SELECT add_job('user_defined_action','1 week', initial_start => '2022-12-04 00:00:00+00'::timestamptz); -- if subject to DST SELECT add_job('user_defined_action','1 week', initial_start => '2022-12-04 00:00:00+00'::timestamptz, timezone => 'Europe/Berlin');
## Required arguments
|Name|Type| Description |
|-|-|---------------------------------------------------------------|
|`proc`|REGPROC| Name of the function or procedure to register as a job. |
|`schedule_interval`|INTERVAL| Interval between executions of this job. Defaults to 24 hours |
## Optional arguments
|Name|Type| Description |
|-|-|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`config`|JSONB| Jobs-specific configuration, passed to the function when it runs |
|`initial_start`|TIMESTAMPTZ| Time the job is first run. In the case of fixed schedules, this also serves as the origin on which job executions are aligned. If omitted, the current time is used as origin in the case of fixed schedules. |
|`scheduled`|BOOLEAN| Set to `FALSE` to exclude this job from scheduling. Defaults to `TRUE`. |
|`check_config`|`REGPROC`| A function that takes a single argument, the `JSONB` `config` structure. The function is expected to raise an error if the configuration is not valid, and return nothing otherwise. Can be used to validate the configuration when adding a job. Only functions, not procedures, are allowed as values for `check_config`. |
|`fixed_schedule`|BOOLEAN| Set to `FALSE` if you want the next start of a job to be determined as its last finish time plus the schedule interval. Set to `TRUE` if you want the next start of a job to begin `schedule_interval` after the last start. Defaults to `TRUE` |
|`timezone`|TEXT| A valid time zone. If fixed_schedule is `TRUE`, subsequent executions of the job are aligned on its initial start. However, daylight savings time (DST) changes may shift this alignment. Set to a valid time zone if you want to mitigate this issue. Defaults to `NULL`. |
## Returns
|Column|Type|Description|
|-|-|-|
|`job_id`|INTEGER|TimescaleDB background job ID|
===== PAGE: https://docs.tigerdata.com/api/data-retention/add_retention_policy/ =====
# add_retention_policy()
Create a policy to drop chunks older than a given interval of a particular
hypertable or continuous aggregate on a schedule in the background. For more
information, see the [drop_chunks][drop_chunks] section. This implements a data
retention policy and removes data on a schedule. Only one retention policy may
exist per hypertable.
When you create a retention policy on a hypertable with an integer based time column, you must set the
[integer_now_func][set_integer_now_func] to match your data. If you are seeing `invalid value` issues when you
call `add_retention_policy`, set `VERBOSITY verbose` to see the full context.
## Samples
- **Create a data retention policy to discard chunks greater than 6 months old**:
```sql
SELECT add_retention_policy('conditions', drop_after => INTERVAL '6 months');
```
When you call `drop_after`, the time data range present in the partitioning time column is used to select the target
chunks.
- **Create a data retention policy with an integer-based time column**:
```sql
SELECT add_retention_policy('conditions', drop_after => BIGINT '600000');
```
- **Create a data retention policy to discard chunks created before 6 months**:
```sql
SELECT add_retention_policy('conditions', drop_created_before => INTERVAL '6 months');
```
When you call `drop_created_before`, chunks created 3 months ago are selected.
## Arguments
| Name | Type | Default | Required | Description |
|-|-|-|-|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`relation`|REGCLASS|-|✔| Name of the hypertable or continuous aggregate to create the policy for |
|`drop_after`|INTERVAL or INTEGER|-|✔| Chunks fully older than this interval when the policy is run are dropped. <BR/> You specify `drop_after` differently depending on the hypertable time column type: <ul><li>TIMESTAMP, TIMESTAMPTZ, and DATE: use INTERVAL type</li><li>Integer-based timestamps: use INTEGER type. You must set <a href="https://docs.tigerdata.com/api/latest/hypertable/set_integer_now_func/">integer_now_func</a> to match your data</li></ul> |
|`schedule_interval`|INTERVAL|`NULL`|✖| The interval between the finish time of the last execution and the next start. |
|`initial_start`|TIMESTAMPTZ|`NULL`|✖| Time the policy is first run. If omitted, then the schedule interval is the interval between the finish time of the last execution and the next start. If provided, it serves as the origin with respect to which the next_start is calculated. |
|`timezone`|TEXT|`NULL`|✖| A valid time zone. If `initial_start` is also specified, subsequent executions of the retention policy are aligned on its initial start. However, daylight savings time (DST) changes may shift this alignment. Set to a valid time zone if this is an issue you want to mitigate. If omitted, UTC bucketing is performed. |
|`if_not_exists`|BOOLEAN|`false`|✖| Set to `true` to avoid an error if the `drop_chunks_policy` already exists. A notice is issued instead. |
|`drop_created_before`|INTERVAL|`NULL`|✖| Chunks with creation time older than this cut-off point are dropped. The cut-off point is computed as `now() - drop_created_before`. Not supported for continuous aggregates yet. |
You specify `drop_after` differently depending on the hypertable time column type:
* TIMESTAMP, TIMESTAMPTZ, and DATE time columns: the time interval should be an INTERVAL type.
* Integer-based timestamps: the time interval should be an integer type. You must set the [integer_now_func][set_integer_now_func].
## Returns
|Column|Type|Description|
|-|-|-|
|`job_id`|INTEGER|TimescaleDB background job ID created to implement this policy|
===== PAGE: https://docs.tigerdata.com/api/data-retention/remove_retention_policy/ =====
# remove_retention_policy()
Remove a policy to drop chunks of a particular hypertable.
## Samples
sql SELECT remove_retention_policy('conditions');
Removes the existing data retention policy for the `conditions` table.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `relation` | REGCLASS | Name of the hypertable or continuous aggregate from which to remove the policy |
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `if_exists` | BOOLEAN | Set to true to avoid throwing an error if the policy does not exist. Defaults to false.|
===== PAGE: https://docs.tigerdata.com/api/hypertable/create_table/ =====
# CREATE TABLE
Create a [hypertable][hypertable-docs] partitioned on a single dimension with [columnstore][hypercore] enabled, or
create a standard Postgres relational table.
A hypertable is a specialized Postgres table that automatically partitions your data by time. All actions that work on a
Postgres table, work on hypertables. For example, [ALTER TABLE][alter_table_hypercore] and [SELECT][sql-select]. By default,
a hypertable is partitioned on the time dimension. To add secondary dimensions to a hypertable, call
[add_dimension][add-dimension]. To convert an existing relational table into a hypertable, call
[create_hypertable][create_hypertable].
As the data cools and becomes more suited for analytics, [add a columnstore policy][add_columnstore_policy] so your data
is automatically converted to the columnstore after a specific time interval. This columnar format enables fast
scanning and aggregation, optimizing performance for analytical workloads while also saving significant storage space.
In the columnstore conversion, hypertable chunks are compressed by up to 98%, and organized for efficient,
large-scale queries. This columnar format enables fast scanning and aggregation, optimizing performance for analytical
workloads. You can also manually [convert chunks][convert_to_columnstore] in a hypertable to the columnstore.
Hypertable to hypertable foreign keys are not allowed, all other combinations are permitted.
The [columnstore][hypercore] settings are applied on a per-chunk basis. You can change the settings by calling [ALTER TABLE][alter_table_hypercore] without first converting the entire hypertable back to the [rowstore][hypercore]. The new settings apply only to the chunks that have not yet been converted to columnstore, the existing chunks in the columnstore do not change. Similarly, if you [remove an existing columnstore policy][remove_columnstore_policy] and then [add a new one][add_columnstore_policy], the new policy applies only to the unconverted chunks. This means that chunks with different columnstore settings can co-exist in the same hypertable.
TimescaleDB calculates default columnstore settings for each chunk when it is created. These settings apply to each chunk, and not the entire hypertable. To explicitly disable the defaults, set a setting to an empty string.
`CREATE TABLE` extends the standard Postgres [CREATE TABLE][pg-create-table]. This page explains the features and
arguments specific to TimescaleDB.
Since [TimescaleDB v2.20.0](https://github.com/timescale/timescaledb/releases/tag/2.20.0)
## Samples
- **Create a hypertable partitioned on the time dimension and enable columnstore**:
1. Create the hypertable:
```sql
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
```
1. Enable hypercore by adding a columnstore policy:
```sql
CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '1d');
```
- **Create a hypertable partitioned on the time with fewer chunks based on time interval**:
sql CREATE TABLE IF NOT EXISTS hypertable_control_chunk_interval(
time int4 NOT NULL,
device text,
value float
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.chunk_interval=3453
);
- **Create a hypertable partitioned using [UUIDv7][uuidv7_functions]**:
<Terminal>
```sql
-- For optimal compression on the ID column, first enable UUIDv7 compression
SET enable_uuid_compression=true;
-- Then create your table
CREATE TABLE events (
id uuid PRIMARY KEY DEFAULT generate_uuidv7(),
payload jsonb
) WITH (tsdb.hypertable, tsdb.partition_column = 'id');
```
```sql
-- For optimal compression on the ID column, first enable UUIDv7 compression
SET enable_uuid_compression=true;
-- Then create your table
CREATE TABLE events (
id uuid PRIMARY KEY DEFAULT uuidv7(),
payload jsonb
) WITH (tsdb.hypertable, tsdb.partition_column = 'id');
```
</Terminal>
- **Enable data compression during ingestion**:
When you set `timescaledb.enable_direct_compress_copy` your data gets compressed in memory during ingestion with `COPY` statements.
By writing the compressed batches immediately in the columnstore, the IO footprint is significantly lower.
Also, the [columnstore policy][add_columnstore_policy] you set is less important, `INSERT` already produces compressed chunks.
Please note that this feature is a **tech preview** and not production-ready.
Using this feature could lead to regressed query performance and/or storage ratio, if the ingested batches are not
correctly ordered or are of too high cardinality.
To enable in-memory data compression during ingestion:
sql SET timescaledb.enable_direct_compress_copy=on;
**Important facts**
- High cardinality use cases do not produce good batches and lead to degreaded query performance.
- The columnstore is optimized to store 1000 records per batch, which is the optimal format for ingestion per segment by.
- WAL records are written for the compressed batches rather than the individual tuples.
- Currently only `COPY` is support, `INSERT` will eventually follow.
- Best results are achieved for batch ingestion with 1000 records or more, upper boundary is 10.000 records.
- Continous Aggregates are **not** supported at the moment.
1. Create a hypertable:
```sql
CREATE TABLE t(time timestamptz, device text, value float) WITH (tsdb.hypertable,tsdb.partition_column='time');
```
1. Copy data into the hypertable:
You achieve the highest insert rate using binary format. CSV and text format are also supported.
```sql
COPY t FROM '/tmp/t.binary' WITH (format binary);
```
- **Create a Postgres relational table**:
sql CREATE TABLE IF NOT EXISTS relational_table(
device text,
value float
);
## Arguments
The syntax is:
sql CREATE TABLE ( -- Standard Postgres syntax for CREATE TABLE ) WITH ( tsdb.hypertable = true | false tsdb.partition_column = ' ', tsdb.chunk_interval = '' tsdb.create_default_indexes = true | false tsdb.associated_schema = '', tsdb.associated_table_prefix = '' tsdb.orderby = ' [ASC | DESC] [ NULLS { FIRST | LAST } ] [, ...]', tsdb.segmentby = ' [, ...]', tsdb.sparse_index = '(), index()' )
| Name | Type | Default | Required | Description |
|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `tsdb.hypertable` |BOOLEAN| `true` | ✖ | Create a new [hypertable][hypertable-docs] for time-series data rather than a standard Postgres relational table. |
| `tsdb.partition_column` |TEXT| `true` | ✖ | Set the time column to automatically partition your time-series data by. |
| `tsdb.chunk_interval` |TEXT| `7 days` | ✖ | Change this to better suit your needs. For example, if you set `chunk_interval` to 1 day, each chunk stores data from the same day. Data from different days is stored in different chunks. |
| `tsdb.create_default_indexes` | BOOLEAN | `true` | ✖ | Set to `false` to not automatically create indexes. <br/> The default indexes are: <ul><li>On all hypertables, a descending index on `partition_column`</li><li>On hypertables with space partitions, an index on the space parameter and `partition_column`</li></ul> |
| `tsdb.associated_schema` |REGCLASS| `_timescaledb_internal` | ✖ | Set the schema name for internal hypertable tables. |
| `tsdb.associated_table_prefix` |TEXT| `_hyper` | ✖ | Set the prefix for the names of internal hypertable chunks. |
| `tsdb.orderby` |TEXT| Descending order on the time column in `table_name`. | ✖| The order in which items are used in the columnstore. Specified in the same way as an `ORDER BY` clause in a `SELECT` query. Setting `tsdb.orderby` automatically creates an implicit min/max sparse index on the `orderby` column. |
| `tsdb.segmentby` |TEXT| TimescaleDB looks at [`pg_stats`](https://www.postgresql.org/docs/current/view-pg-stats.html) and determines an appropriate column based on the data cardinality and distribution. If `pg_stats` is not available, TimescaleDB looks for an appropriate column from the existing indexes. | ✖| Set the list of columns used to segment data in the columnstore for `table`. An identifier representing the source of the data such as `device_id` or `tags_id` is usually a good candidate. |
|`tsdb.sparse_index`| TEXT | TimescaleDB evaluates the columns you already have indexed, checks which data types are a good fit for sparse indexing, then creates a sparse index as an optimization. | ✖ | Configure the sparse indexes for compressed chunks. Requires setting `tsdb.orderby`. Supported index types include: <li> `bloom(<column_name>)`: a probabilistic index, effective for `=` filters. Cannot be applied to `tsdb.orderby` columns.</li> <li> `minmax(<column_name>)`: stores min/max values for each compressed chunk. Setting `tsdb.orderby` automatically creates an implicit min/max sparse index on the `orderby` column. </li> Define multiple indexes using a comma-separated list. You can set only one index per column. Set to an empty string to avoid using sparse indexes and explicitly disable the default behavior. |
## Returns
TimescaleDB returns a simple message indicating success or failure.
===== PAGE: https://docs.tigerdata.com/api/hypertable/drop_chunks/ =====
# drop_chunks()
Removes data chunks whose time range falls completely before (or
after) a specified time. Shows a list of the chunks that were
dropped, in the same style as the `show_chunks` [function][show_chunks].
Chunks are constrained by a start and end time and the start time is
always before the end time. A chunk is dropped if its end time is
older than the `older_than` timestamp or, if `newer_than` is given,
its start time is newer than the `newer_than` timestamp.
Note that, because chunks are removed if and only if their time range
falls fully before (or after) the specified timestamp, the remaining
data may still contain timestamps that are before (or after) the
specified one.
Chunks can only be dropped based on their time intervals. They cannot be dropped
based on a hash partition.
## Samples
Drop all chunks from hypertable `conditions` older than 3 months:
sql SELECT drop_chunks('conditions', INTERVAL '3 months');
Example output:
sql
drop_chunks
_timescaledb_internal._hyper_3_5_chunk _timescaledb_internal._hyper_3_6_chunk _timescaledb_internal._hyper_3_7_chunk _timescaledb_internal._hyper_3_8_chunk _timescaledb_internal._hyper_3_9_chunk (5 rows)
Drop all chunks from hypertable `conditions` created before 3 months:
sql SELECT drop_chunks('conditions', created_before => now() - INTERVAL '3 months');
Drop all chunks more than 3 months in the future from hypertable
`conditions`. This is useful for correcting data ingested with
incorrect clocks:
sql SELECT drop_chunks('conditions', newer_than => now() + interval '3 months');
Drop all chunks from hypertable `conditions` before 2017:
sql SELECT drop_chunks('conditions', '2017-01-01'::date);
Drop all chunks from hypertable `conditions` before 2017, where time
column is given in milliseconds from the UNIX epoch:
sql SELECT drop_chunks('conditions', 1483228800000);
Drop all chunks older than 3 months ago and newer than 4 months ago from hypertable `conditions`:
sql SELECT drop_chunks('conditions', older_than => INTERVAL '3 months', newer_than => INTERVAL '4 months')
Drop all chunks created 3 months ago and created 4 months before from hypertable `conditions`:
sql SELECT drop_chunks('conditions', created_before => INTERVAL '3 months', created_after => INTERVAL '4 months')
Drop all chunks older than 3 months ago across all hypertables:
sql SELECT drop_chunks(format('%I.%I', hypertable_schema, hypertable_name)::regclass, INTERVAL '3 months') FROM timescaledb_information.hypertables;
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|REGCLASS|Hypertable or continuous aggregate from which to drop chunks.|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`older_than`|ANY|Specification of cut-off point where any chunks older than this timestamp should be removed.|
|`newer_than`|ANY|Specification of cut-off point where any chunks newer than this timestamp should be removed.|
|`verbose`|BOOLEAN|Setting to true displays messages about the progress of the reorder command. Defaults to false.|
|`created_before`|ANY|Specification of cut-off point where any chunks created before this timestamp should be removed.|
|`created_after`|ANY|Specification of cut-off point where any chunks created after this timestamp should be removed.|
The `older_than` and `newer_than` parameters can be specified in two ways:
* **interval type:** The cut-off point is computed as `now() -
older_than` and similarly `now() - newer_than`. An error is
returned if an INTERVAL is supplied and the time column is not one
of a `TIMESTAMP`, `TIMESTAMPTZ`, or `DATE`.
* **timestamp, date, or integer type:** The cut-off point is
explicitly given as a `TIMESTAMP` / `TIMESTAMPTZ` / `DATE` or as a
`SMALLINT` / `INT` / `BIGINT`. The choice of timestamp or integer
must follow the type of the hypertable's time column.
The `created_before` and `created_after` parameters can be specified in two ways:
* **interval type:** The cut-off point is computed as `now() -
created_before` and similarly `now() - created_after`. This uses
the chunk creation time relative to the current time for the filtering.
* **timestamp, date, or integer type:** The cut-off point is
explicitly given as a `TIMESTAMP` / `TIMESTAMPTZ` / `DATE` or as a
`SMALLINT` / `INT` / `BIGINT`. The choice of integer value
must follow the type of the hypertable's partitioning column. Otherwise
the chunk creation time is used for the filtering.
When using just an interval type, the function assumes that
you are removing things _in the past_. If you want to remove data
in the future, for example to delete erroneous entries, use a timestamp.
When both `older_than` and `newer_than` arguments are used, the
function returns the intersection of the resulting two ranges. For
example, specifying `newer_than => 4 months` and `older_than => 3
months` drops all chunks between 3 and 4 months old.
Similarly, specifying `newer_than => '2017-01-01'` and `older_than
=> '2017-02-01'` drops all chunks between '2017-01-01' and
'2017-02-01'. Specifying parameters that do not result in an
overlapping intersection between two ranges results in an error.
When both `created_before` and `created_after` arguments are used, the
function returns the intersection of the resulting two ranges. For
example, specifying `created_after` => 4 months` and `created_before`=> 3
months` drops all chunks created between 3 and 4 months from now.
Similarly, specifying `created_after`=> '2017-01-01'` and `created_before`
=> '2017-02-01'` drops all chunks created between '2017-01-01' and
'2017-02-01'. Specifying parameters that do not result in an
overlapping intersection between two ranges results in an error.
The `created_before`/`created_after` parameters cannot be used together with
`older_than`/`newer_than`.
===== PAGE: https://docs.tigerdata.com/api/hypertable/detach_chunk/ =====
# detach_chunk()
Separate a chunk from a [hypertable][hypertables-section].

`chunk` becomes a standalone hypertable with the same name and schema. All existing constraints and
indexes on `chunk` are preserved after detaching. Foreign keys are dropped.
In this initial release, you cannot detach a chunk that has been [converted to the columnstore][setup-hypercore].
Since [TimescaleDB v2.21.0](https://github.com/timescale/timescaledb/releases/tag/2.21.0)
## Samples
Detach a chunk from a hypertable:
sql CALL detach_chunk('_timescaledb_internal._hyper_1_2_chunk');
## Arguments
|Name|Type| Description |
|---|---|------------------------------|
| `chunk` | REGCLASS | Name of the chunk to detach. |
## Returns
This function returns void.
===== PAGE: https://docs.tigerdata.com/api/hypertable/attach_tablespace/ =====
# attach_tablespace()
Attach a tablespace to a hypertable and use it to store chunks. A
[tablespace][postgres-tablespaces] is a directory on the filesystem
that allows control over where individual tables and indexes are
stored on the filesystem. A common use case is to create a tablespace
for a particular storage disk, allowing tables to be stored
there. To learn more, see the [Postgres documentation on
tablespaces][postgres-tablespaces].
TimescaleDB can manage a set of tablespaces for each hypertable,
automatically spreading chunks across the set of tablespaces attached
to a hypertable. If a hypertable is hash partitioned, TimescaleDB
tries to place chunks that belong to the same partition in the same
tablespace. Changing the set of tablespaces attached to a hypertable
may also change the placement behavior. A hypertable with no attached
tablespaces has its chunks placed in the database's default
tablespace.
## Samples
Attach the tablespace `disk1` to the hypertable `conditions`:
sql SELECT attach_tablespace('disk1', 'conditions'); SELECT attach_tablespace('disk2', 'conditions', if_not_attached => true);
## Required arguments
|Name|Type|Description|
|---|---|---|
| `tablespace` | TEXT | Name of the tablespace to attach.|
| `hypertable` | REGCLASS | Hypertable to attach the tablespace to.|
Tablespaces need to be [created][postgres-createtablespace] before
being attached to a hypertable. Once created, tablespaces can be
attached to multiple hypertables simultaneously to share the
underlying disk storage. Associating a regular table with a tablespace
using the `TABLESPACE` option to `CREATE TABLE`, prior to calling
`create_hypertable`, has the same effect as calling
`attach_tablespace` immediately following `create_hypertable`.
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `if_not_attached` | BOOLEAN |Set to true to avoid throwing an error if the tablespace is already attached to the table. A notice is issued instead. Defaults to false. |
===== PAGE: https://docs.tigerdata.com/api/hypertable/hypertable_size/ =====
# hypertable_size()
# hypertable_size()
Get the total disk space used by a hypertable or continuous aggregate,
that is, the sum of the size for the table itself including chunks,
any indexes on the table, and any toast tables. The size is reported
in bytes. This is equivalent to computing the sum of `total_bytes`
column from the output of `hypertable_detailed_size` function.
When a continuous aggregate name is provided, the function
transparently looks up the backing hypertable and returns its statistics
instead.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get the size information for a hypertable.
sql SELECT hypertable_size('devices');
73728
Get the size information for all hypertables.
sql SELECT hypertable_name, hypertable_size(format('%I.%I', hypertable_schema, hypertable_name)::regclass) FROM timescaledb_information.hypertables;
Get the size information for a continuous aggregate.
sql SELECT hypertable_size('device_stats_15m');
73728
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable or continuous aggregate to show size of.|
## Returns
|Name|Type|Description|
|-|-|-|
|hypertable_size|BIGINT|Total disk space used by the specified hypertable, including all indexes and TOAST data|
`NULL` is returned if the function is executed on a non-hypertable relation.
===== PAGE: https://docs.tigerdata.com/api/hypertable/hypertable_approximate_size/ =====
# hypertable_approximate_size()
Get the approximate total disk space used by a hypertable or continuous aggregate,
that is, the sum of the size for the table itself including chunks,
any indexes on the table, and any toast tables. The size is reported
in bytes. This is equivalent to computing the sum of `total_bytes`
column from the output of `hypertable_approximate_detailed_size` function.
When a continuous aggregate name is provided, the function
transparently looks up the backing hypertable and returns its statistics
instead.
This function relies on the per backend caching using the in-built
Postgres storage manager layer to compute the approximate size
cheaply. The PG cache invalidation clears off the cached size for a
chunk when DML happens into it. That size cache is thus able to get
the latest size in a matter of minutes. Also, due to the backend
caching, any long running session will only fetch latest data for new
or modified chunks and can use the cached data (which is calculated
afresh the first time around) effectively for older chunks. Thus it
is recommended to use a single connected Postgres backend session to
compute the approximate sizes of hypertables to get faster results.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get the approximate size information for a hypertable.
sql SELECT * FROM hypertable_approximate_size('devices');
8192
Get the approximate size information for all hypertables.
sql SELECT hypertable_name, hypertable_approximate_size(format('%I.%I', hypertable_schema, hypertable_name)::regclass) FROM timescaledb_information.hypertables;
Get the approximate size information for a continuous aggregate.
sql SELECT hypertable_approximate_size('device_stats_15m');
8192
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable or continuous aggregate to show size of.|
## Returns
|Name|Type|Description|
|-|-|-|
|hypertable_approximate_size|BIGINT|Total approximate disk space used by the specified hypertable, including all indexes and TOAST data|
`NULL` is returned if the function is executed on a non-hypertable relation.
===== PAGE: https://docs.tigerdata.com/api/hypertable/split_chunk/ =====
# split_chunk()
Split a large chunk at a specific point in time. If you do not specify the timestamp to split at, `chunk`
is split equally.
## Samples
* Split a chunk at a specific time:
```sql
CALL split_chunk('chunk_1', split_at => '2025-03-01 00:00');
```
* Split a chunk in two:
For example, If the chunk duration is, 24 hours, the following command splits `chunk_1` into
two chunks of 12 hours each.
```sql
CALL split_chunk('chunk_1');
```
## Required arguments
|Name|Type| Required | Description |
|---|---|---|----------------------------------|
| `chunk` | REGCLASS | ✔ | Name of the chunk to split. |
| `split_at` | `TIMESTAMPTZ`| ✖ |Timestamp to split the chunk at. |
## Returns
This function returns void.
===== PAGE: https://docs.tigerdata.com/api/hypertable/attach_chunk/ =====
# attach_chunk()
Attach a hypertable as a chunk in another [hypertable][hypertables-section] at a given slice in a dimension.

The schema, name, existing constraints, and indexes of `chunk` do not change, even
if a constraint conflicts with a chunk constraint in `hypertable`.
The `hypertable` you attach `chunk` to does not need to have the same dimension columns as the
hypertable you previously [detached `chunk`][hypertable-detach-chunk] from.
While attaching `chunk` to `hypertable`:
- Dimension columns in `chunk` are set as `NOT NULL`.
- Any foreign keys in `hypertable` are created in `chunk`.
You cannot:
- Attaching a chunk that is still attached to another hypertable. First call [detach_chunk][hypertable-detach-chunk].
- Attaching foreign tables are not supported.
Since [TimescaleDB v2.21.0](https://github.com/timescale/timescaledb/releases/tag/2.21.0)
## Samples
Attach a hypertable as a chunk in another hypertable for a specific slice in a dimension:
sql CALL attach_chunk('ht', '_timescaledb_internal._hyper_1_2_chunk', '{"device_id": [0, 1000]}');
## Arguments
|Name|Type| Description |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------|
| `hypertable` | REGCLASS | Name of the hypertable to attach `chunk` to. |
| `chunk` | REGCLASS | Name of the chunk to attach. |
| `slices` | JSONB | The slice `chunk` will occupy in `hypertable`. `slices` cannot clash with the slice already occupied by an existing chunk in `hypertable`. |
## Returns
This function returns void.
===== PAGE: https://docs.tigerdata.com/api/hypertable/detach_tablespaces/ =====
# detach_tablespaces()
Detach all tablespaces from a hypertable. After issuing this command
on a hypertable, it no longer has any tablespaces attached to
it. New chunks are instead placed in the database's default
tablespace.
## Samples
Detach all tablespaces from the hypertable `conditions`:
sql SELECT detach_tablespaces('conditions');
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Hypertable to detach a the tablespace from.|
===== PAGE: https://docs.tigerdata.com/api/hypertable/create_hypertable/ =====
# create_hypertable()
Replace a standard Postgres relational table with a [hypertable][hypertable-docs] that is partitioned on a single
dimension. To create a new hypertable, best practice is to call <a href="https://docs.tigerdata.com/api/latest/hypertable/create_table/">CREATE TABLE</a>.
A hypertable is a Postgres table that automatically partitions your data by time. A dimension defines the way your
data is partitioned. All actions work on the resulting hypertable. For example, `ALTER TABLE`, and `SELECT`.
If the table to convert already contains data, set [migrate_data][migrate-data] to `TRUE`.
However, this may take a long time and there are limitations when the table contains foreign
key constraints.
You cannot run `create_hypertable()` on a table that is already partitioned using
[declarative partitioning][declarative-partitioning] or [inheritance][inheritance]. The time column must be defined
as `NOT NULL`. If this is not already specified on table creation, `create_hypertable` automatically adds
this constraint on the table when it is executed.
This page describes the generalized hypertable API introduced in TimescaleDB v2.13.
The [old interface for `create_hypertable` is also available](https://docs.tigerdata.com/api/latest/hypertable/create_hypertable_old/).
## Samples
Before you call `create_hypertable`, you create a standard Postgres relational table. For example:
sql CREATE TABLE conditions ( time TIMESTAMPTZ NOT NULL, location text NOT NULL, temperature DOUBLE PRECISION NULL );
The following examples show you how to create a hypertable from an existing table or a function:
- [Time partition a hypertable by time range][sample-time-range]
- [Time partition a hypertable using composite columns and immutable functions][sample-composite-columns]
- [Time partition a hypertable using ISO formatting][sample-iso-formatting]
- [Time partition a hypertable using UUIDv7][sample-uuidv7]
### Time partition a hypertable by time range
The following examples show different ways to create a hypertable:
- Convert with range partitioning on the `time` column:
sql SELECT create_hypertable('conditions', by_range('time'));
- Convert with a [set_chunk_time_interval][set_chunk_time_interval] of 24 hours:
Either:
sql SELECT create_hypertable('conditions', by_range('time', 86400000000));
or:
sql SELECT create_hypertable('conditions', by_range('time', INTERVAL '1 day'));
- with range partitioning on the `time` column, do not raise a warning if `conditions` is already a hypertable:
sql SELECT create_hypertable('conditions', by_range('time'), if_not_exists => TRUE);
If you call `SELECT * FROM create_hypertable(...)` the return value is formatted as a table with column headings.
### Time partition a hypertable using composite columns and immutable functions
The following example shows how to time partition the `measurements` relational table on a composite
column type using a range partitioning function.
1. Create the report type, then an immutable function that converts the column value into a supported column value:
```sql
CREATE TYPE report AS (reported timestamp with time zone, contents jsonb);
CREATE FUNCTION report_reported(report)
RETURNS timestamptz
LANGUAGE SQL
IMMUTABLE AS
'SELECT $1.reported';
```
1. Create the hypertable using the immutable function:
```sql
SELECT create_hypertable('measurements', by_range('report', partition_func => 'report_reported'));
```
### Time partition a hypertable using ISO formatting
The following example shows how to time partition the `events` table on a `jsonb` (`event`) column
type, which has a top level `started` key that contains an ISO 8601 formatted timestamp:
sql CREATE FUNCTION event_started(jsonb)
RETURNS timestamptz
LANGUAGE SQL
IMMUTABLE AS
$func$SELECT ($1->>'started')::timestamptz$func$;
SELECT create_hypertable('events', by_range('event', partition_func => 'event_started'));
### Time partition a hypertable using [UUIDv7][uuidv7_functions]:
1. Create a table with a UUIDv7 column:
<Terminal>
```sql
CREATE TABLE events (
id uuid PRIMARY KEY DEFAULT generate_uuidv7(),
payload jsonb
);
```
```sql
CREATE TABLE events (
id uuid PRIMARY KEY DEFAULT uuidv7(),
payload jsonb
);
```
</Terminal>
1. Partition the table based on the timestamps embedded within the UUID values:
```sql
SELECT create_hypertable(
'events',
by_range('id', INTERVAL '1 month')
);
```
Subsequent data insertion and queries automatically leverage the UUIDv7-based partitioning.
## Arguments
| Name | Type | Default | Required | Description |
|-------------|------------------|---------|-|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`create_default_indexes`| `BOOLEAN` | `TRUE` | ✖ | Create default indexes on time/partitioning columns. |
|`dimension`| [DIMENSION_INFO][dimension-info] | - | ✔ | To create a `_timescaledb_internal.dimension_info` instance to partition a hypertable, you call [`by_range`][by-range] and [`by_hash`][by-hash]. |
|`if_not_exists` | `BOOLEAN` | `FALSE` | ✖ | Set to `TRUE` to print a warning if `relation` is already a hypertable. By default, an exception is raised. |
|`migrate_data`| `BOOLEAN` | `FALSE` | ✖ | Set to `TRUE` to migrate any existing data in `relation` in to chunks in the new hypertable. Depending on the amount of data to be migrated, setting `migrate_data` can lock the table for a significant amount of time. If there are [foreign key constraints](https://docs.tigerdata.com/use-timescale/latest/schema-management/about-constraints/) to other tables in the data to be migrated, `create_hypertable()` can run into deadlock. A hypertable can only contain foreign keys to another hypertable. `UNIQUE` and `PRIMARY` constraints must include the partitioning key. <br></br> Deadlock may happen when concurrent transactions simultaneously try to insert data into tables that are referenced in the foreign key constraints, and into the converting table itself. To avoid deadlock, manually obtain a [SHARE ROW EXCLUSIVE](https://www.postgresql.org/docs/current/sql-lock.html) lock on the referenced tables before you call `create_hypertable` in the same transaction. <br></br> If you leave `migrate_data` set to the default, non-empty tables generate an error when you call `create_hypertable`. |
|`relation`| REGCLASS | - | ✔ | Identifier of the table to convert to a hypertable. |
### Dimension info
To create a `_timescaledb_internal.dimension_info` instance, you call [add_dimension][add_dimension]
to an existing hypertable.
#### Samples
Hypertables must always have a primary range dimension, followed by an arbitrary number of additional
dimensions that can be either range or hash, Typically this is just one hash. For example:
sql SELECT add_dimension('conditions', by_range('time')); SELECT add_dimension('conditions', by_hash('location', 2));
For incompatible data types such as `jsonb`, you can specify a function to the `partition_func` argument
of the dimension build to extract a compatible data type. Look in the example section below.
#### Custom partitioning
By default, TimescaleDB calls Postgres's internal hash function for the given type.
You use a custom partitioning function for value types that do not have a native Postgres hash function.
You can specify a custom partitioning function for both range and hash partitioning. A partitioning function should
take a `anyelement` argument as the only parameter and return a positive `integer` hash value. This hash value is
_not_ a partition identifier, but rather the inserted value's position in the dimension's key space, which is then
divided across the partitions.
#### by_range()
Create a by-range dimension builder. You can partition `by_range` on it's own.
##### Samples
- Partition on time using `CREATE TABLE`
The simplest usage is to partition on a time column:
sql CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
device TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
This is the default partition, you do not need to add it explicitly.
- Extract time from a non-time column using `create_hypertable`
If you have a table with a non-time column containing the time, such as
a JSON column, add a partition function to extract the time:
sql CREATE TABLE my_table (
metric_id serial not null,
data jsonb,
);
CREATE FUNCTION get_time(jsonb) RETURNS timestamptz AS $$
SELECT ($1->>'time')::timestamptz
$$ LANGUAGE sql IMMUTABLE;
SELECT create_hypertable('my_table', by_range('data', '1 day', 'get_time'));
##### Arguments
| Name | Type | Default | Required | Description |
|-|----------|---------|-|-|
|`column_name`| `NAME` | - |✔|Name of column to partition on.|
|`partition_func`| `REGPROC` | - |✖|The function to use for calculating the partition of a value.|
|`partition_interval`|`ANYELEMENT` | - |✖|Interval to partition column on.|
If the column to be partitioned is a:
- `TIMESTAMP`, `TIMESTAMPTZ`, or `DATE`: specify `partition_interval` either as an `INTERVAL` type
or an integer value in *microseconds*.
- Another integer type: specify `partition_interval` as an integer that reflects the column's
underlying semantics. For example, if this column is in UNIX time, specify `partition_interval` in milliseconds.
The partition type and default value depending on column type is:<a id="partition-types" href=""></a>
| Column Type | Partition Type | Default value |
|------------------------------|------------------|---------------|
| `TIMESTAMP WITHOUT TIMEZONE` | INTERVAL/INTEGER | 1 week |
| `TIMESTAMP WITH TIMEZONE` | INTERVAL/INTEGER | 1 week |
| `DATE` | INTERVAL/INTEGER | 1 week |
| `SMALLINT` | SMALLINT | 10000 |
| `INT` | INT | 100000 |
| `BIGINT` | BIGINT | 1000000 |
#### by_hash()
The main purpose of hash partitioning is to enable parallelization across multiple disks within the same time interval.
Every distinct item in hash partitioning is hashed to one of *N* buckets. By default, TimescaleDB uses flexible range
intervals to manage chunk sizes.
### Parallelizing disk I/O
You use Parallel I/O in the following scenarios:
- Two or more concurrent queries should be able to read from different disks in parallel.
- A single query should be able to use query parallelization to read from multiple disks in parallel.
For the following options:
- **RAID**: use a RAID setup across multiple physical disks, and expose a single logical disk to the hypertable.
That is, using a single tablespace.
Best practice is to use RAID when possible, as you do not need to manually manage tablespaces
in the database.
- **Multiple tablespaces**: for each physical disk, add a separate tablespace to the database. TimescaleDB allows you to
add multiple tablespaces to a *single* hypertable. However, although under the hood, a hypertable's
chunks are spread across the tablespaces associated with that hypertable.
When using multiple tablespaces, a best practice is to also add a second hash-partitioned dimension to your hypertable
and to have at least one hash partition per disk. While a single time dimension would also work, it would mean that
the first chunk is written to one tablespace, the second to another, and so on, and thus would parallelize only if a
query's time range exceeds a single chunk.
When adding a hash partitioned dimension, set the number of partitions to a multiple of number of disks. For example,
the number of partitions P=N*Pd where N is the number of disks and Pd is the number of partitions per
disk. This enables you to add more disks later and move partitions to the new disk from other disks.
TimescaleDB does *not* benefit from a very large number of hash
partitions, such as the number of unique items you expect in partition
field. A very large number of hash partitions leads both to poorer
per-partition load balancing (the mapping of items to partitions using
hashing), as well as much increased planning latency for some types of
queries.
##### Samples
sql CREATE TABLE conditions ( "time" TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, device TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL ) WITH ( tsdb.hypertable, tsdb.partition_column='time', tsdb.chunk_interval='1 day' );
SELECT add_dimension('conditions', by_hash('location', 2));
##### Arguments
| Name | Type | Default | Required | Description |
|-|----------|---------|-|----------------------------------------------------------|
|`column_name`| `NAME` | - |✔| Name of column to partition on. |
|`partition_func`| `REGPROC` | - |✖| The function to use to calcule the partition of a value. |
|`number_partitions`|`ANYELEMENT` | - |✔| Number of hash partitions to use for `partitioning_column`. Must be greater than 0. |
#### Returns
`by_range` and `by-hash` return an opaque `_timescaledb_internal.dimension_info` instance, holding the
dimension information used by this function.
## Returns
|Column|Type| Description |
|-|-|-------------------------------------------------------------------------------------------------------------|
|`hypertable_id`|INTEGER| The ID of the hypertable you created. |
|`created`|BOOLEAN| `TRUE` when the hypertable is created. `FALSE` when `if_not_exists` is `true` and no hypertable was created. |
===== PAGE: https://docs.tigerdata.com/api/hypertable/move_chunk/ =====
# move_chunk()
TimescaleDB allows you to move data and indexes to different tablespaces. This
allows you to move data to more cost-effective storage as it ages.
The `move_chunk` function acts like a combination of the
[Postgres CLUSTER command][postgres-cluster] and
[Postgres ALTER TABLE...SET TABLESPACE][postgres-altertable] commands. Unlike
these Postgres commands, however, the `move_chunk` function uses lower lock
levels so that the chunk and hypertable are able to be read for most of the
process. This comes at a cost of slightly higher disk usage during the
operation. For a more detailed discussion of this capability, see the
documentation on [managing storage with tablespaces][manage-storage].
You must be logged in as a super user, such as the `postgres` user,
to use the `move_chunk()` call.
## Samples
sql SELECT move_chunk( chunk => '_timescaledb_internal._hyper_1_4_chunk', destination_tablespace => 'tablespace_2', index_destination_tablespace => 'tablespace_3', reorder_index => 'conditions_device_id_time_idx', verbose => TRUE );
## Required arguments
|Name|Type|Description|
|-|-|-|
|`chunk`|REGCLASS|Name of chunk to be moved|
|`destination_tablespace`|NAME|Target tablespace for chunk being moved|
|`index_destination_tablespace`|NAME|Target tablespace for index associated with the chunk you are moving|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`reorder_index`|REGCLASS|The name of the index (on either the hypertable or chunk) to order by|
|`verbose`|BOOLEAN|Setting to true displays messages about the progress of the move_chunk command. Defaults to false.|
===== PAGE: https://docs.tigerdata.com/api/hypertable/hypertable_index_size/ =====
# hypertable_index_size()
Get the disk space used by an index on a hypertable, including the
disk space needed to provide the index on all chunks. The size is
reported in bytes.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get size of a specific index on a hypertable.
sql \d conditions_table
Table "public.conditions_table"
Column | Type | Collation | Nullable | Default --------+--------------------------+-----------+----------+--------- time | timestamp with time zone | | not null | device | integer | | | volume | integer | | | Indexes:
"second_index" btree ("time")
"test_table_time_idx" btree ("time" DESC)
"third_index" btree ("time")
SELECT hypertable_index_size('second_index');
163840
SELECT pg_size_pretty(hypertable_index_size('second_index'));
160 kB
## Required arguments
|Name|Type|Description|
|-|-|-|
|`index_name`|REGCLASS|Name of the index on a hypertable|
## Returns
|Column|Type|Description|
|-|-|-|
|hypertable_index_size|BIGINT|Returns the disk space used by the index|
NULL is returned if the function is executed on a non-hypertable relation.
===== PAGE: https://docs.tigerdata.com/api/hypertable/enable_chunk_skipping/ =====
# enable_chunk_skipping()
<!-- vale Google.Headings = NO -->
<!-- markdownlint-disable-next-line line-length -->
<!-- vale Google.Headings = YES -->
Early access: TimescaleDB v2.17.1
Enable range statistics for a specific column in a **compressed** hypertable. This tracks a range of values for that column per chunk.
Used for chunk skipping during query optimization and applies only to the chunks created after chunk skipping is enabled.
Best practice is to enable range tracking on columns that are correlated to the
partitioning column. In other words, enable tracking on secondary columns which are
referenced in the `WHERE` clauses in your queries.
TimescaleDB supports min/max range tracking for the `smallint`, `int`,
`bigint`, `serial`, `bigserial`, `date`, `timestamp`, and `timestamptz` data types. The
min/max ranges are calculated when a chunk belonging to
this hypertable is compressed using the [compress_chunk][compress_chunk] function.
The range is stored in start (inclusive) and end (exclusive) form in the
`chunk_column_stats` catalog table.
This way you store the min/max values for such columns in this catalog
table at the per-chunk level. These min/max range values do
not participate in partitioning of the data. These ranges are
used for chunk skipping when the `WHERE` clause of an SQL query specifies
ranges on the column.
A [DROP COLUMN](https://www.postgresql.org/docs/current/sql-altertable.html#SQL-ALTERTABLE-DESC-DROP-COLUMN)
on a column with statistics tracking enabled on it ends up removing all relevant entries
from the catalog table.
A [decompress_chunk][decompress_chunk] invocation on a compressed chunk resets its entries
from the `chunk_column_stats` catalog table since now it's available for DML and the
min/max range values can change on any further data manipulation in the chunk.
By default, this feature is disabled. To enable chunk skipping, set `timescaledb.enable_chunk_skipping = on` in
`postgresql.conf`. When you upgrade from a database instance that uses compression but does not support chunk
skipping, you need to recompress the previously compressed chunks for chunk skipping to work.
## Samples
In this sample, you create the `conditions` hypertable with partitioning on the `time` column. You then specify and
enable additional columns to track ranges for.
sql CREATE TABLE conditions ( time TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, device TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL ) WITH ( tsdb.hypertable, tsdb.partition_column='time' );
SELECT enable_chunk_skipping('conditions', 'device_id');
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
## Arguments
| Name | Type | Default | Required | Description |
|-------------|------------------|---------|-|----------------------------------------|
|`column_name`| `TEXT` | - | ✔ | Column to track range statistics for |
|`hypertable`| `REGCLASS` | - | ✔ | Hypertable that the column belongs to |
|`if_not_exists`| `BOOLEAN` | `false` | ✖ | Set to `true` so that a notice is sent when ranges are not being tracked for a column. By default, an error is thrown |
## Returns
|Column|Type|Description|
|-|-|-|
|`column_stats_id`|INTEGER|ID of the entry in the TimescaleDB internal catalog|
|`enabled`|BOOLEAN|Returns `true` when tracking is enabled, `if_not_exists` is `true`, and when a new entry is not added|
===== PAGE: https://docs.tigerdata.com/api/hypertable/detach_tablespace/ =====
# detach_tablespace()
Detach a tablespace from one or more hypertables. This _only_ means
that _new_ chunks are not placed on the detached tablespace. This
is useful, for instance, when a tablespace is running low on disk
space and one would like to prevent new chunks from being created in
the tablespace. The detached tablespace itself and any existing chunks
with data on it remains unchanged and continue to work as
before, including being available for queries. Note that newly
inserted data rows may still be inserted into an existing chunk on the
detached tablespace since existing data is not cleared from a detached
tablespace. A detached tablespace can be reattached if desired to once
again be considered for chunk placement.
## Samples
Detach the tablespace `disk1` from the hypertable `conditions`:
sql SELECT detach_tablespace('disk1', 'conditions'); SELECT detach_tablespace('disk2', 'conditions', if_attached => true);
Detach the tablespace `disk1` from all hypertables that the current
user has permissions for:
sql SELECT detach_tablespace('disk1');
## Required arguments
|Name|Type|Description|
|---|---|---|
| `tablespace` | TEXT | Tablespace to detach.|
When giving only the tablespace name as argument, the given tablespace
is detached from all hypertables that the current role has the
appropriate permissions for. Therefore, without proper permissions,
the tablespace may still receive new chunks after this command
is issued.
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Hypertable to detach a the tablespace from.|
| `if_attached` | BOOLEAN | Set to true to avoid throwing an error if the tablespace is not attached to the given table. A notice is issued instead. Defaults to false. |
When specifying a specific hypertable, the tablespace is only
detached from the given hypertable and thus may remain attached to
other hypertables.
===== PAGE: https://docs.tigerdata.com/api/hypertable/chunks_detailed_size/ =====
# chunks_detailed_size()
Get information about the disk space used by the chunks belonging to a
hypertable, returning size information for each chunk table, any
indexes on the chunk, any toast tables, and the total size associated
with the chunk. All sizes are reported in bytes.
If the function is executed on a distributed hypertable, it returns
disk space usage information as a separate row per node. The access
node is not included since it doesn't have any local chunk data.
Additional metadata associated with a chunk can be accessed
via the `timescaledb_information.chunks` view.
## Samples
sql SELECT * FROM chunks_detailed_size('dist_table') ORDER BY chunk_name, node_name;
chunk_schema | chunk_name | table_bytes | index_bytes | toast_bytes | total_bytes | node_name
-----------------------+-----------------------+-------------+-------------+-------------+-------------+----------------------- _timescaledb_internal | _dist_hyper_1_1_chunk | 8192 | 32768 | 0 | 40960 | data_node_1 _timescaledb_internal | _dist_hyper_1_2_chunk | 8192 | 32768 | 0 | 40960 | data_node_2 _timescaledb_internal | _dist_hyper_1_3_chunk | 8192 | 32768 | 0 | 40960 | data_node_3
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Name of the hypertable |
## Returns
|Column|Type|Description|
|---|---|---|
|chunk_schema| TEXT | Schema name of the chunk |
|chunk_name| TEXT | Name of the chunk|
|table_bytes|BIGINT | Disk space used by the chunk table|
|index_bytes|BIGINT | Disk space used by indexes|
|toast_bytes|BIGINT | Disk space of toast tables|
|total_bytes|BIGINT | Total disk space used by the chunk, including all indexes and TOAST data|
|node_name| TEXT | Node for which size is reported, applicable only to distributed hypertables|
If executed on a relation that is not a hypertable, the function
returns `NULL`.
===== PAGE: https://docs.tigerdata.com/api/hypertable/create_hypertable_old/ =====
# create_hypertable()
This page describes the hypertable API supported prior to TimescaleDB v2.13. Best practice is to use the new
[`create_hypertable`][api-create-hypertable] interface.
Creates a TimescaleDB hypertable from a Postgres table (replacing the latter),
partitioned on time and with the option to partition on one or more other
columns. The Postgres table cannot be an already partitioned table
(declarative partitioning or inheritance). In case of a non-empty table, it is
possible to migrate the data during hypertable creation using the `migrate_data`
option, although this might take a long time and has certain limitations when
the table contains foreign key constraints (see below).
After creation, all actions, such as `ALTER TABLE`, `SELECT`, etc., still work
on the resulting hypertable.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Convert table `conditions` to hypertable with just time partitioning on column `time`:
sql SELECT create_hypertable('conditions', 'time');
Convert table `conditions` to hypertable, setting `chunk_time_interval` to 24 hours.
sql SELECT create_hypertable('conditions', 'time', chunk_time_interval => 86400000000); SELECT create_hypertable('conditions', 'time', chunk_time_interval => INTERVAL '1 day');
Convert table `conditions` to hypertable. Do not raise a warning
if `conditions` is already a hypertable:
sql SELECT create_hypertable('conditions', 'time', if_not_exists => TRUE);
Time partition table `measurements` on a composite column type `report` using a
time partitioning function. Requires an immutable function that can convert the
column value into a supported column value:
sql CREATE TYPE report AS (reported timestamp with time zone, contents jsonb);
CREATE FUNCTION report_reported(report) RETURNS timestamptz LANGUAGE SQL IMMUTABLE AS 'SELECT $1.reported';
SELECT create_hypertable('measurements', 'report', time_partitioning_func => 'report_reported');
Time partition table `events`, on a column type `jsonb` (`event`), which has
a top level key (`started`) containing an ISO 8601 formatted timestamp:
sql CREATE FUNCTION event_started(jsonb) RETURNS timestamptz LANGUAGE SQL IMMUTABLE AS $func$SELECT ($1->>'started')::timestamptz$func$;
SELECT create_hypertable('events', 'event', time_partitioning_func => 'event_started');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|REGCLASS|Identifier of table to convert to hypertable.|
|`time_column_name`|REGCLASS| Name of the column containing time values as well as the primary column to partition by.|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`partitioning_column`|REGCLASS|Name of an additional column to partition by. If provided, the `number_partitions` argument must also be provided.|
|`number_partitions`|INTEGER|Number of [hash partitions][hash-partitions] to use for `partitioning_column`. Must be > 0.|
|`chunk_time_interval`|INTERVAL|Event time that each chunk covers. Must be > 0. Default is 7 days.|
|`create_default_indexes`|BOOLEAN|Whether to create default indexes on time/partitioning columns. Default is TRUE.|
|`if_not_exists`|BOOLEAN|Whether to print warning if table already converted to hypertable or raise exception. Default is FALSE.|
|`partitioning_func`|REGCLASS|The function to use for calculating a value's partition.|
|`associated_schema_name`|REGCLASS|Name of the schema for internal hypertable tables. Default is `_timescaledb_internal`.|
|`associated_table_prefix`|TEXT|Prefix for internal hypertable chunk names. Default is `_hyper`.|
|`migrate_data`|BOOLEAN|Set to TRUE to migrate any existing data from the `relation` table to chunks in the new hypertable. A non-empty table generates an error without this option. Large tables may take significant time to migrate. Defaults to FALSE.|
|`time_partitioning_func`|REGCLASS| Function to convert incompatible primary time column values to compatible ones. The function must be `IMMUTABLE`.|
|`replication_factor`|INTEGER|Replication factor to use with distributed hypertable. If not provided, value is determined by the `timescaledb.hypertable_replication_factor_default` GUC. |
|`data_nodes`|ARRAY|This is the set of data nodes that are used for this table if it is distributed. This has no impact on non-distributed hypertables. If no data nodes are specified, a distributed hypertable uses all data nodes known by this instance.|
|`distributed`|BOOLEAN|Set to TRUE to create distributed hypertable. If not provided, value is determined by the `timescaledb.hypertable_distributed_default` GUC. When creating a distributed hypertable, consider using [`create_distributed_hypertable`][create_distributed_hypertable] in place of `create_hypertable`. Default is NULL. |
## Returns
|Column|Type|Description|
|-|-|-|
|`hypertable_id`|INTEGER|ID of the hypertable in TimescaleDB.|
|`schema_name`|TEXT|Schema name of the table converted to hypertable.|
|`table_name`|TEXT|Table name of the table converted to hypertable.|
|`created`|BOOLEAN|TRUE if the hypertable was created, FALSE when `if_not_exists` is true and no hypertable was created.|
If you use `SELECT * FROM create_hypertable(...)` you get the return value
formatted as a table with column headings.
The use of the `migrate_data` argument to convert a non-empty table can
lock the table for a significant amount of time, depending on how much data is
in the table. It can also run into deadlock if foreign key constraints exist to
other tables.
When converting a normal SQL table to a hypertable, pay attention to how you handle
constraints. A hypertable can contain foreign keys to normal SQL table columns,
but the reverse is not allowed. UNIQUE and PRIMARY constraints must include the
partitioning key.
The deadlock is likely to happen when concurrent transactions simultaneously try
to insert data into tables that are referenced in the foreign key constraints
and into the converting table itself. The deadlock can be prevented by manually
obtaining `SHARE ROW EXCLUSIVE` lock on the referenced tables before calling
`create_hypertable` in the same transaction, see
[Postgres documentation](https://www.postgresql.org/docs/current/sql-lock.html)
for the syntax.
## Units
The `time` column supports the following data types:
|Description|Types|
|-|-|
|Timestamp| TIMESTAMP, TIMESTAMPTZ|
|Date|DATE|
|Integer|SMALLINT, INT, BIGINT|
The type flexibility of the 'time' column allows the use of non-time-based
values as the primary chunk partitioning column, as long as those values can
increment.
For incompatible data types (for example, `jsonb`) you can specify a function to
the `time_partitioning_func` argument which can extract a compatible data type.
The units of `chunk_time_interval` should be set as follows:
* For time columns having timestamp or DATE types, the `chunk_time_interval`
should be specified either as an `interval` type or an integral value in
*microseconds*.
* For integer types, the `chunk_time_interval` **must** be set explicitly, as
the database does not otherwise understand the semantics of what each
integer value represents (a second, millisecond, nanosecond, etc.). So if
your time column is the number of milliseconds since the UNIX epoch, and you
wish to have each chunk cover 1 day, you should specify
`chunk_time_interval => 86400000`.
In case of hash partitioning (in other words, if `number_partitions` is greater
than zero), it is possible to optionally specify a custom partitioning function.
If no custom partitioning function is specified, the default partitioning
function is used. The default partitioning function calls Postgres's internal
hash function for the given type, if one exists. Thus, a custom partitioning
function can be used for value types that do not have a native Postgres hash
function. A partitioning function should take a single `anyelement` type
argument and return a positive `integer` hash value. Note that this hash value
is *not* a partition ID, but rather the inserted value's position in the
dimension's key space, which is then divided across the partitions.
The time column in `create_hypertable` must be defined as `NOT NULL`. If this is
not already specified on table creation, `create_hypertable` automatically adds
this constraint on the table when it is executed.
===== PAGE: https://docs.tigerdata.com/api/hypertable/set_chunk_time_interval/ =====
# set_chunk_time_interval()
Sets the `chunk_time_interval` on a hypertable. The new interval is used
when new chunks are created, and time intervals on existing chunks are
not changed.
## Samples
For a TIMESTAMP column, set `chunk_time_interval` to 24 hours:
sql SELECT set_chunk_time_interval('conditions', INTERVAL '24 hours'); SELECT set_chunk_time_interval('conditions', 86400000000);
For a time column expressed as the number of milliseconds since the
UNIX epoch, set `chunk_time_interval` to 24 hours:
sql SELECT set_chunk_time_interval('conditions', 86400000);
## Arguments
| Name | Type | Default | Required | Description |
|-------------|------------------|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|`hypertable`|REGCLASS| - | ✔ | Hypertable or continuous aggregate to update interval for. |
|`chunk_time_interval`|See note|- | ✔ | Event time that each new chunk covers. |
|`dimension_name`|REGCLASS|- | ✖ | The name of the time dimension to set the number of partitions for. Only use `dimension_name` when your hypertable has multiple time dimensions. |
If you change chunk time interval you may see a chunk that is smaller than the new interval. For example, if you
have two 7-day chunks that cover 14 days, then change `chunk_time_interval` to 3 days, you may end up with a
transition chunk covering one day. This happens because the start and end of the new chunk is calculated based on
dividing the timeline by the `chunk_time_interval` starting at epoch 0. This leads to the following chunks
[0, 3), [3, 6), [6, 9), [9, 12), [12, 15), [15, 18) and so on. The two 7-day chunks covered data up to day 14:
[0, 7), [8, 14), so the 3-day chunk for [12, 15) is reduced to a one day chunk. The following chunk [15, 18) is
created as a full 3 day chunk.
The valid types for the `chunk_time_interval` depend on the type used for the
hypertable `time` column:
|`time` column type|`chunk_time_interval` type|Time unit|
|-|-|-|
|TIMESTAMP|INTERVAL|days, hours, minutes, etc|
||INTEGER or BIGINT|microseconds|
|TIMESTAMPTZ|INTERVAL|days, hours, minutes, etc|
||INTEGER or BIGINT|microseconds|
|DATE|INTERVAL|days, hours, minutes, etc|
||INTEGER or BIGINT|microseconds|
|SMALLINT|SMALLINT|The same time unit as the `time` column|
|INT|INT|The same time unit as the `time` column|
|BIGINT|BIGINT|The same time unit as the `time` column|
For more information, see [hypertable partitioning][hypertable-partitioning].
===== PAGE: https://docs.tigerdata.com/api/hypertable/show_tablespaces/ =====
# show_tablespaces()
Show the tablespaces attached to a hypertable.
## Samples
sql SELECT * FROM show_tablespaces('conditions');
disk1 disk2
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Hypertable to show attached tablespaces for.|
===== PAGE: https://docs.tigerdata.com/api/hypertable/disable_chunk_skipping/ =====
# disable_chunk_skipping()
Disable range tracking for a specific column in a hypertable **in the columnstore**.
## Samples
In this sample, you convert the `conditions` table to a hypertable with
partitioning on the `time` column. You then specify and enable additional
columns to track ranges for. You then disable range tracking:
sql SELECT create_hypertable('conditions', 'time'); SELECT enable_chunk_skipping('conditions', 'device_id'); SELECT disable_chunk_skipping('conditions', 'device_id');
Best practice is to enable range tracking on columns which are correlated to the
partitioning column. In other words, enable tracking on secondary columns that are
referenced in the `WHERE` clauses in your queries.
Use this API to disable range tracking on columns when the query patterns don't
use this secondary column anymore.
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable that the column belongs to|
|`column_name`|TEXT|Column to disable tracking range statistics for|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_not_exists`|BOOLEAN|Set to `true` so that a notice is sent when ranges are not being tracked for a column. By default, an error is thrown|
## Returns
|Column|Type|Description|
|-|-|-|
|`hypertable_id`|INTEGER|ID of the hypertable in TimescaleDB.|
|`column_name`|TEXT|Name of the column range tracking is disabled for|
|`disabled`|BOOLEAN|Returns `true` when tracking is disabled. `false` when `if_not_exists` is `true` and the entry was
not removed|
To `disable_chunk_skipping()`, you must have first called [enable_chunk_skipping][enable_chunk_skipping]
and enabled range tracking on a column in the hypertable.
===== PAGE: https://docs.tigerdata.com/api/hypertable/remove_reorder_policy/ =====
# remove_reorder_policy()
Remove a policy to reorder a particular hypertable.
## Samples
sql SELECT remove_reorder_policy('conditions', if_exists => true);
removes the existing reorder policy for the `conditions` table if it exists.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Name of the hypertable from which to remove the policy. |
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `if_exists` | BOOLEAN | Set to true to avoid throwing an error if the reorder_policy does not exist. A notice is issued instead. Defaults to false. |
===== PAGE: https://docs.tigerdata.com/api/hypertable/reorder_chunk/ =====
# reorder_chunk()
Reorder a single chunk's heap to follow the order of an index. This function
acts similarly to the [Postgres CLUSTER command][postgres-cluster] , however
it uses lower lock levels so that, unlike with the CLUSTER command, the chunk
and hypertable are able to be read for most of the process. It does use a bit
more disk space during the operation.
This command can be particularly useful when data is often queried in an order
different from that in which it was originally inserted. For example, data is
commonly inserted into a hypertable in loose time order (for example, many devices
concurrently sending their current state), but one might typically query the
hypertable about a _specific_ device. In such cases, reordering a chunk using an
index on `(device_id, time)` can lead to significant performance improvement for
these types of queries.
One can call this function directly on individual chunks of a hypertable, but
using [add_reorder_policy][add_reorder_policy] is often much more convenient.
## Samples
Reorder a chunk on an index:
sql SELECT reorder_chunk('_timescaledb_internal._hyper_1_10_chunk', '_timescaledb_internal.conditions_device_id_time_idx');
## Required arguments
|Name|Type|Description|
|---|---|---|
| `chunk` | REGCLASS | Name of the chunk to reorder. |
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `index` | REGCLASS | The name of the index (on either the hypertable or chunk) to order by.|
| `verbose` | BOOLEAN | Setting to true displays messages about the progress of the reorder command. Defaults to false.|
## Returns
This function returns void.
===== PAGE: https://docs.tigerdata.com/api/hypertable/add_reorder_policy/ =====
# add_reorder_policy()
Create a policy to reorder the rows of a hypertable's chunks on a specific index. The policy reorders the rows for all chunks except the two most recent ones, because these are still getting writes. By default, the policy runs every 24 hours. To change the schedule, call [alter_job][alter_job] and adjust `schedule_interval`.
You can have only one reorder policy on each hypertable.
For manual reordering of individual chunks, see [reorder_chunk][reorder_chunk].
When a chunk's rows have been reordered by a policy, they are not reordered
by subsequent runs of the same policy. If you write significant amounts of data into older chunks that have
already been reordered, re-run [reorder_chunk][reorder_chunk] on them. If you have changed a lot of older chunks, it is better to drop and recreate the policy.
## Samples
sql SELECT add_reorder_policy('conditions', 'conditions_device_id_time_idx');
Creates a policy to reorder chunks by the existing `(device_id, time)` index every 24 hours.
This applies to all chunks except the two most recent ones.
## Required arguments
|Name|Type| Description |
|-|-|--------------------------------------------------------------|
|`hypertable`|REGCLASS| Hypertable to create the policy for |
|`index_name`|TEXT| Existing hypertable index by which to order the rows on disk |
## Optional arguments
|Name|Type| Description |
|-|-|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`if_not_exists`|BOOLEAN| Set to `true` to avoid an error if the `reorder_policy` already exists. A notice is issued instead. Defaults to `false`. |
|`initial_start`|TIMESTAMPTZ| Controls when the policy first runs and how its future run schedule is calculated. <ul><li>If omitted or set to <code>NULL</code> (default): <ul><li>The first run is scheduled at <code>now()</code> + <code>schedule_interval</code> (defaults to 24 hours).</li><li>The next run is scheduled at one full <code>schedule_interval</code> after the end of the previous run.</li></ul></li><li>If set: <ul><li>The first run is at the specified time.</li><li>The next run is scheduled as <code>initial_start</code> + <code>schedule_interval</code> regardless of when the previous run ends.</li></ul></li></ul> |
|`timezone`|TEXT| A valid time zone. If `initial_start` is also specified, subsequent runs of the reorder policy are aligned on its initial start. However, daylight savings time (DST) changes might shift this alignment. Set to a valid time zone if this is an issue you want to mitigate. If omitted, UTC bucketing is performed. Defaults to `NULL`. |
## Returns
|Column|Type|Description|
|-|-|-|
|`job_id`|INTEGER|TimescaleDB background job ID created to implement this policy|
===== PAGE: https://docs.tigerdata.com/api/hypertable/hypertable_detailed_size/ =====
# hypertable_detailed_size()
# hypertable_detailed_size()
Get detailed information about disk space used by a hypertable or
continuous aggregate, returning size information for the table
itself, any indexes on the table, any toast tables, and the total
size of all. All sizes are reported in bytes. If the function is
executed on a distributed hypertable, it returns size information
as a separate row per node, including the access node.
When a continuous aggregate name is provided, the function
transparently looks up the backing hypertable and returns its statistics
instead.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get the size information for a hypertable.
sql -- disttable is a distributed hypertable -- SELECT * FROM hypertable_detailed_size('disttable') ORDER BY node_name;
table_bytes | index_bytes | toast_bytes | total_bytes | node_name -------------+-------------+-------------+-------------+-------------
16384 | 40960 | 0 | 57344 | data_node_1
8192 | 24576 | 0 | 32768 | data_node_2
0 | 8192 | 0 | 8192 |
The access node is listed without a user-given node name. Normally,
the access node holds no data, but still maintains, for example, index
information that occupies a small amount of disk space.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Hypertable or continuous aggregate to show detailed size of. |
## Returns
|Column|Type|Description|
|-|-|-|
|table_bytes|BIGINT|Disk space used by main_table (like `pg_relation_size(main_table)`)|
|index_bytes|BIGINT|Disk space used by indexes|
|toast_bytes|BIGINT|Disk space of toast tables|
|total_bytes|BIGINT|Total disk space used by the specified table, including all indexes and TOAST data|
|node_name|TEXT|For distributed hypertables, this is the user-given name of the node for which the size is reported. `NULL` is returned for the access node and non-distributed hypertables.|
If executed on a relation that is not a hypertable, the function
returns `NULL`.
===== PAGE: https://docs.tigerdata.com/api/hypertable/show_chunks/ =====
# show_chunks()
Get list of chunks associated with a hypertable.
Function accepts the following required and optional arguments. These arguments
have the same semantics as the `drop_chunks` [function][drop_chunks].
## Samples
Get list of all chunks associated with a table:
sql SELECT show_chunks('conditions');
Get all chunks from hypertable `conditions` older than 3 months:
sql SELECT show_chunks('conditions', older_than => INTERVAL '3 months');
Get all chunks from hypertable `conditions` created before 3 months:
sql SELECT show_chunks('conditions', created_before => INTERVAL '3 months');
Get all chunks from hypertable `conditions` created in the last 1 month:
sql SELECT show_chunks('conditions', created_after => INTERVAL '1 month');
Get all chunks from hypertable `conditions` before 2017:
sql SELECT show_chunks('conditions', older_than => DATE '2017-01-01');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|REGCLASS|Hypertable or continuous aggregate from which to select chunks.|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`older_than`|ANY|Specification of cut-off point where any chunks older than this timestamp should be shown.|
|`newer_than`|ANY|Specification of cut-off point where any chunks newer than this timestamp should be shown.|
|`created_before`|ANY|Specification of cut-off point where any chunks created before this timestamp should be shown.|
|`created_after`|ANY|Specification of cut-off point where any chunks created after this timestamp should be shown.|
The `older_than` and `newer_than` parameters can be specified in two ways:
* **interval type:** The cut-off point is computed as `now() -
older_than` and similarly `now() - newer_than`. An error is returned if an
INTERVAL is supplied and the time column is not one of a TIMESTAMP,
TIMESTAMPTZ, or DATE.
* **timestamp, date, or integer type:** The cut-off point is explicitly given
as a TIMESTAMP / TIMESTAMPTZ / DATE or as a SMALLINT / INT / BIGINT. The
choice of timestamp or integer must follow the type of the hypertable's time
column.
The `created_before` and `created_after` parameters can be specified in two ways:
* **interval type:** The cut-off point is computed as `now() -
created_before` and similarly `now() - created_after`. This uses
the chunk creation time for the filtering.
* **timestamp, date, or integer type:** The cut-off point is
explicitly given as a `TIMESTAMP` / `TIMESTAMPTZ` / `DATE` or as a
`SMALLINT` / `INT` / `BIGINT`. The choice of integer value
must follow the type of the hypertable's partitioning column. Otherwise
the chunk creation time is used for the filtering.
When both `older_than` and `newer_than` arguments are used, the
function returns the intersection of the resulting two ranges. For
example, specifying `newer_than => 4 months` and `older_than => 3
months` shows all chunks between 3 and 4 months old.
Similarly, specifying `newer_than => '2017-01-01'` and `older_than
=> '2017-02-01'` shows all chunks between '2017-01-01' and
'2017-02-01'. Specifying parameters that do not result in an
overlapping intersection between two ranges results in an error.
When both `created_before` and `created_after` arguments are used, the
function returns the intersection of the resulting two ranges. For
example, specifying `created_after`=> 4 months` and `created_before`=> 3
months` shows all chunks created between 3 and 4 months from now.
Similarly, specifying `created_after`=> '2017-01-01'` and `created_before`
=> '2017-02-01'` shows all chunks created between '2017-01-01' and
'2017-02-01'. Specifying parameters that do not result in an
overlapping intersection between two ranges results in an error.
The `created_before`/`created_after` parameters cannot be used together with
`older_than`/`newer_than`.
===== PAGE: https://docs.tigerdata.com/api/hypertable/merge_chunks/ =====
# merge_chunks()
Merge two or more chunks into one.
The partition boundaries for the new chunk is the union of all partitions of the merged chunks.
The new chunk retains the name, constraints, and triggers of the _first_ chunk in the partition order.
You can only merge chunks that have directly adjacent partitions. It is not possible to merge
chunks that have another chunk, or an empty range between them in any of the partitioning
dimensions.
Chunk merging has the following limitations. You cannot:
* Merge chunks with tiered data
* Read or write from the chunks while they are being merged
## Since2180
Refer to the installation documentation for detailed setup instructions.
## Samples
- Merge two chunks:
sql CALL merge_chunks('_timescaledb_internal._hyper_1_1_chunk', '_timescaledb_internal._hyper_1_2_chunk');
- Merge more than two chunks:
sql CALL merge_chunks('{_timescaledb_internal._hyper_1_1_chunk, _timescaledb_internal._hyper_1_2_chunk, _timescaledb_internal._hyper_1_3_chunk}');
## Arguments
You can merge either two chunks, or an arbitrary number of chunks specified as an array of chunk identifiers.
When you call `merge_chunks`, you must specify either `chunk1` and `chunk2`, or `chunks`. You cannot use both
arguments.
| Name | Type | Default | Required | Description |
|--------------------|-------------|--|--|------------------------------------------------|
| `chunk1`, `chunk2` | REGCLASS | - | ✖ | The two chunk to merge in partition order |
| `chunks` | REGCLASS[] |- | ✖ | The array of chunks to merge in partition order |
===== PAGE: https://docs.tigerdata.com/api/hypertable/add_dimension/ =====
# add_dimension()
Add an additional partitioning dimension to a TimescaleDB hypertable. You can only execute this `add_dimension` command
on an empty hypertable. To convert a normal table to a hypertable, call [create hypertable][create_hypertable].
The column you select as the dimension can use either:
- [Interval partitions][range-partition]: for example, for a second range partition.
- [hash partitions][hash-partition]: to enable parallelization across multiple disks.
Best practice is to not use additional dimensions. However, Tiger Cloud transparently provides seamless storage
scaling, both in terms of storage capacity and available storage IOPS/bandwidth.
This page describes the generalized hypertable API introduced in [TimescaleDB v2.13.0][rn-2130].
For information about the deprecated interface, see [add_dimension(), deprecated interface][add-dimension-old].
## Samples
First convert table `conditions` to hypertable with just range
partitioning on column `time`, then add an additional partition key on
`location` with four partitions:
sql SELECT create_hypertable('conditions', by_range('time')); SELECT add_dimension('conditions', by_hash('location', 4));
The `by_range` and `by_hash` dimension builders are an addition to TimescaleDB 2.13.
Convert table `conditions` to hypertable with range partitioning on
`time` then add three additional dimensions: one hash partitioning on
`location`, one range partition on `time_received`, and one hash
partitionining on `device_id`.
sql SELECT create_hypertable('conditions', by_range('time')); SELECT add_dimension('conditions', by_hash('location', 2)); SELECT add_dimension('conditions', by_range('time_received', INTERVAL '1 day')); SELECT add_dimension('conditions', by_hash('device_id', 2)); SELECT add_dimension('conditions', by_hash('device_id', 2), if_not_exists => true);
## Arguments
| Name | Type | Default | Required | Description |
|-|------------------|-|-|---------------------------------------------------------------------------------------------------------------------------------------------------|
|`chunk_time_interval` | INTERVAL | - | ✖ | Interval that each chunk covers. Must be > 0. |
|`dimension` | [DIMENSION_INFO][dimension-info] | - | ✔ | To create a `_timescaledb_internal.dimension_info` instance to partition a hypertable, you call [`by_range`][by-range] and [`by_hash`][by-hash]. |
|`hypertable`| REGCLASS | - | ✔ | The hypertable to add the dimension to. |
|`if_not_exists` | BOOLEAN | `false` | ✖ | Set to `true` to print an error if a dimension for the column already exists. By default an exception is raised. |
|`number_partitions` | INTEGER | - | ✖ | Number of hash partitions to use on `column_name`. Must be > 0. |
|`partitioning_func` | REGCLASS | - | ✖ | The function to use for calculating a value's partition. See [`create_hypertable`][create_hypertable] for more information. |
### Dimension info
To create a `_timescaledb_internal.dimension_info` instance, you call [add_dimension][add_dimension]
to an existing hypertable.
#### Samples
Hypertables must always have a primary range dimension, followed by an arbitrary number of additional
dimensions that can be either range or hash, Typically this is just one hash. For example:
sql SELECT add_dimension('conditions', by_range('time')); SELECT add_dimension('conditions', by_hash('location', 2));
For incompatible data types such as `jsonb`, you can specify a function to the `partition_func` argument
of the dimension build to extract a compatible data type. Look in the example section below.
#### Custom partitioning
By default, TimescaleDB calls Postgres's internal hash function for the given type.
You use a custom partitioning function for value types that do not have a native Postgres hash function.
You can specify a custom partitioning function for both range and hash partitioning. A partitioning function should
take a `anyelement` argument as the only parameter and return a positive `integer` hash value. This hash value is
_not_ a partition identifier, but rather the inserted value's position in the dimension's key space, which is then
divided across the partitions.
#### by_range()
Create a by-range dimension builder. You can partition `by_range` on it's own.
##### Samples
- Partition on time using `CREATE TABLE`
The simplest usage is to partition on a time column:
sql CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
device TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
This is the default partition, you do not need to add it explicitly.
- Extract time from a non-time column using `create_hypertable`
If you have a table with a non-time column containing the time, such as
a JSON column, add a partition function to extract the time:
sql CREATE TABLE my_table (
metric_id serial not null,
data jsonb,
);
CREATE FUNCTION get_time(jsonb) RETURNS timestamptz AS $$
SELECT ($1->>'time')::timestamptz
$$ LANGUAGE sql IMMUTABLE;
SELECT create_hypertable('my_table', by_range('data', '1 day', 'get_time'));
##### Arguments
| Name | Type | Default | Required | Description |
|-|----------|---------|-|-|
|`column_name`| `NAME` | - |✔|Name of column to partition on.|
|`partition_func`| `REGPROC` | - |✖|The function to use for calculating the partition of a value.|
|`partition_interval`|`ANYELEMENT` | - |✖|Interval to partition column on.|
If the column to be partitioned is a:
- `TIMESTAMP`, `TIMESTAMPTZ`, or `DATE`: specify `partition_interval` either as an `INTERVAL` type
or an integer value in *microseconds*.
- Another integer type: specify `partition_interval` as an integer that reflects the column's
underlying semantics. For example, if this column is in UNIX time, specify `partition_interval` in milliseconds.
The partition type and default value depending on column type is:<a id="partition-types" href=""></a>
| Column Type | Partition Type | Default value |
|------------------------------|------------------|---------------|
| `TIMESTAMP WITHOUT TIMEZONE` | INTERVAL/INTEGER | 1 week |
| `TIMESTAMP WITH TIMEZONE` | INTERVAL/INTEGER | 1 week |
| `DATE` | INTERVAL/INTEGER | 1 week |
| `SMALLINT` | SMALLINT | 10000 |
| `INT` | INT | 100000 |
| `BIGINT` | BIGINT | 1000000 |
#### by_hash()
The main purpose of hash partitioning is to enable parallelization across multiple disks within the same time interval.
Every distinct item in hash partitioning is hashed to one of *N* buckets. By default, TimescaleDB uses flexible range
intervals to manage chunk sizes.
### Parallelizing disk I/O
You use Parallel I/O in the following scenarios:
- Two or more concurrent queries should be able to read from different disks in parallel.
- A single query should be able to use query parallelization to read from multiple disks in parallel.
For the following options:
- **RAID**: use a RAID setup across multiple physical disks, and expose a single logical disk to the hypertable.
That is, using a single tablespace.
Best practice is to use RAID when possible, as you do not need to manually manage tablespaces
in the database.
- **Multiple tablespaces**: for each physical disk, add a separate tablespace to the database. TimescaleDB allows you to
add multiple tablespaces to a *single* hypertable. However, although under the hood, a hypertable's
chunks are spread across the tablespaces associated with that hypertable.
When using multiple tablespaces, a best practice is to also add a second hash-partitioned dimension to your hypertable
and to have at least one hash partition per disk. While a single time dimension would also work, it would mean that
the first chunk is written to one tablespace, the second to another, and so on, and thus would parallelize only if a
query's time range exceeds a single chunk.
When adding a hash partitioned dimension, set the number of partitions to a multiple of number of disks. For example,
the number of partitions P=N*Pd where N is the number of disks and Pd is the number of partitions per
disk. This enables you to add more disks later and move partitions to the new disk from other disks.
TimescaleDB does *not* benefit from a very large number of hash
partitions, such as the number of unique items you expect in partition
field. A very large number of hash partitions leads both to poorer
per-partition load balancing (the mapping of items to partitions using
hashing), as well as much increased planning latency for some types of
queries.
##### Samples
sql CREATE TABLE conditions ( "time" TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, device TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL ) WITH ( tsdb.hypertable, tsdb.partition_column='time', tsdb.chunk_interval='1 day' );
SELECT add_dimension('conditions', by_hash('location', 2));
##### Arguments
| Name | Type | Default | Required | Description |
|-|----------|---------|-|----------------------------------------------------------|
|`column_name`| `NAME` | - |✔| Name of column to partition on. |
|`partition_func`| `REGPROC` | - |✖| The function to use to calcule the partition of a value. |
|`number_partitions`|`ANYELEMENT` | - |✔| Number of hash partitions to use for `partitioning_column`. Must be greater than 0. |
#### Returns
`by_range` and `by-hash` return an opaque `_timescaledb_internal.dimension_info` instance, holding the
dimension information used by this function.
## Returns
|Column|Type| Description |
|-|-|-------------------------------------------------------------------------------------------------------------|
|`dimension_id`|INTEGER| ID of the dimension in the TimescaleDB internal catalog |
|`created`|BOOLEAN| `true` if the dimension was added, `false` when you set `if_not_exists` to `true` and no dimension was added. |
===== PAGE: https://docs.tigerdata.com/api/hypertable/add_dimension_old/ =====
# add_dimension()
This interface is deprecated since [TimescaleDB v2.13.0][rn-2130].
For information about the supported hypertable interface, see [add_dimension()][add-dimension].
Add an additional partitioning dimension to a TimescaleDB hypertable.
The column selected as the dimension can either use interval
partitioning (for example, for a second time partition) or hash partitioning.
The `add_dimension` command can only be executed after a table has been
converted to a hypertable (via `create_hypertable`), but must similarly
be run only on an empty hypertable.
**Space partitions**: Using space partitions is highly recommended
for [distributed hypertables][distributed-hypertables] to achieve
efficient scale-out performance. For [regular hypertables][regular-hypertables]
that exist only on a single node, additional partitioning can be used
for specialized use cases and not recommended for most users.
Space partitions use hashing: Every distinct item is hashed to one of
*N* buckets. Remember that we are already using (flexible) time
intervals to manage chunk sizes; the main purpose of space
partitioning is to enable parallelization across multiple
data nodes (in the case of distributed hypertables) or
across multiple disks within the same time interval
(in the case of single-node deployments).
## Samples
First convert table `conditions` to hypertable with just time
partitioning on column `time`, then add an additional partition key on `location` with four partitions:
sql SELECT create_hypertable('conditions', 'time'); SELECT add_dimension('conditions', 'location', number_partitions => 4);
Convert table `conditions` to hypertable with time partitioning on `time` and
space partitioning (2 partitions) on `location`, then add two additional dimensions.
sql SELECT create_hypertable('conditions', 'time', 'location', 2); SELECT add_dimension('conditions', 'time_received', chunk_time_interval => INTERVAL '1 day'); SELECT add_dimension('conditions', 'device_id', number_partitions => 2); SELECT add_dimension('conditions', 'device_id', number_partitions => 2, if_not_exists => true);
Now in a multi-node example for distributed hypertables with a cluster
of one access node and two data nodes, configure the access node for
access to the two data nodes. Then, convert table `conditions` to
a distributed hypertable with just time partitioning on column `time`,
and finally add a space partitioning dimension on `location`
with two partitions (as the number of the attached data nodes).
sql SELECT add_data_node('dn1', host => 'dn1.example.com'); SELECT add_data_node('dn2', host => 'dn2.example.com'); SELECT create_distributed_hypertable('conditions', 'time'); SELECT add_dimension('conditions', 'location', number_partitions => 2);
### Parallelizing queries across multiple data nodes
In a distributed hypertable, space partitioning enables inserts to be
parallelized across data nodes, even while the inserted rows share
timestamps from the same time interval, and thus increases the ingest rate.
Query performance also benefits by being able to parallelize queries
across nodes, particularly when full or partial aggregations can be
"pushed down" to data nodes (for example, as in the query
`avg(temperature) FROM conditions GROUP BY hour, location`
when using `location` as a space partition). Please see our
[best practices about partitioning in distributed hypertables][distributed-hypertable-partitioning-best-practices]
for more information.
### Parallelizing disk I/O on a single node
Parallel I/O can benefit in two scenarios: (a) two or more concurrent
queries should be able to read from different disks in parallel, or
(b) a single query should be able to use query parallelization to read
from multiple disks in parallel.
Thus, users looking for parallel I/O have two options:
1. Use a RAID setup across multiple physical disks, and expose a
single logical disk to the hypertable (that is, via a single tablespace).
1. For each physical disk, add a separate tablespace to the
database. TimescaleDB allows you to actually add multiple tablespaces
to a *single* hypertable (although under the covers, a hypertable's
chunks are spread across the tablespaces associated with that hypertable).
We recommend a RAID setup when possible, as it supports both forms of
parallelization described above (that is, separate queries to separate
disks, single query to multiple disks in parallel). The multiple
tablespace approach only supports the former. With a RAID setup,
*no spatial partitioning is required*.
That said, when using space partitions, we recommend using 1
space partition per disk.
TimescaleDB does *not* benefit from a very large number of space
partitions (such as the number of unique items you expect in partition
field). A very large number of such partitions leads both to poorer
per-partition load balancing (the mapping of items to partitions using
hashing), as well as much increased planning latency for some types of
queries.
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable to add the dimension to|
|`column_name`|TEXT|Column to partition by|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`number_partitions`|INTEGER|Number of hash partitions to use on `column_name`. Must be > 0|
|`chunk_time_interval`|INTERVAL|Interval that each chunk covers. Must be > 0|
|`partitioning_func`|REGCLASS|The function to use for calculating a value's partition (see `create_hypertable` [instructions][create_hypertable])|
|`if_not_exists`|BOOLEAN|Set to true to avoid throwing an error if a dimension for the column already exists. A notice is issued instead. Defaults to false|
## Returns
|Column|Type|Description|
|-|-|-|
|`dimension_id`|INTEGER|ID of the dimension in the TimescaleDB internal catalog|
|`schema_name`|TEXT|Schema name of the hypertable|
|`table_name`|TEXT|Table name of the hypertable|
|`column_name`|TEXT|Column name of the column to partition by|
|`created`|BOOLEAN|True if the dimension was added, false when `if_not_exists` is true and no dimension was added|
When executing this function, either `number_partitions` or
`chunk_time_interval` must be supplied, which dictates if the
dimension uses hash or interval partitioning.
The `chunk_time_interval` should be specified as follows:
* If the column to be partitioned is a TIMESTAMP, TIMESTAMPTZ, or
DATE, this length should be specified either as an INTERVAL type or
an integer value in *microseconds*.
* If the column is some other integer type, this length
should be an integer that reflects
the column's underlying semantics (for example, the
`chunk_time_interval` should be given in milliseconds if this column
is the number of milliseconds since the UNIX epoch).
Supporting more than **one** additional dimension is currently
experimental. For any production environments, users are recommended
to use at most one "space" dimension.
===== PAGE: https://docs.tigerdata.com/api/hypertable/hypertable_approximate_detailed_size/ =====
# hypertable_approximate_detailed_size()
Get detailed information about approximate disk space used by a hypertable or
continuous aggregate, returning size information for the table
itself, any indexes on the table, any toast tables, and the total
size of all. All sizes are reported in bytes.
When a continuous aggregate name is provided, the function
transparently looks up the backing hypertable and returns its approximate
size statistics instead.
This function relies on the per backend caching using the in-built
Postgres storage manager layer to compute the approximate size
cheaply. The PG cache invalidation clears off the cached size for a
chunk when DML happens into it. That size cache is thus able to get
the latest size in a matter of minutes. Also, due to the backend
caching, any long running session will only fetch latest data for new
or modified chunks and can use the cached data (which is calculated
afresh the first time around) effectively for older chunks. Thus it
is recommended to use a single connected Postgres backend session to
compute the approximate sizes of hypertables to get faster results.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get the approximate size information for a hypertable.
sql SELECT * FROM hypertable_approximate_detailed_size('hyper_table'); table_bytes | index_bytes | toast_bytes | total_bytes -------------+-------------+-------------+-------------
8192 | 24576 | 32768 | 65536
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Hypertable or continuous aggregate to show detailed approximate size of. |
## Returns
|Column|Type|Description|
|-|-|-|
|table_bytes|BIGINT|Approximate disk space used by main_table (like `pg_relation_size(main_table)`)|
|index_bytes|BIGINT|Approximate disk space used by indexes|
|toast_bytes|BIGINT|Approximate disk space of toast tables|
|total_bytes|BIGINT|Approximate total disk space used by the specified table, including all indexes and TOAST data|
If executed on a relation that is not a hypertable, the function
returns `NULL`.
===== PAGE: https://docs.tigerdata.com/api/hypertable/set_integer_now_func/ =====
# set_integer_now_fun()
Override the [`now()`](https://www.postgresql.org/docs/16/functions-datetime.html) date/time function used to
set the current time in the integer `time` column in a hypertable. Many policies only apply to
[chunks][chunks] of a certain age. `integer_now_func` determines the age of each chunk.
The function you set as `integer_now_func` has no arguments. It must be either:
- `IMMUTABLE`: Use when you execute the query each time rather than prepare it prior to execution. The value
for `integer_now_func` is computed before the plan is generated. This generates a significantly smaller
plan, especially if you have a lot of chunks.
- `STABLE`: `integer_now_func` is evaluated just before query execution starts.
[chunk pruning](https://www.timescale.com/blog/optimizing-queries-timescaledb-hypertables-with-partitions-postgresql-6366873a995d) is executed at runtime. This generates a correct result, but may increase
planning time.
`set_integer_now_func` does not work on tables where the `time` column type is `TIMESTAMP`, `TIMESTAMPTZ`, or
`DATE`.
## Samples
Set the integer `now` function for a hypertable with a time column in [unix time](https://en.wikipedia.org/wiki/Unix_time).
- `IMMUTABLE`: when you execute the query each time:
```sql
CREATE OR REPLACE FUNCTION unix_now_immutable() returns BIGINT LANGUAGE SQL IMMUTABLE as $$ SELECT extract (epoch from now())::BIGINT $$;
SELECT set_integer_now_func('hypertable_name', 'unix_now_immutable');
```
- `STABLE`: for prepared statements:
```sql
CREATE OR REPLACE FUNCTION unix_now_stable() returns BIGINT LANGUAGE SQL STABLE AS $$ SELECT extract(epoch from now())::BIGINT $$;
SELECT set_integer_now_func('hypertable_name', 'unix_now_stable');
```
## Required arguments
|Name|Type| Description |
|-|-|-|
|`main_table`|REGCLASS| The hypertable `integer_now_func` is used in. |
|`integer_now_func`|REGPROC| A function that returns the current time set in each row in the `time` column in `main_table`.|
## Optional arguments
|Name|Type| Description|
|-|-|-|
|`replace_if_exists`|BOOLEAN| Set to `true` to override `integer_now_func` when you have previously set a custom function. Default is `false`. |
===== PAGE: https://docs.tigerdata.com/api/hypertable/create_index/ =====
# CREATE INDEX (Transaction Per Chunk)
SQL CREATE INDEX ... WITH (timescaledb.transaction_per_chunk, ...);
This option extends [`CREATE INDEX`][postgres-createindex] with the ability to
use a separate transaction for each chunk it creates an index on, instead of
using a single transaction for the entire hypertable. This allows `INSERT`s, and
other operations to be performed concurrently during most of the duration of the
`CREATE INDEX` command. While the index is being created on an individual chunk,
it functions as if a regular `CREATE INDEX` were called on that chunk, however
other chunks are completely unblocked.
This version of `CREATE INDEX` can be used as an alternative to
`CREATE INDEX CONCURRENTLY`, which is not currently supported on hypertables.
- Not supported for `CREATE UNIQUE INDEX`.
- If the operation fails partway through, indexes might not be created on all
hypertable chunks. If this occurs, the index on the root table of the hypertable
is marked as invalid. You can check this by running `\d+` on the hypertable. The
index still works, and is created on new chunks, but if you want to ensure all
chunks have a copy of the index, drop and recreate it.
You can also use the following query to find all invalid indexes:
SQL SELECT * FROM pg_index i WHERE i.indisvalid IS FALSE;
## Samples
Create an anonymous index:
SQL CREATE INDEX ON conditions(time, device_id)
WITH (timescaledb.transaction_per_chunk);
Alternatively:
SQL CREATE INDEX ON conditions USING brin(time, location)
WITH (timescaledb.transaction_per_chunk);
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/refresh_continuous_aggregate/ =====
# refresh_continuous_aggregate()
Refresh all buckets of a continuous aggregate in the refresh window given by
`window_start` and `window_end`.
A continuous aggregate materializes aggregates in time buckets. For example,
min, max, average over 1 day worth of data, and is determined by the `time_bucket`
interval. Therefore, when
refreshing the continuous aggregate, only buckets that completely fit within the
refresh window are refreshed. In other words, it is not possible to compute the
aggregate over, for an incomplete bucket. Therefore, any buckets that do not
fit within the given refresh window are excluded.
The function expects the window parameter values to have a time type that is
compatible with the continuous aggregate's time bucket expression—for
example, if the time bucket is specified in `TIMESTAMP WITH TIME ZONE`, then the
start and end time should be a date or timestamp type. Note that a continuous
aggregate using the `TIMESTAMP WITH TIME ZONE` type aligns with the UTC time
zone, so, if `window_start` and `window_end` is specified in the local time
zone, any time zone shift relative UTC needs to be accounted for when refreshing
to align with bucket boundaries.
To improve performance for continuous aggregate refresh, see
[CREATE MATERIALIZED VIEW ][create_materialized_view].
## Samples
Refresh the continuous aggregate `conditions` between `2020-01-01` and
`2020-02-01` exclusive.
sql CALL refresh_continuous_aggregate('conditions', '2020-01-01', '2020-02-01');
Alternatively, incrementally refresh the continuous aggregate `conditions`
between `2020-01-01` and `2020-02-01` exclusive, working in `12h` intervals:
sql DO $$ DECLARE refresh_interval INTERVAL = '12h'::INTERVAL; start_timestamp TIMESTAMPTZ = '2020-01-01T00:00:00Z'; end_timestamp TIMESTAMPTZ = start_timestamp + refresh_interval; BEGIN WHILE start_timestamp < '2020-02-01T00:00:00Z' LOOP
CALL refresh_continuous_aggregate('conditions', start_timestamp, end_timestamp);
COMMIT;
RAISE NOTICE 'finished with timestamp %', end_timestamp;
start_timestamp = end_timestamp;
end_timestamp = end_timestamp + refresh_interval;
END LOOP; END $$;
Force the `conditions` continuous aggregate to refresh between `2020-01-01` and
`2020-02-01` exclusive, even if the data has already been refreshed.
sql CALL refresh_continuous_aggregate('conditions', '2020-01-01', '2020-02-01', force => TRUE);
## Required arguments
|Name|Type|Description|
|-|-|-|
|`continuous_aggregate`|REGCLASS|The continuous aggregate to refresh.|
|`window_start`|INTERVAL, TIMESTAMPTZ, INTEGER|Start of the window to refresh, has to be before `window_end`.|
|`window_end`|INTERVAL, TIMESTAMPTZ, INTEGER|End of the window to refresh, has to be after `window_start`.|
You must specify the `window_start` and `window_end` parameters differently,
depending on the type of the time column of the hypertable. For hypertables with
`TIMESTAMP`, `TIMESTAMPTZ`, and `DATE` time columns, set the refresh window as
an `INTERVAL` type. For hypertables with integer-based timestamps, set the
refresh window as an `INTEGER` type.
A `NULL` value for `window_start` is equivalent to the lowest changed element
in the raw hypertable of the CAgg. A `NULL` value for `window_end` is
equivalent to the largest changed element in raw hypertable of the CAgg. As
changed element tracking is performed after the initial CAgg refresh, running
CAgg refresh without `window_start` and `window_end` covers the entire time
range.
Note that it's not guaranteed that all buckets will be updated: refreshes will
not take place when buckets are materialized with no data changes or with
changes that only occurred in the secondary table used in the JOIN.
## Optional arguments
|Name|Type| Description |
|-|-|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `force` | BOOLEAN | Force refresh every bucket in the time range between `window_start` and `window_end`, even when the bucket has already been refreshed. This can be very expensive when a lot of data is refreshed. Default is `FALSE`. |
| `refresh_newest_first` | BOOLEAN | Set to `FALSE` to refresh the oldest data first. Default is `TRUE`. |
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/remove_policies/ =====
# remove_policies()
<!-- markdownlint-disable-next-line line-length -->
Remove refresh, columnstore, and data retention policies from a continuous
aggregate. The removed columnstore and retention policies apply to the
continuous aggregate, _not_ to the original hypertable.
sql timescaledb_experimental.remove_policies(
relation REGCLASS,
if_exists BOOL = false,
VARIADIC policy_names TEXT[] = NULL
) RETURNS BOOL
To remove all policies on a continuous aggregate, see
[`remove_all_policies()`][remove-all-policies].
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Samples
Given a continuous aggregate named `example_continuous_aggregate` with a refresh
policy and a data retention policy, remove both policies.
Throw an error if either policy doesn't exist. If the continuous aggregate has a
columnstore policy, leave it unchanged:
sql SELECT timescaledb_experimental.remove_policies(
'example_continuous_aggregate',
false,
'policy_refresh_continuous_aggregate',
'policy_retention'
);
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|`REGCLASS`|The continuous aggregate to remove policies from|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_exists`|`BOOL`|When true, prints a warning instead of erroring if the policy doesn't exist. Defaults to false.|
|`policy_names`|`TEXT`|The policies to remove. You can list multiple policies, separated by a comma. Allowed policy names are `policy_refresh_continuous_aggregate`, `policy_compression`, and `policy_retention`.|
## Returns
Returns true if successful.
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/add_continuous_aggregate_policy/ =====
# add_continuous_aggregate_policy()
Create a policy that automatically refreshes a continuous aggregate. To view the
policies that you set or the policies that already exist, see
[informational views][informational-views].
## Samples
Add a policy that refreshes the last month once an hour, excluding the latest
hour from the aggregate. For performance reasons, we recommend that you
exclude buckets that see lots of writes:
sql SELECT add_continuous_aggregate_policy('conditions_summary', start_offset => INTERVAL '1 month', end_offset => INTERVAL '1 hour', schedule_interval => INTERVAL '1 hour');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`continuous_aggregate`|REGCLASS|The continuous aggregate to add the policy for|
|`start_offset`|INTERVAL or integer|Start of the refresh window as an interval relative to the time when the policy is executed. `NULL` is equivalent to `MIN(timestamp)` of the hypertable.|
|`end_offset`|INTERVAL or integer|End of the refresh window as an interval relative to the time when the policy is executed. `NULL` is equivalent to `MAX(timestamp)` of the hypertable.|
|`schedule_interval`|INTERVAL|Interval between refresh executions in wall-clock time. Defaults to 24 hours|
|`initial_start`|TIMESTAMPTZ|Time the policy is first run. Defaults to NULL. If omitted, then the schedule interval is the intervalbetween the finish time of the last execution and the next start. If provided, it serves as the origin with respect to which the next_start is calculated |
The `start_offset` should be greater than `end_offset`.
You must specify the `start_offset` and `end_offset` parameters differently,
depending on the type of the time column of the hypertable:
* For hypertables with `TIMESTAMP`, `TIMESTAMPTZ`, and `DATE` time columns,
set the offset as an `INTERVAL` type.
* For hypertables with integer-based timestamps, set the offset as an
`INTEGER` type.
While setting `end_offset` to `NULL` is possible, it is not recommended. To include the data between `end_offset` and
the current time in queries, enable [real-time aggregation](https://docs.tigerdata.com/use-timescale/latest/continuous-aggregates/real-time-aggregates/).
You can add [concurrent refresh policies](https://docs.tigerdata.com/use-timescale/latest/continuous-aggregates/refresh-policies/) on each continuous aggregate, as long as the `start_offset` and `end_offset` does not overlap with another policy on the same continuous aggregate.
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_not_exists`|BOOLEAN|Set to `true` to issue a notice instead of an error if the job already exists. Defaults to false.|
|`timezone`|TEXT|A valid time zone. If you specify `initial_start`, subsequent executions of the refresh policy are aligned on `initial_start`. However, daylight savings time (DST) changes may shift this alignment. If this is an issue you want to mitigate, set `timezone` to a valid time zone. Default is `NULL`, [UTC bucketing](https://docs.tigerdata.com/use-timescale/latest/time-buckets/about-time-buckets/) is performed.|
| `include_tiered_data` | BOOLEAN | Enable/disable reading tiered data. This setting helps override the current settings for the`timescaledb.enable_tiered_reads` GUC. The default is NULL i.e we use the current setting for `timescaledb.enable_tiered_reads` GUC | |
| `buckets_per_batch` | INTEGER | Number of buckets to be refreshed by a _batch_. This value is multiplied by the CAgg bucket width to determine the size of the batch range. Default value is `1`, single batch execution. Values of less than `0` are not allowed. | |
| `max_batches_per_execution` | INTEGER | Limit the maximum number of batches to run when a policy executes. If some batches remain, they are processed the next time the policy runs. Default value is `0`, for an unlimted number of batches. Values of less than `0` are not allowed. | |
| `refresh_newest_first` | BOOLEAN | Control the order of incremental refreshes. Set to `TRUE` to refresh from the newest data to the oldest. Set to `FALSE` for oldest to newest. The default is `TRUE`. | |
Setting `buckets_per_batch` greater than zero means that the refresh window is split in batches of `bucket width` * `buckets per batch`. For example, a given Continuous Aggregate with `bucket width` of `1 day` and `buckets_per_batch` of 10 has a batch size of `10 days` to process the refresh.
Because each `batch` is an individual transaction, executing a policy in batches make the data visible for the users before the entire job is executed. Batches are processed from the most recent data to the oldest.
## Returns
|Column|Type|Description|
|-|-|-|
|`job_id`|INTEGER|TimescaleDB background job ID created to implement this policy|
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/hypertable_size/ =====
# hypertable_size()
# hypertable_size()
Get the total disk space used by a hypertable or continuous aggregate,
that is, the sum of the size for the table itself including chunks,
any indexes on the table, and any toast tables. The size is reported
in bytes. This is equivalent to computing the sum of `total_bytes`
column from the output of `hypertable_detailed_size` function.
When a continuous aggregate name is provided, the function
transparently looks up the backing hypertable and returns its statistics
instead.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get the size information for a hypertable.
sql SELECT hypertable_size('devices');
73728
Get the size information for all hypertables.
sql SELECT hypertable_name, hypertable_size(format('%I.%I', hypertable_schema, hypertable_name)::regclass) FROM timescaledb_information.hypertables;
Get the size information for a continuous aggregate.
sql SELECT hypertable_size('device_stats_15m');
73728
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable or continuous aggregate to show size of.|
## Returns
|Name|Type|Description|
|-|-|-|
|hypertable_size|BIGINT|Total disk space used by the specified hypertable, including all indexes and TOAST data|
`NULL` is returned if the function is executed on a non-hypertable relation.
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/alter_policies/ =====
# alter_policies()
<!-- markdownlint-disable-next-line line-length -->
Alter refresh, columnstore, or data retention policies on a continuous
aggregate. The altered columnstore and retention policies apply to the
continuous aggregate, _not_ to the original hypertable.
sql timescaledb_experimental.alter_policies(
relation REGCLASS,
if_exists BOOL = false,
refresh_start_offset "any" = NULL,
refresh_end_offset "any" = NULL,
compress_after "any" = NULL,
drop_after "any" = NULL
) RETURNS BOOL
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Samples
Given a continuous aggregate named `example_continuous_aggregate` with an
existing columnstore policy, alter the columnstore policy to compress data older
than 16 days:
sql SELECT timescaledb_experimental.alter_policies(
'continuous_agg_max_mat_date',
compress_after => '16 days'::interval
);
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|`REGCLASS`|The continuous aggregate that you want to alter policies for|
## Optional arguments
|Name|Type| Description |
|-|-|---------------------------------------------------------------------------------------------------------------------------------------------------|
|`if_not_exists`|`BOOL`| When true, prints a warning instead of erroring if the policy doesn't exist. Defaults to false. |
|`refresh_start_offset`|`INTERVAL` or `INTEGER`| The start of the continuous aggregate refresh window, expressed as an offset from the policy run time. |
|`refresh_end_offset`|`INTERVAL` or `INTEGER`| The end of the continuous aggregate refresh window, expressed as an offset from the policy run time. Must be greater than `refresh_start_offset`. |
|`compress_after`|`INTERVAL` or `INTEGER`| Continuous aggregate chunks are compressed into the columnstore if they exclusively contain data older than this interval. |
|`drop_after`|`INTERVAL` or `INTEGER`| Continuous aggregate chunks are dropped if they exclusively contain data older than this interval. |
For arguments that could be either an `INTERVAL` or an `INTEGER`, use an
`INTERVAL` if your time bucket is based on timestamps. Use an `INTEGER` if your
time bucket is based on integers.
## Returns
Returns true if successful.
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/remove_continuous_aggregate_policy/ =====
# remove_continuous_aggregate_policy()
Remove all refresh policies from a continuous aggregate.
sql remove_continuous_aggregate_policy(
continuous_aggregate REGCLASS,
if_exists BOOL = NULL
) RETURNS VOID
To view the existing continuous aggregate policies, see the [policies informational view](https://docs.tigerdata.com/api/latest/informational-views/policies/).
## Samples
Remove all refresh policies from the `cpu_view` continuous aggregate:
sql SELECT remove_continuous_aggregate_policy('cpu_view');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`continuous_aggregate`|`REGCLASS`|Name of the continuous aggregate the policies should be removed from|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_exists` (formerly `if_not_exists`)|`BOOL`|When true, prints a warning instead of erroring if the policy doesn't exist. Defaults to false. Renamed in TimescaleDB 2.8.|
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/add_policies/ =====
# add_policies()
<!-- markdownlint-disable-next-line line-length -->
Add refresh, compression, and data retention policies to a continuous aggregate
in one step. The added compression and retention policies apply to the
continuous aggregate, _not_ to the original hypertable.
sql timescaledb_experimental.add_policies(
relation REGCLASS,
if_not_exists BOOL = false,
refresh_start_offset "any" = NULL,
refresh_end_offset "any" = NULL,
compress_after "any" = NULL,
drop_after "any" = NULL)
) RETURNS BOOL
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
`add_policies()` does not allow the `schedule_interval` for the continuous aggregate to be set, instead using a default value of 1 hour.
If you would like to set this add your policies manually (see [`add_continuous_aggregate_policy`][add_continuous_aggregate_policy]).
## Samples
Given a continuous aggregate named `example_continuous_aggregate`, add three
policies to it:
1. Regularly refresh the continuous aggregate to materialize data between 1 day
and 2 days old.
1. Compress data in the continuous aggregate after 20 days.
1. Drop data in the continuous aggregate after 1 year.
sql SELECT timescaledb_experimental.add_policies(
'example_continuous_aggregate',
refresh_start_offset => '1 day'::interval,
refresh_end_offset => '2 day'::interval,
compress_after => '20 days'::interval,
drop_after => '1 year'::interval
);
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|`REGCLASS`|The continuous aggregate that the policies should be applied to|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_not_exists`|`BOOL`|When true, prints a warning instead of erroring if the continuous aggregate doesn't exist. Defaults to false.|
|`refresh_start_offset`|`INTERVAL` or `INTEGER`|The start of the continuous aggregate refresh window, expressed as an offset from the policy run time.|
|`refresh_end_offset`|`INTERVAL` or `INTEGER`|The end of the continuous aggregate refresh window, expressed as an offset from the policy run time. Must be greater than `refresh_start_offset`.|
|`compress_after`|`INTERVAL` or `INTEGER`|Continuous aggregate chunks are compressed if they exclusively contain data older than this interval.|
|`drop_after`|`INTERVAL` or `INTEGER`|Continuous aggregate chunks are dropped if they exclusively contain data older than this interval.|
For arguments that could be either an `INTERVAL` or an `INTEGER`, use an
`INTERVAL` if your time bucket is based on timestamps. Use an `INTEGER` if your
time bucket is based on integers.
## Returns
Returns `true` if successful.
<!-- vale Vale.Terms = NO -->
<!-- vale Vale.Terms = YES -->
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/create_materialized_view/ =====
# CREATE MATERIALIZED VIEW (Continuous Aggregate)
The `CREATE MATERIALIZED VIEW` statement is used to create continuous
aggregates. To learn more, see the
[continuous aggregate how-to guides][cagg-how-tos].
The syntax is:
sql CREATE MATERIALIZED VIEW [ ( column_name [, ...] ) ] WITH ( timescaledb.continuous [, timescaledb. = ] ) AS
<select_query>
[WITH [NO] DATA]
`<select_query>` is of the form:
sql SELECT ,
FROM <hypertable or another continuous aggregate>
[WHERE ... ] GROUP BY time_bucket( , ),
[ optional grouping exprs>]
[HAVING ...]
The continuous aggregate view defaults to `WITH DATA`. This means that when the
view is created, it refreshes using all the current data in the underlying
hypertable or continuous aggregate. This occurs once when the view is created.
If you want the view to be refreshed regularly, you can use a refresh policy. If
you do not want the view to update when it is first created, use the
`WITH NO DATA` parameter. For more information, see
[`refresh_continuous_aggregate`][refresh-cagg].
Continuous aggregates have some limitations of what types of queries they can
support. For more information, see the
[continuous aggregates section][cagg-how-tos].
TimescaleDB v2.17.1 and greater dramatically decrease the amount
of data written on a continuous aggregate in the presence of a small number of changes,
reduce the i/o cost of refreshing a continuous aggregate, and generate fewer Write-Ahead
Logs (WAL), set the`timescaledb.enable_merge_on_cagg_refresh`
configuration parameter to `TRUE`. This enables continuous aggregate
refresh to use merge instead of deleting old materialized data and re-inserting.
For more settings for continuous aggregates, see [timescaledb_information.continuous_aggregates][info-views].
## Samples
Create a daily continuous aggregate view:
sql CREATE MATERIALIZED VIEW continuous_aggregate_daily( timec, minl, sumt, sumh ) WITH (timescaledb.continuous) AS SELECT time_bucket('1day', timec), min(location), sum(temperature), sum(humidity)
FROM conditions
GROUP BY time_bucket('1day', timec)
Add a thirty day continuous aggregate on top of the same raw hypertable:
sql CREATE MATERIALIZED VIEW continuous_aggregate_thirty_day( timec, minl, sumt, sumh ) WITH (timescaledb.continuous) AS SELECT time_bucket('30day', timec), min(location), sum(temperature), sum(humidity)
FROM conditions
GROUP BY time_bucket('30day', timec);
Add an hourly continuous aggregate on top of the same raw hypertable:
sql CREATE MATERIALIZED VIEW continuous_aggregate_hourly( timec, minl, sumt, sumh ) WITH (timescaledb.continuous) AS SELECT time_bucket('1h', timec), min(location), sum(temperature), sum(humidity)
FROM conditions
GROUP BY time_bucket('1h', timec);
## Parameters
|Name|Type|Description|
|-|-|-|
|`<view_name>`|TEXT|Name (optionally schema-qualified) of continuous aggregate view to create|
|`<column_name>`|TEXT|Optional list of names to be used for columns of the view. If not given, the column names are calculated from the query|
|`WITH` clause|TEXT|Specifies options for the continuous aggregate view|
|`<select_query>`|TEXT|A `SELECT` query that uses the specified syntax|
Required `WITH` clause options:
|Name|Type|Description|
|-|-|-|
|`timescaledb.continuous`|BOOLEAN|If `timescaledb.continuous` is not specified, this is a regular PostgresSQL materialized view|
Optional `WITH` clause options:
|Name|Type| Description |Default value|
|-|-|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-|
|`timescaledb.chunk_interval`|INTERVAL| Set the chunk interval. The default value is 10x the original hypertable. |
|`timescaledb.create_group_indexes`|BOOLEAN| Create indexes on the continuous aggregate for columns in its `GROUP BY` clause. Indexes are in the form `(<GROUP_BY_COLUMN>, time_bucket)` |`TRUE`|
|`timescaledb.finalized`|BOOLEAN| In TimescaleDB 2.7 and above, use the new version of continuous aggregates, which stores finalized results for aggregate functions. Supports all aggregate functions, including ones that use `FILTER`, `ORDER BY`, and `DISTINCT` clauses. |`TRUE`|
|`timescaledb.materialized_only`|BOOLEAN| Return only materialized data when querying the continuous aggregate view |`TRUE`|
| `timescaledb.invalidate_using` | TEXT | Since [TimescaleDB v2.22.0](https://github.com/timescale/timescaledb/releases/tag/2.22.0)Set to `wal` to read changes from the WAL using logical decoding, then update the materialization invalidations for continuous aggregates using this information. This reduces the I/O and CPU needed to manage the hypertable invalidation log. Set to `trigger` to collect invalidations whenever there are inserts, updates, or deletes to a hypertable. This default behaviour uses more resources than `wal`. | `trigger` |
For more information, see the [real-time aggregates][real-time-aggregates] section.
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/alter_materialized_view/ =====
# ALTER MATERIALIZED VIEW (Continuous Aggregate)
You use the `ALTER MATERIALIZED VIEW` statement to modify some of the `WITH`
clause [options][create_materialized_view] for a continuous aggregate view. You can only set the `continuous` and `create_group_indexes` options when you [create a continuous aggregate][create_materialized_view]. `ALTER MATERIALIZED VIEW` also supports the following
[Postgres clauses][postgres-alterview] on the continuous aggregate view:
* `RENAME TO`: rename the continuous aggregate view
* `RENAME [COLUMN]`: rename the continuous aggregate column
* `SET SCHEMA`: set the new schema for the continuous aggregate view
* `SET TABLESPACE`: move the materialization of the continuous aggregate view to the new tablespace
* `OWNER TO`: set a new owner for the continuous aggregate view
## Samples
- Enable real-time aggregates for a continuous aggregate:
sql ALTER MATERIALIZED VIEW contagg_view SET (timescaledb.materialized_only = false);
- Enable hypercore for a continuous aggregate Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0):
sql
ALTER MATERIALIZED VIEW contagg_view SET (
timescaledb.enable_columnstore = true,
timescaledb.segmentby = 'symbol' );
- Rename a column for a continuous aggregate:
sql ALTER MATERIALIZED VIEW contagg_view RENAME COLUMN old_name TO new_name;
## Arguments
The syntax is:
sql ALTER MATERIALIZED VIEW SET ( timescaledb. = [, ... ] )
| Name | Type | Default | Required | Description |
|---------------------------------------------------------------------------|-----------|------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `view_name` | TEXT | - | ✖ | The name of the continuous aggregate view to be altered. |
| `timescaledb.materialized_only` | BOOLEAN | `true` | ✖ | Enable real-time aggregation. |
| `timescaledb.enable_columnstore` | BOOLEAN | `true` | ✖ | Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Enable columnstore. Effectively the same as `timescaledb.compress`. |
| `timescaledb.compress` | TEXT | Disabled. | ✖ | Enable compression. |
| `timescaledb.orderby` | TEXT | Descending order on the time column in `table_name`. | ✖ | Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Set the order in which items are used in the columnstore. Specified in the same way as an `ORDER BY` clause in a `SELECT` query. |
| `timescaledb.compress_orderby` | TEXT | Descending order on the time column in `table_name`. | ✖ | Set the order used by compression. Specified in the same way as the `ORDER BY` clause in a `SELECT` query. |
| `timescaledb.segmentby` | TEXT | No segementation by column. | ✖ | Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Set the list of columns used to segment data in the columnstore for `table`. An identifier representing the source of the data such as `device_id` or `tags_id` is usually a good candidate. |
| `timescaledb.compress_segmentby` | TEXT | No segementation by column. | ✖ | Set the list of columns used to segment the compressed data. An identifier representing the source of the data such as `device_id` or `tags_id` is usually a good candidate. |
| `column_name` | TEXT | - | ✖ | Set the name of the column to order by or segment by. |
| `timescaledb.compress_chunk_time_interval` | TEXT | - | ✖ | Reduce the total number of compressed/columnstore chunks for `table`. If you set `compress_chunk_time_interval`, compressed/columnstore chunks are merged with the previous adjacent chunk within `chunk_time_interval` whenever possible. These chunks are irreversibly merged. If you call to [decompress][decompress]/[convert_to_rowstore][convert_to_rowstore], merged chunks are not split up. You can call `compress_chunk_time_interval` independently of other compression settings; `timescaledb.compress`/`timescaledb.enable_columnstore` is not required. |
| `timescaledb.enable_cagg_window_functions` | BOOLEAN | `false` | ✖ | EXPERIMENTAL: enable window functions on continuous aggregates. Support is experimental, as there is a risk of data inconsistency. For example, in backfill scenarios, buckets could be missed. |
| `timescaledb.chunk_interval` (formerly `timescaledb.chunk_time_interval`) | INTERVAL | 10x the original hypertable. | ✖ | Set the chunk interval. Renamed in TimescaleDB V2.20. |
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/cagg_migrate/ =====
# cagg_migrate()
Migrate a continuous aggregate from the old format to the new format introduced
in TimescaleDB 2.7.
sql CALL cagg_migrate (
cagg REGCLASS,
override BOOLEAN DEFAULT FALSE,
drop_old BOOLEAN DEFAULT FALSE
);
TimescaleDB 2.7 introduced a new format for continuous aggregates that improves
performance. It also makes continuous aggregates compatible with more types of
SQL queries.
The new format, also called the finalized format, stores the continuous
aggregate data exactly as it appears in the final view. The old format, also
called the partial format, stores the data in a partially aggregated state.
Use this procedure to migrate continuous aggregates from the old format to the
new format.
For more information, see the [migration how-to guide][how-to-migrate].
There are known issues with `cagg_migrate()` in version TimescaleDB 2.8.0.
Upgrade to version 2.8.1 or above before using it.
## Required arguments
|Name|Type|Description|
|-|-|-|
|`cagg`|`REGCLASS`|The continuous aggregate to migrate|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`override`|`BOOLEAN`|If false, the old continuous aggregate keeps its name. The new continuous aggregate is named `<OLD_CONTINUOUS_AGGREGATE_NAME>_new`. If true, the new continuous aggregate gets the old name. The old continuous aggregate is renamed `<OLD_CONTINUOUS_AGGREGATE_NAME>_old`. Defaults to `false`.|
|`drop_old`|`BOOLEAN`|If true, the old continuous aggregate is deleted. Must be used together with `override`. Defaults to `false`.|
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/drop_materialized_view/ =====
# DROP MATERIALIZED VIEW (Continuous Aggregate)
Continuous aggregate views can be dropped using the `DROP MATERIALIZED VIEW` statement.
This statement deletes the continuous aggregate and all its internal
objects. It also removes refresh policies for that
aggregate. To delete other dependent objects, such as a view
defined on the continuous aggregate, add the `CASCADE`
option. Dropping a continuous aggregate does not affect the data in
the underlying hypertable from which the continuous aggregate is
derived.
sql DROP MATERIALIZED VIEW ;
## Samples
Drop existing continuous aggregate.
sql DROP MATERIALIZED VIEW contagg_view;
## Parameters
|Name|Type|Description|
|---|---|---|
| `<view_name>` | TEXT | Name (optionally schema-qualified) of continuous aggregate view to be dropped.|
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/remove_all_policies/ =====
# remove_all_policies()
<!-- markdownlint-disable-next-line line-length -->
Remove all policies from a continuous aggregate. The removed columnstore and
retention policies apply to the continuous aggregate, _not_ to the original
hypertable.
sql timescaledb_experimental.remove_all_policies(
relation REGCLASS,
if_exists BOOL = false
) RETURNS BOOL
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Samples
Remove all policies from a continuous aggregate named
`example_continuous_aggregate`. This includes refresh policies, columnstore
policies, and data retention policies. It doesn't include custom jobs:
sql SELECT timescaledb_experimental.remove_all_policies('example_continuous_aggregate');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|`REGCLASS`|The continuous aggregate to remove all policies from|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_exists`|`BOOL`|When true, prints a warning instead of erroring if any policies are missing. Defaults to false.|
## Returns
Returns true if successful.
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/hypertable_detailed_size/ =====
# hypertable_detailed_size()
# hypertable_detailed_size()
Get detailed information about disk space used by a hypertable or
continuous aggregate, returning size information for the table
itself, any indexes on the table, any toast tables, and the total
size of all. All sizes are reported in bytes. If the function is
executed on a distributed hypertable, it returns size information
as a separate row per node, including the access node.
When a continuous aggregate name is provided, the function
transparently looks up the backing hypertable and returns its statistics
instead.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
## Samples
Get the size information for a hypertable.
sql -- disttable is a distributed hypertable -- SELECT * FROM hypertable_detailed_size('disttable') ORDER BY node_name;
table_bytes | index_bytes | toast_bytes | total_bytes | node_name -------------+-------------+-------------+-------------+-------------
16384 | 40960 | 0 | 57344 | data_node_1
8192 | 24576 | 0 | 32768 | data_node_2
0 | 8192 | 0 | 8192 |
The access node is listed without a user-given node name. Normally,
the access node holds no data, but still maintains, for example, index
information that occupies a small amount of disk space.
## Required arguments
|Name|Type|Description|
|---|---|---|
| `hypertable` | REGCLASS | Hypertable or continuous aggregate to show detailed size of. |
## Returns
|Column|Type|Description|
|-|-|-|
|table_bytes|BIGINT|Disk space used by main_table (like `pg_relation_size(main_table)`)|
|index_bytes|BIGINT|Disk space used by indexes|
|toast_bytes|BIGINT|Disk space of toast tables|
|total_bytes|BIGINT|Total disk space used by the specified table, including all indexes and TOAST data|
|node_name|TEXT|For distributed hypertables, this is the user-given name of the node for which the size is reported. `NULL` is returned for the access node and non-distributed hypertables.|
If executed on a relation that is not a hypertable, the function
returns `NULL`.
===== PAGE: https://docs.tigerdata.com/api/continuous-aggregates/show_policies/ =====
# show_policies()
<!-- markdownlint-disable-next-line line-length -->
Show all policies that are currently set on a continuous aggregate.
sql timescaledb_experimental.show_policies(
relation REGCLASS
) RETURNS SETOF JSONB
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
## Samples
Given a continuous aggregate named `example_continuous_aggregate`, show all the
policies set on it:
sql SELECT timescaledb_experimental.show_policies('example_continuous_aggregate');
Example of returned data:
bash
{"policy_name": "policy_compression", "compress_after": 11, "compress_interval": "@ 1 day"} {"policy_name": "policy_refresh_continuous_aggregate", "refresh_interval": "@ 1 hour", "refresh_end_offset": 1, "refresh_start_offset": 10} {"drop_after": 20, "policy_name": "policy_retention", "retention_interval": "@ 1 day"}
## Required arguments
|Name|Type|Description|
|-|-|-|
|`relation`|`REGCLASS`|The continuous aggregate to display policies for|
## Returns
|Column|Type|Description|
|-|-|-|
|`show_policies`|`JSONB`|Details for each policy set on the continuous aggregate|
===== PAGE: https://docs.tigerdata.com/api/hypercore/alter_table/ =====
# ALTER TABLE (hypercore)
Enable the columnstore or change the columnstore settings for a hypertable. The settings are applied on a per-chunk basis. You do not need to convert the entire hypertable back to the rowstore before changing the settings. The new settings apply only to the chunks that have not yet been converted to columnstore, the existing chunks in the columnstore do not change. This means that chunks with different columnstore settings can co-exist in the same hypertable.
TimescaleDB calculates default columnstore settings for each chunk when it is created. These settings apply to each chunk, and not the entire hypertable. To explicitly disable the defaults, set a setting to an empty string. To remove the current configuration and re-enable the defaults, call `ALTER TABLE <your_table_name> RESET (<columnstore_setting>);`.
After you have enabled the columnstore, either:
- [add_columnstore_policy][add_columnstore_policy]: create a [job][job] that automatically moves chunks in a hypertable to the columnstore at a
specific time interval.
- [convert_to_columnstore][convert_to_columnstore]: manually add a specific chunk in a hypertable to the columnstore.
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To enable the columnstore:
- **Configure a hypertable that ingests device data to use the columnstore**:
In this example, the `metrics` hypertable is often queried about a specific device or set of devices.
Segment the hypertable by `device_id` to improve query performance.
sql
ALTER TABLE metrics SET(
timescaledb.enable_columnstore,
timescaledb.orderby = 'time DESC',
timescaledb.segmentby = 'device_id');
- **Specify the chunk interval without changing other columnstore settings**:
- Set the time interval when chunks are added to the columnstore:
```sql
ALTER TABLE metrics SET (timescaledb.compress_chunk_time_interval = '24 hours');
```
- To disable the option you set previously, set the interval to 0:
```sql
ALTER TABLE metrics SET (timescaledb.compress_chunk_time_interval = '0');
```
## Arguments
The syntax is:
sql ALTER TABLE SET (timescaledb.enable_columnstore, timescaledb.compress_orderby = ' [ASC | DESC] [ NULLS { FIRST | LAST } ] [, ...]', timescaledb.compress_segmentby = ' [, ...]', timescaledb.sparse_index = '(), ()' timescaledb.compress_chunk_time_interval='interval', SET ACCESS METHOD { new_access_method | DEFAULT }, ALTER SET NOT NULL, ADD CONSTRAINT UNIQUE (, ... ) );
| Name | Type | Default | Required | Description |
|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| `table_name` | TEXT | - | ✖ | The hypertable to enable columstore for. |
| `timescaledb.enable_columnstore` | BOOLEAN | `true` | ✖ | Set to `false` to disable columnstore. |
| `timescaledb.compress_orderby` | TEXT | Descending order on the time column in `table_name`. | ✖ | The order in which items are used in the columnstore. Specified in the same way as an `ORDER BY` clause in a `SELECT` query. Setting `timescaledb.compress_orderby` automatically creates an implicit min/max sparse index on the `orderby` column. |
| `timescaledb.compress_segmentby` | TEXT | TimescaleDB looks at [`pg_stats`](https://www.postgresql.org/docs/current/view-pg-stats.html) and determines an appropriate column based on the data cardinality and distribution. If `pg_stats` is not available, TimescaleDB looks for an appropriate column from the existing indexes. | ✖ | Set the list of columns used to segment data in the columnstore for `table`. An identifier representing the source of the data such as `device_id` or `tags_id` is usually a good candidate. |
| `column_name` | TEXT | - | ✖ | The name of the column to `orderby` or `segmentby`. |
|`timescaledb.sparse_index`| TEXT | TimescaleDB evaluates the columns you already have indexed, checks which data types are a good fit for sparse indexing, then creates a sparse index as an optimization. | ✖ | Configure the sparse indexes for compressed chunks. Requires setting `timescaledb.compress_orderby`. Supported index types include: <li> `bloom(<column_name>)`: a probabilistic index, effective for `=` filters. Cannot be applied to `timescaledb.compress_orderby` columns.</li> <li> `minmax(<column_name>)`: stores min/max values for each compressed chunk. Setting `timescaledb.compress_orderby` automatically creates an implicit min/max sparse index on the `orderby` column. </li> Define multiple indexes using a comma-separated list. You can set only one index per column. Set to an empty string to avoid using sparse indexes and explicitly disable the default behavior. To remove the current sparse index configuration and re-enable default sparse index selection, call `ALTER TABLE your_table_name RESET (timescaledb.sparse_index);`. |
| `timescaledb.compress_chunk_time_interval` | TEXT | - | ✖ | EXPERIMENTAL: reduce the total number of chunks in the columnstore for `table`. If you set `compress_chunk_time_interval`, chunks added to the columnstore are merged with the previous adjacent chunk within `chunk_time_interval` whenever possible. These chunks are irreversibly merged. If you call [convert_to_rowstore][convert_to_rowstore], merged chunks are not split up. You can call `compress_chunk_time_interval` independently of other compression settings; `timescaledb.enable_columnstore` is not required. |
| `interval` | TEXT | - | ✖ | Set to a multiple of the [chunk_time_interval][chunk_time_interval] for `table`. |
| `ALTER` | TEXT | | ✖ | Set a specific column in the columnstore to be `NOT NULL`. |
| `ADD CONSTRAINT` | TEXT | | ✖ | Add `UNIQUE` constraints to data in the columnstore. |
===== PAGE: https://docs.tigerdata.com/api/hypercore/chunk_columnstore_stats/ =====
# chunk_columnstore_stats()
Retrieve statistics about the chunks in the columnstore
`chunk_columnstore_stats` returns the size of chunks in the columnstore, these values are computed when you call either:
- [add_columnstore_policy][add_columnstore_policy]: create a [job][job] that automatically moves chunks in a hypertable to the columnstore at a
specific time interval.
- [convert_to_columnstore][convert_to_columnstore]: manually add a specific chunk in a hypertable to the columnstore.
Inserting into a chunk in the columnstore does not change the chunk size. For more information about how to compute
chunk sizes, see [chunks_detailed_size][chunks_detailed_size].
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To retrieve statistics about chunks:
- **Show the status of the first two chunks in the `conditions` hypertable**:
sql SELECT * FROM chunk_columnstore_stats('conditions')
ORDER BY chunk_name LIMIT 2;
Returns:
sql -[ RECORD 1 ]------------------+---------------------- chunk_schema | _timescaledb_internal chunk_name | _hyper_1_1_chunk compression_status | Uncompressed before_compression_table_bytes | before_compression_index_bytes | before_compression_toast_bytes | before_compression_total_bytes | after_compression_table_bytes | after_compression_index_bytes | after_compression_toast_bytes | after_compression_total_bytes | node_name | -[ RECORD 2 ]------------------+---------------------- chunk_schema | _timescaledb_internal chunk_name | _hyper_1_2_chunk compression_status | Compressed before_compression_table_bytes | 8192 before_compression_index_bytes | 32768 before_compression_toast_bytes | 0 before_compression_total_bytes | 40960 after_compression_table_bytes | 8192 after_compression_index_bytes | 32768 after_compression_toast_bytes | 8192 after_compression_total_bytes | 49152 node_name |
- **Use `pg_size_pretty` to return a more human friendly format**:
sql SELECT pg_size_pretty(after_compression_total_bytes) AS total
FROM chunk_columnstore_stats('conditions')
WHERE compression_status = 'Compressed';
Returns:
sql -[ RECORD 1 ]--+------ total | 48 kB
## Arguments
| Name | Type | Default | Required | Description |
|--|--|--|--|--|
|`hypertable`|`REGCLASS`|-|✖| The name of a hypertable |
## Returns
|Column|Type| Description |
|-|-|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`chunk_schema`|TEXT| Schema name of the chunk. |
|`chunk_name`|TEXT| Name of the chunk. |
|`compression_status`|TEXT| Current compression status of the chunk. |
|`before_compression_table_bytes`|BIGINT| Size of the heap before compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_index_bytes`|BIGINT| Size of all the indexes before compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_toast_bytes`|BIGINT| Size the TOAST table before compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_total_bytes`|BIGINT| Size of the entire chunk table (`before_compression_table_bytes` + `before_compression_index_bytes` + `before_compression_toast_bytes`) before compression. Returns `NULL` if `compression_status` == `Uncompressed`.|
|`after_compression_table_bytes`|BIGINT| Size of the heap after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`after_compression_index_bytes`|BIGINT| Size of all the indexes after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`after_compression_toast_bytes`|BIGINT| Size the TOAST table after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`after_compression_total_bytes`|BIGINT| Size of the entire chunk table (`after_compression_table_bytes` + `after_compression_index_bytes `+ `after_compression_toast_bytes`) after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`node_name`|TEXT| **DEPRECATED**: nodes the chunk is located on, applicable only to distributed hypertables. |
===== PAGE: https://docs.tigerdata.com/api/hypercore/convert_to_rowstore/ =====
# convert_to_rowstore()
Manually convert a specific chunk in the hypertable columnstore to the rowstore.
If you need to modify or add a lot of data to a chunk in the columnstore, best practice is to stop
any [jobs][job] moving chunks to the columnstore, convert the chunk back to the rowstore, then modify the
data. After the update, [convert the chunk to the columnstore][convert_to_columnstore] and restart the jobs.
This workflow is especially useful if you need to backfill old data.
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To modify or add a lot of data to a chunk:
1. **Stop the jobs that are automatically adding chunks to the columnstore**
Retrieve the list of jobs from the [timescaledb_information.jobs][informational-views] view
to find the job you need to [alter_job][alter_job].
sql SELECT alter_job(JOB_ID, scheduled => false);
1. **Convert a chunk to update back to the rowstore**
``` sql
CALL convert_to_rowstore('_timescaledb_internal._hyper_2_2_chunk');
```
1. **Update the data in the chunk you added to the rowstore**
Best practice is to structure your [INSERT][insert] statement to include appropriate
partition key values, such as the timestamp. TimescaleDB adds the data to the correct chunk:
sql INSERT INTO metrics (time, value) VALUES ('2025-01-01T00:00:00', 42);
1. **Convert the updated chunks back to the columnstore**
sql CALL convert_to_columnstore('_timescaledb_internal._hyper_1_2_chunk');
1. **Restart the jobs that are automatically converting chunks to the columnstore**
sql SELECT alter_job(JOB_ID, scheduled => true);
## Arguments
| Name | Type | Default | Required | Description|
|--|----------|---------|----------|-|
|`chunk`| REGCLASS | - | ✖ | Name of the chunk to be moved to the rowstore. |
|`if_compressed`| BOOLEAN | `true` | ✔ | Set to `false` so this job fails with an error rather than an warning if `chunk` is not in the columnstore |
===== PAGE: https://docs.tigerdata.com/api/hypercore/hypertable_columnstore_stats/ =====
# hypertable_columnstore_stats()
Retrieve compression statistics for the columnstore.
For more information about using hypertables, including chunk size partitioning,
see [hypertables][hypertable-docs].
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To retrieve compression statistics:
- **Show the compression status of the `conditions` hypertable**:
sql SELECT * FROM hypertable_columnstore_stats('conditions');
Returns:
sql -[ RECORD 1 ]------------------+------ total_chunks | 4 number_compressed_chunks | 1 before_compression_table_bytes | 8192 before_compression_index_bytes | 32768 before_compression_toast_bytes | 0 before_compression_total_bytes | 40960 after_compression_table_bytes | 8192 after_compression_index_bytes | 32768 after_compression_toast_bytes | 8192 after_compression_total_bytes | 49152 node_name |
- **Use `pg_size_pretty` get the output in a more human friendly format**:
sql SELECT pg_size_pretty(after_compression_total_bytes) as total
FROM hypertable_columnstore_stats('conditions');
Returns:
sql -[ RECORD 1 ]--+------ total | 48 kB
## Arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable to show statistics for|
## Returns
|Column|Type|Description|
|-|-|-|
|`total_chunks`|BIGINT|The number of chunks used by the hypertable. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`number_compressed_chunks`|INTEGER|The number of chunks used by the hypertable that are currently compressed. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_table_bytes`|BIGINT|Size of the heap before compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_index_bytes`|BIGINT|Size of all the indexes before compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_toast_bytes`|BIGINT|Size the TOAST table before compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`before_compression_total_bytes`|BIGINT|Size of the entire table (`before_compression_table_bytes` + `before_compression_index_bytes` + `before_compression_toast_bytes`) before compression. Returns `NULL` if `compression_status` == `Uncompressed`.|
|`after_compression_table_bytes`|BIGINT|Size of the heap after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`after_compression_index_bytes`|BIGINT|Size of all the indexes after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`after_compression_toast_bytes`|BIGINT|Size the TOAST table after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`after_compression_total_bytes`|BIGINT|Size of the entire table (`after_compression_table_bytes` + `after_compression_index_bytes `+ `after_compression_toast_bytes`) after compression. Returns `NULL` if `compression_status` == `Uncompressed`. |
|`node_name`|TEXT|nodes on which the hypertable is located, applicable only to distributed hypertables. Returns `NULL` if `compression_status` == `Uncompressed`. |
===== PAGE: https://docs.tigerdata.com/api/hypercore/remove_columnstore_policy/ =====
# remove_columnstore_policy()
Remove a columnstore policy from a hypertable or continuous aggregate.
To restart automatic chunk migration to the columnstore, you need to call
[add_columnstore_policy][add_columnstore_policy] again.
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
You see the columnstore policies in the [informational views][informational-views].
- **Remove the columnstore policy from the `cpu` table**:
sql CALL remove_columnstore_policy('cpu');
- **Remove the columnstore policy from the `cpu_weekly` continuous aggregate**:
sql CALL remove_columnstore_policy('cpu_weekly');
## Arguments
| Name | Type | Default | Required | Description |
|--|--|--|--|-|
|`hypertable`|REGCLASS|-|✔| Name of the hypertable or continuous aggregate to remove the policy from|
| `if_exists` | BOOLEAN | `false` |✖| Set to `true` so this job fails with a warning rather than an error if a columnstore policy does not exist on `hypertable` |
===== PAGE: https://docs.tigerdata.com/api/hypercore/chunk_columnstore_settings/ =====
# timescaledb_information.chunk_columnstore_settings
Retrieve the compression settings for each chunk in the columnstore.
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To retrieve information about settings:
- **Show settings for all chunks in the columnstore**:
sql SELECT * FROM timescaledb_information.chunk_columnstore_settings
Returns:
sql hypertable | chunk | segmentby | orderby ------------+-------+-----------+--------- measurements | _timescaledb_internal._hyper_1_1_chunk| | "time" DESC
* **Find all chunk columnstore settings for a specific hypertable**:
sql SELECT * FROM timescaledb_information.chunk_columnstore_settings WHERE hypertable::TEXT LIKE 'metrics';
Returns:
sql hypertable | chunk | segmentby | orderby ------------+-------+-----------+--------- metrics | _timescaledb_internal._hyper_2_3_chunk | metric_id | "time"
## Returns
| Name | Type | Description |
|--|--|--|--|--|
|`hypertable`|`REGCLASS`| The name of the hypertable in the columnstore. |
|`chunk`|`REGCLASS`| The name of the chunk in the `hypertable`. |
|`segmentby`|`TEXT`| The list of columns used to segment the `hypertable`. |
|`orderby`|`TEXT`| The list of columns used to order the data in the `hypertable`, along with the ordering and `NULL` ordering information. |
|`index`| `TEXT` | The sparse index details. |
===== PAGE: https://docs.tigerdata.com/api/hypercore/add_columnstore_policy/ =====
# add_columnstore_policy()
Create a [job][job] that automatically moves chunks in a hypertable to the columnstore after a
specific time interval.
You enable the columnstore a hypertable or continuous aggregate before you create a columnstore policy.
You do this by calling `CREATE TABLE` for hypertables and `ALTER MATERIALIZED VIEW` for continuous aggregates. When
columnstore is enabled, [bloom filters][bloom-filters] are enabled by default, and every new chunk has a bloom index.
If you converted chunks to columnstore using TimescaleDB v2.19.3 or below, to enable bloom filters on that data you have
to convert those chunks to the rowstore, then convert them back to the columnstore.
Bloom indexes are not retrofitted, meaning that the existing chunks need to be fully recompressed to have the bloom
indexes present. Please check out the PR description for more in-depth explanations of how bloom filters in
TimescaleDB work.
To view the policies that you set or the policies that already exist,
see [informational views][informational-views], to remove a policy, see [remove_columnstore_policy][remove_columnstore_policy].
A columnstore policy is applied on a per-chunk basis. If you remove an existing policy and then add a new one, the new policy applies only to the chunks that have not yet been converted to columnstore. The existing chunks in the columnstore remain unchanged. This means that chunks with different columnstore settings can co-exist in the same hypertable.
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To create a columnstore job:
1. **Enable columnstore**
Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data. For example:
* [Use `CREATE TABLE` for a hypertable][hypertable-create-table]
```sql
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
* [Use `ALTER MATERIALIZED VIEW` for a continuous aggregate][compression_continuous-aggregate]
```sql
ALTER MATERIALIZED VIEW assets_candlestick_daily set (
timescaledb.enable_columnstore = true,
timescaledb.segmentby = 'symbol' );
```
1. **Add a policy to move chunks to the columnstore at a specific time interval**
For example:
* 60 days after the data was added to the table:
``` sql
CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '60d');
```
* 3 months prior to the moment you run the query:
``` sql
CALL add_columnstore_policy('crypto_ticks', created_before => INTERVAL '3 months');
```
* With an integer-based time column:
``` sql
CALL add_columnstore_policy('table_with_bigint_time', BIGINT '600000');
```
* Older than eight weeks:
``` sql
CALL add_columnstore_policy('cpu_weekly', INTERVAL '8 weeks');
```
* Control the time your policy runs:
When you use a policy with a fixed schedule, TimescaleDB uses the `initial_start` time to compute the
next start time. When TimescaleDB finishes executing a policy, it picks the next available time on the
schedule,
skipping any candidate start times that have already passed.
When you set the `next_start` time, it only changes the start time of the next immediate execution. It does not
change the computation of the next scheduled execution after that next execution. To change the schedule so a
policy starts at a specific time, you need to set `initial_start`. To change the next immediate
execution, you need to set `next_start`. For example, to modify a policy to execute on a fixed schedule 15 minutes past the hour, and every
hour, you need to set both `initial_start` and `next_start` using `alter_job`:
``` sql
select * from alter_job(1000, fixed_schedule => true, initial_start => '2025-07-11 10:15:00', next_start =>
'2025-07-11 11:15:00');
```
1. **View the policies that you set or the policies that already exist**
sql SELECT * FROM timescaledb_information.jobs WHERE proc_name='policy_compression';
See [timescaledb_information.jobs][informational-views].
## Arguments
Calls to `add_columnstore_policy` require either `after` or `created_before`, but cannot have both.
<!-- vale Google.Acronyms = NO -->
<!-- vale Vale.Spelling = NO -->
| Name | Type | Default | Required | Description |
|-------------------------------|--|------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `hypertable` |REGCLASS| - | ✔ | Name of the hypertable or continuous aggregate to run this [job][job] on. |
| `after` |INTERVAL or INTEGER| - | ✖ | Add chunks containing data older than `now - {after}::interval` to the columnstore. <br/> Use an object type that matchs the time column type in `hypertable`: <ul><li><b><code>TIMESTAMP</code>, <code>TIMESTAMPTZ</code>, or <code>DATE</code></b>: use an <code>INTERVAL</code> type.</li><li><b> Integer-based timestamps </b>: set an integer type using the [integer_now_func][set_integer_now_func].</li></ul> `after` is mutually exclusive with `created_before`. |
| `created_before` |INTERVAL| NULL | ✖ | Add chunks with a creation time of `now() - created_before` to the columnstore. <br/> `created_before` is <ul><li>Not supported for continuous aggregates.</li><li>Mutually exclusive with `after`.</li></ul> |
| `schedule_interval` |INTERVAL| 12 hours when [chunk_time_interval][chunk_time_interval] >= `1 day` for `hypertable`. Otherwise `chunk_time_interval` / `2`. | ✖ | Set the interval between the finish time of the last execution of this policy and the next start. |
| `initial_start` |TIMESTAMPTZ| The interval from the finish time of the last execution to the [next_start][next-start]. | ✖ | Set the time this job is first run. This is also the time that `next_start` is calculated from. |
| `next_start` |TIMESTAMPTZ| -| ✖ | Set the start time of the next immediate execution. It does not change the computation of the next scheduled time after the next execution. |
| `timezone` |TEXT| UTC. However, daylight savings time(DST) changes may shift this alignment. | ✖ | Set to a valid time zone to mitigate DST shifting. If `initial_start` is set, subsequent executions of this policy are aligned on `initial_start`. |
| `if_not_exists` |BOOLEAN| `false` | ✖ | Set to `true` so this job fails with a warning rather than an error if a columnstore policy already exists on `hypertable` |
<!-- vale Google.Acronyms = YES -->
<!-- vale Vale.Spelling = YES -->
===== PAGE: https://docs.tigerdata.com/api/hypercore/hypertable_columnstore_settings/ =====
# timescaledb_information.hypertable_columnstore_settings
Retrieve information about the settings for all hypertables in the columnstore.
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To retrieve information about settings:
- **Show columnstore settings for all hypertables**:
sql SELECT * FROM timescaledb_information.hypertable_columnstore_settings;
Returns:
sql hypertable | measurements segmentby | orderby | "time" DESC compress_interval_length |
- **Retrieve columnstore settings for a specific hypertable**:
sql SELECT * FROM timescaledb_information.hypertable_columnstore_settings WHERE hypertable::TEXT LIKE 'metrics';
Returns:
sql hypertable | metrics segmentby | metric_id orderby | "time" compress_interval_length |
## Returns
|Name|Type| Description |
|-|-|-------------------------------------------------------------------------------------------|
|`hypertable`|`REGCLASS`| A hypertable which has the [columnstore enabled][compression_alter-table].|
|`segmentby`|`TEXT`| The list of columns used to segment data. |
|`orderby`|`TEXT`| List of columns used to order the data, along with ordering and NULL ordering information. |
|`compress_interval_length`|`TEXT`| Interval used for [rolling up chunks during compression][rollup-compression]. |
|`index`| `TEXT` | The sparse index details. |
===== PAGE: https://docs.tigerdata.com/api/hypercore/convert_to_columnstore/ =====
# convert_to_columnstore()
Manually convert a specific chunk in the hypertable rowstore to the columnstore.
Although `convert_to_columnstore` gives you more fine-grained control, best practice is to use
[`add_columnstore_policy`][add_columnstore_policy]. You can also add chunks to the columnstore at a specific time
[running the job associated with your columnstore policy][run-job] manually.
To move a chunk from the columnstore back to the rowstore, use [`convert_to_rowstore`][convert_to_rowstore].
Since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0)
## Samples
To convert a single chunk to columnstore:
sql CALL convert_to_columnstore('_timescaledb_internal._hyper_1_2_chunk');
## Arguments
| Name | Type | Default | Required | Description |
|----------------------|--|---------|--|----------------------------------------------------------------------------------------------------------------------------------------------------|
| `chunk` | REGCLASS | - |✔| Name of the chunk to add to the columnstore. |
| `if_not_columnstore` | BOOLEAN | `true` |✖| Set to `false` so this job fails with an error rather than a warning if `chunk` is already in the columnstore. |
| `recompress` | BOOLEAN | `false` |✖| Set to `true` to add a chunk that had more data inserted after being added to the columnstore. |
## Returns
Calls to `convert_to_columnstore` return:
| Column | Type | Description |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------|
| `chunk name` or `table` | REGCLASS or String | The name of the chunk added to the columnstore, or a table-like result set with zero or more rows. |
===== PAGE: https://docs.tigerdata.com/api/compression/decompress_chunk/ =====
# decompress_chunk()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/convert_to_rowstore/">convert_to_rowstore()</a>.
Before decompressing chunks, stop any compression policy on the hypertable you
are decompressing. You can use `SELECT alter_job(JOB_ID, scheduled => false);`
to prevent scheduled execution.
## Samples
Decompress a single chunk:
sql SELECT decompress_chunk('_timescaledb_internal._hyper_2_2_chunk');
Decompress all compressed chunks in a hypertable named `metrics`:
sql SELECT decompress_chunk(c, true) FROM show_chunks('metrics') c;
## Required arguments
|Name|Type|Description|
|---|---|---|
|`chunk_name`|`REGCLASS`|Name of the chunk to be decompressed.|
## Optional arguments
|Name|Type|Description|
|---|---|---|
|`if_compressed`|`BOOLEAN`|Disabling this will make the function error out on chunks that are not compressed. Defaults to true.|
## Returns
|Column|Type|Description|
|---|---|---|
|`decompress_chunk`|`REGCLASS`|Name of the chunk that was decompressed.|
===== PAGE: https://docs.tigerdata.com/api/compression/remove_compression_policy/ =====
# remove_compression_policy()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/remove_columnstore_policy/">remove_columnstore_policy()</a>.
If you need to remove the compression policy. To restart policy-based
compression you need to add the policy again. To view the policies that
already exist, see [informational views][informational-views].
## Samples
Remove the compression policy from the 'cpu' table:
sql SELECT remove_compression_policy('cpu');
Remove the compression policy from the 'cpu_weekly' continuous aggregate:
sql SELECT remove_compression_policy('cpu_weekly');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Name of the hypertable or continuous aggregate the policy should be removed from|
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `if_exists` | BOOLEAN | Setting to true causes the command to fail with a notice instead of an error if a compression policy does not exist on the hypertable. Defaults to false.|
===== PAGE: https://docs.tigerdata.com/api/compression/alter_table_compression/ =====
# ALTER TABLE (Compression)
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/alter_table/">ALTER TABLE (Hypercore)</a>.
'ALTER TABLE' statement is used to turn on compression and set compression
options.
By itself, this `ALTER` statement alone does not compress a hypertable. To do so, either create a
compression policy using the [add_compression_policy][add_compression_policy] function or manually
compress a specific hypertable chunk using the [compress_chunk][compress_chunk] function.
The syntax is:
sql ALTER TABLE SET (timescaledb.compress, timescaledb.compress_orderby = ' [ASC | DESC] [ NULLS { FIRST | LAST } ] [, ...]', timescaledb.compress_segmentby = ' [, ...]', timescaledb.compress_chunk_time_interval='interval' );
## Samples
Configure a hypertable that ingests device data to use compression. Here, if the hypertable
is often queried about a specific device or set of devices, the compression should be
segmented using the `device_id` for greater performance.
sql ALTER TABLE metrics SET (timescaledb.compress, timescaledb.compress_orderby = 'time DESC', timescaledb.compress_segmentby = 'device_id');
You can also specify compressed chunk interval without changing other
compression settings:
sql ALTER TABLE metrics SET (timescaledb.compress_chunk_time_interval = '24 hours');
To disable the previously set option, set the interval to 0:
sql ALTER TABLE metrics SET (timescaledb.compress_chunk_time_interval = '0');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`timescaledb.compress`|BOOLEAN|Enable or disable compression|
## Optional arguments
|Name|Type| Description |
|-|-|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`timescaledb.compress_orderby`|TEXT| Order used by compression, specified in the same way as the ORDER BY clause in a SELECT query. The default is the descending order of the hypertable's time column. |
|`timescaledb.compress_segmentby`|TEXT| Column list on which to key the compressed segments. An identifier representing the source of the data such as `device_id` or `tags_id` is usually a good candidate. The default is no `segment by` columns. |
|`timescaledb.compress_chunk_time_interval`|TEXT| EXPERIMENTAL: Set compressed chunk time interval used to roll chunks into. This parameter compresses every chunk, and then irreversibly merges it into a previous adjacent chunk if possible, to reduce the total number of chunks in the hypertable. Note that chunks will not be split up during decompression. It should be set to a multiple of the current chunk interval. This option can be changed independently of other compression settings and does not require the `timescaledb.compress` argument. |
## Parameters
|Name|Type|Description|
|-|-|-|
|`table_name`|TEXT|Hypertable that supports compression|
|`column_name`|TEXT|Column used to order by or segment by|
|`interval`|TEXT|Time interval used to roll compressed chunks into|
===== PAGE: https://docs.tigerdata.com/api/compression/hypertable_compression_stats/ =====
# hypertable_compression_stats()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/hypertable_columnstore_stats/">hypertable_columnstore_stats()</a>.
Get statistics related to hypertable compression. All sizes are in bytes.
For more information about using hypertables, including chunk size partitioning,
see the [hypertable section][hypertable-docs].
For more information about compression, see the
[compression section][compression-docs].
## Samples
sql SELECT * FROM hypertable_compression_stats('conditions');
-[ RECORD 1 ]------------------+------ total_chunks | 4 number_compressed_chunks | 1 before_compression_table_bytes | 8192 before_compression_index_bytes | 32768 before_compression_toast_bytes | 0 before_compression_total_bytes | 40960 after_compression_table_bytes | 8192 after_compression_index_bytes | 32768 after_compression_toast_bytes | 8192 after_compression_total_bytes | 49152 node_name |
Use `pg_size_pretty` get the output in a more human friendly format.
sql SELECT pg_size_pretty(after_compression_total_bytes) as total FROM hypertable_compression_stats('conditions');
-[ RECORD 1 ]--+------ total | 48 kB
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Hypertable to show statistics for|
## Returns
|Column|Type|Description|
|-|-|-|
|`total_chunks`|BIGINT|The number of chunks used by the hypertable|
|`number_compressed_chunks`|BIGINT|The number of chunks used by the hypertable that are currently compressed|
|`before_compression_table_bytes`|BIGINT|Size of the heap before compression|
|`before_compression_index_bytes`|BIGINT|Size of all the indexes before compression|
|`before_compression_toast_bytes`|BIGINT|Size the TOAST table before compression|
|`before_compression_total_bytes`|BIGINT|Size of the entire table (table+indexes+toast) before compression|
|`after_compression_table_bytes`|BIGINT|Size of the heap after compression|
|`after_compression_index_bytes`|BIGINT|Size of all the indexes after compression|
|`after_compression_toast_bytes`|BIGINT|Size the TOAST table after compression|
|`after_compression_total_bytes`|BIGINT|Size of the entire table (table+indexes+toast) after compression|
|`node_name`|TEXT|nodes on which the hypertable is located, applicable only to distributed hypertables|
Returns show `NULL` if the data is currently uncompressed.
===== PAGE: https://docs.tigerdata.com/api/compression/compress_chunk/ =====
# compress_chunk()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/convert_to_columnstore/">convert_to_columnstore()</a>.
The `compress_chunk` function is used for synchronous compression (or recompression, if necessary) of
a specific chunk. This is most often used instead of the
[`add_compression_policy`][add_compression_policy] function, when a user
wants more control over the scheduling of compression. For most users, we
suggest using the policy framework instead.
You can also compress chunks by
[running the job associated with your compression policy][run-job].
`compress_chunk` gives you more fine-grained control by
allowing you to target a specific chunk that needs compressing.
You can get a list of chunks belonging to a hypertable using the
[`show_chunks` function](https://docs.tigerdata.com/api/latest/hypertable/show_chunks/).
## Samples
Compress a single chunk.
sql SELECT compress_chunk('_timescaledb_internal._hyper_1_2_chunk');
## Required arguments
|Name|Type|Description|
|---|---|---|
| `chunk_name` | REGCLASS | Name of the chunk to be compressed|
## Optional arguments
|Name|Type|Description|
|---|---|---|
| `if_not_compressed` | BOOLEAN | Disabling this will make the function error out on chunks that are already compressed. Defaults to true.|
## Returns
|Column|Type|Description|
|---|---|---|
| `compress_chunk` | REGCLASS | Name of the chunk that was compressed|
===== PAGE: https://docs.tigerdata.com/api/compression/chunk_compression_stats/ =====
# chunk_compression_stats()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/chunk_columnstore_stats/">chunk_columnstore_stats()</a>.
Get chunk-specific statistics related to hypertable compression.
All sizes are in bytes.
This function shows the compressed size of chunks, computed when the
`compress_chunk` is manually executed, or when a compression policy processes
the chunk. An insert into a compressed chunk does not update the compressed
sizes. For more information about how to compute chunk sizes, see the
`chunks_detailed_size` section.
## Samples
sql SELECT * FROM chunk_compression_stats('conditions') ORDER BY chunk_name LIMIT 2;
-[ RECORD 1 ]------------------+---------------------- chunk_schema | _timescaledb_internal chunk_name | _hyper_1_1_chunk compression_status | Uncompressed before_compression_table_bytes | before_compression_index_bytes | before_compression_toast_bytes | before_compression_total_bytes | after_compression_table_bytes | after_compression_index_bytes | after_compression_toast_bytes | after_compression_total_bytes | node_name | -[ RECORD 2 ]------------------+---------------------- chunk_schema | _timescaledb_internal chunk_name | _hyper_1_2_chunk compression_status | Compressed before_compression_table_bytes | 8192 before_compression_index_bytes | 32768 before_compression_toast_bytes | 0 before_compression_total_bytes | 40960 after_compression_table_bytes | 8192 after_compression_index_bytes | 32768 after_compression_toast_bytes | 8192 after_compression_total_bytes | 49152 node_name |
Use `pg_size_pretty` get the output in a more human friendly format.
sql SELECT pg_size_pretty(after_compression_total_bytes) AS total FROM chunk_compression_stats('conditions') WHERE compression_status = 'Compressed';
-[ RECORD 1 ]--+------ total | 48 kB
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Name of the hypertable|
## Returns
|Column|Type|Description|
|-|-|-|
|`chunk_schema`|TEXT|Schema name of the chunk|
|`chunk_name`|TEXT|Name of the chunk|
|`compression_status`|TEXT|the current compression status of the chunk|
|`before_compression_table_bytes`|BIGINT|Size of the heap before compression (NULL if currently uncompressed)|
|`before_compression_index_bytes`|BIGINT|Size of all the indexes before compression (NULL if currently uncompressed)|
|`before_compression_toast_bytes`|BIGINT|Size the TOAST table before compression (NULL if currently uncompressed)|
|`before_compression_total_bytes`|BIGINT|Size of the entire chunk table (table+indexes+toast) before compression (NULL if currently uncompressed)|
|`after_compression_table_bytes`|BIGINT|Size of the heap after compression (NULL if currently uncompressed)|
|`after_compression_index_bytes`|BIGINT|Size of all the indexes after compression (NULL if currently uncompressed)|
|`after_compression_toast_bytes`|BIGINT|Size the TOAST table after compression (NULL if currently uncompressed)|
|`after_compression_total_bytes`|BIGINT|Size of the entire chunk table (table+indexes+toast) after compression (NULL if currently uncompressed)|
|`node_name`|TEXT|nodes on which the chunk is located, applicable only to distributed hypertables|
===== PAGE: https://docs.tigerdata.com/api/compression/add_compression_policy/ =====
# add_compression_policy()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/add_columnstore_policy/">add_columnstore_policy()</a>.
Allows you to set a policy by which the system compresses a chunk
automatically in the background after it reaches a given age.
Compression policies can only be created on hypertables or continuous aggregates
that already have compression enabled. To set `timescaledb.compress` and other
configuration parameters for hypertables, use the
[`ALTER TABLE`][compression_alter-table]
command. To enable compression on continuous aggregates, use the
[`ALTER MATERIALIZED VIEW`][compression_continuous-aggregate]
command. To view the policies that you set or the policies that already exist,
see [informational views][informational-views].
## Samples
Add a policy to compress chunks older than 60 days on the `cpu` hypertable.
sql SELECT add_compression_policy('cpu', compress_after => INTERVAL '60d');
Add a policy to compress chunks created 3 months before on the 'cpu' hypertable.
sql SELECT add_compression_policy('cpu', compress_created_before => INTERVAL '3 months');
Note above that when `compress_after` is used then the time data range
present in the partitioning time column is used to select the target
chunks. Whereas, when `compress_created_before` is used then the chunks
which were created 3 months ago are selected.
Add a compress chunks policy to a hypertable with an integer-based time column:
sql SELECT add_compression_policy('table_with_bigint_time', BIGINT '600000');
Add a policy to compress chunks of a continuous aggregate called `cpu_weekly`, that are
older than eight weeks:
sql SELECT add_compression_policy('cpu_weekly', INTERVAL '8 weeks');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`hypertable`|REGCLASS|Name of the hypertable or continuous aggregate|
|`compress_after`|INTERVAL or INTEGER|The age after which the policy job compresses chunks. `compress_after` is calculated relative to the current time, so chunks containing data older than `now - {compress_after}::interval` are compressed. This argument is mutually exclusive with `compress_created_before`.|
|`compress_created_before`|INTERVAL|Chunks with creation time older than this cut-off point are compressed. The cut-off point is computed as `now() - compress_created_before`. Defaults to `NULL`. Not supported for continuous aggregates yet. This argument is mutually exclusive with `compress_after`. |
The `compress_after` parameter should be specified differently depending
on the type of the time column of the hypertable or continuous aggregate:
* For hypertables with TIMESTAMP, TIMESTAMPTZ, and DATE time columns: the time
interval should be an INTERVAL type.
* For hypertables with integer-based timestamps: the time interval should be
an integer type (this requires the [integer_now_func][set_integer_now_func]
to be set).
## Optional arguments
<!-- vale Google.Acronyms = NO -->
<!-- vale Vale.Spelling = NO -->
|Name|Type|Description|
|-|-|-|
|`schedule_interval`|INTERVAL|The interval between the finish time of the last execution and the next start. Defaults to 12 hours for hyper tables with a `chunk_interval` >= 1 day and `chunk_interval / 2` for all other hypertables.|
|`initial_start`|TIMESTAMPTZ|Time the policy is first run. Defaults to NULL. If omitted, then the schedule interval is the interval from the finish time of the last execution to the next start. If provided, it serves as the origin with respect to which the next_start is calculated |
|`timezone`|TEXT|A valid time zone. If `initial_start` is also specified, subsequent executions of the compression policy are aligned on its initial start. However, daylight savings time (DST) changes may shift this alignment. Set to a valid time zone if this is an issue you want to mitigate. If omitted, UTC bucketing is performed. Defaults to `NULL`.|
|`if_not_exists`|BOOLEAN|Setting to `true` causes the command to fail with a warning instead of an error if a compression policy already exists on the hypertable. Defaults to false.|
<!-- vale Google.Acronyms = YES -->
<!-- vale Vale.Spelling = YES -->
===== PAGE: https://docs.tigerdata.com/api/compression/recompress_chunk/ =====
# recompress_chunk()
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/convert_to_columnstore/">convert_to_columnstore()</a>.
Recompresses a compressed chunk that had more data inserted after compression.
sql recompress_chunk(
chunk REGCLASS,
if_not_compressed BOOLEAN = false
)
You can also recompress chunks by
[running the job associated with your compression policy][run-job].
`recompress_chunk` gives you more fine-grained control by
allowing you to target a specific chunk.
`recompress_chunk` is deprecated since TimescaleDB v2.14 and will be removed in the future.
The procedure is now a wrapper which calls [`compress_chunk`](https://docs.tigerdata.com/api/latest/compression/compress_chunk/)
instead of it.
`recompress_chunk` is implemented as an SQL procedure and not a function. Call
the procedure with `CALL`. Don't use a `SELECT` statement.
`recompress_chunk` only works on chunks that have previously been compressed. To compress a
chunk for the first time, use [`compress_chunk`](https://docs.tigerdata.com/api/latest/compression/compress_chunk/).
## Samples
Recompress the chunk `timescaledb_internal._hyper_1_2_chunk`:
sql CALL recompress_chunk('_timescaledb_internal._hyper_1_2_chunk');
## Required arguments
|Name|Type|Description|
|-|-|-|
|`chunk`|`REGCLASS`|The chunk to be recompressed. Must include the schema, for example `_timescaledb_internal`, if it is not in the search path.|
## Optional arguments
|Name|Type|Description|
|-|-|-|
|`if_not_compressed`|`BOOLEAN`|If `true`, prints a notice instead of erroring if the chunk is already compressed. Defaults to `false`.|
## Troubleshooting
In TimescaleDB 2.6.0 and above, `recompress_chunk` is implemented as a procedure.
Previously, it was implemented as a function. If you are upgrading to
TimescaleDB 2.6.0 or above, the`recompress_chunk`
function could cause an error. For example, trying to run `SELECT
recompress_chunk(i.show_chunks, true) FROM...` gives the following error:
sql ERROR: recompress_chunk(regclass, boolean) is a procedure
To fix the error, use `CALL` instead of `SELECT`. You might also need to write a
procedure to replace the full functionality in your `SELECT` statement. For
example:
sql DO $$ DECLARE chunk regclass; BEGIN FOR chunk IN SELECT format('%I.%I', chunk_schema, chunk_name)::regclass FROM timescaledb_information.chunks WHERE is_compressed = true LOOP
RAISE NOTICE 'Recompressing %', chunk::text;
CALL recompress_chunk(chunk, true);
END LOOP; END $$;
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/saturating_add_pos/ =====
# saturating_add_pos()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/saturating_multiply/ =====
# saturating_mul()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/downsampling-intro/ =====
Downsample your data to visualize trends while preserving fewer data points.
Downsampling replaces a set of values with a much smaller set that is highly
representative of the original data. This is particularly useful for graphing
applications.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/saturating_sub/ =====
# saturating_sub()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gp_lttb/ =====
# gp_lttb()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/saturating-math-intro/ =====
The saturating math hyperfunctions help you perform saturating math on integers.
In saturating math, the final result is bounded. If the result of a normal
mathematical operation exceeds either the minimum or maximum bound, the result
of the corresponding saturating math operation is capped at the bound. For
example, `2 + (-3) = -1`. But in a saturating math function with a lower bound
of `0`, such as [`saturating_add_pos`](#saturating_add_pos), the result is `0`.
You can use saturating math to make sure your results don't overflow the allowed
range of integers, or to force a result to be greater than or equal to zero.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/lttb/ =====
# lttb()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/saturating_add/ =====
# saturating_add()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/asap_smooth/ =====
# asap_smooth()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/saturating_sub_pos/ =====
# saturating_sub_pos()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/timeline_agg/ =====
# state_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/state_timeline/ =====
# state_timeline()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/interpolated_state_timeline/ =====
# interpolated_state_timeline()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/interpolated_duration_in/ =====
# interpolated_duration_in()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/duration_in/ =====
# duration_in()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/intro/ =====
Given a system or value that switches between discrete states, track transitions
between the states. For example, you can use `state_agg` to create a state
of state transitions, or to calculate the durations of states. `state_agg`
extends the capabilities of [`compact_state_agg`][compact_state_agg].
`state_agg` is designed to work with a relatively small number of states. It
might not perform well on datasets where states are mostly distinct between
rows.
Because `state_agg` tracks more information, it uses more memory than
`compact_state_agg`. If you want to minimize memory use and don't need to query the
timestamps of state transitions, consider using [`compact_state_agg`][compact_state_agg]
instead.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/state_at/ =====
# state_at()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/interpolated_state_periods/ =====
# interpolated_state_periods()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/state_agg/state_periods/ =====
# state_periods()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_bucket_gapfill/interpolate/ =====
# interpolate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_bucket_gapfill/time_bucket_gapfill/ =====
# time_bucket_gapfill()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_bucket_gapfill/intro/ =====
Aggregate data by time interval, while filling in gaps of missing data.
`time_bucket_gapfill` works similarly to [`time_bucket`][time_bucket], but adds
gapfilling capabilities. The other functions in this group must be used in the
same query as `time_bucket_gapfill`. They control how missing values are treated.
`time_bucket_gapfill` must be used as a top-level expression in a query or
subquery. You cannot, for example, nest `time_bucket_gapfill` in another
function (such as `round(time_bucket_gapfill(...))`), or cast the result of the
gapfilling call. If you need to cast, you can use `time_bucket_gapfill` in a
subquery, and let the outer query do the type cast.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_bucket_gapfill/locf/ =====
# locf()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/tdigest/ =====
# tdigest()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/mean/ =====
# mean()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/approx_percentile/ =====
# approx_percentile()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/num_vals/ =====
# num_vals()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/intro/ =====
Estimate the value at a given percentile, or the percentile rank of a given
value, using the t-digest algorithm. This estimation is more memory- and
CPU-efficient than an exact calculation using Postgres's `percentile_cont` and
`percentile_disc` functions.
`tdigest` is one of two advanced percentile approximation aggregates provided in
TimescaleDB Toolkit. It is a space-efficient aggregation, and it provides more
accurate estimates at extreme quantiles than traditional methods.
`tdigest` is somewhat dependent on input order. If `tdigest` is run on the same
data arranged in different order, the results should be nearly equal, but they
are unlikely to be exact.
The other advanced percentile approximation aggregate is
[`uddsketch`][uddsketch], which produces stable estimates within a guaranteed
relative error. If you aren't sure which to use, try the default percentile
estimation method, [`percentile_agg`][percentile_agg]. It uses the `uddsketch`
algorithm with some sensible defaults.
For more information about percentile approximation algorithms, see the
[algorithms overview][algorithms].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/approx_percentile_rank/ =====
# approx_percentile_rank()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/tdigest/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n_by/min_n_by/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n_by/intro/ =====
Get the N smallest values from a column, with an associated piece of data per
value. For example, you can return an accompanying column, or the full row.
The `min_n_by()` functions give the same results as the regular SQL query
`SELECT ... ORDER BY ... LIMIT n`. But unlike the SQL query, they can be
composed and combined like other aggregate hyperfunctions.
To get the N largest values with accompanying data, use
[`max_n_by()`][max_n_by]. To get the N smallest values without accompanying
data, use [`min_n()`][min_n].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n_by/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n_by/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/live_ranges/ =====
# live_ranges()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/interpolate/ =====
# interpolate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/downtime/ =====
# downtime()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/interpolated_uptime/ =====
# interpolated_uptime()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/uptime/ =====
# uptime()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/num_gaps/ =====
# num_gaps()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/trim_to/ =====
# trim_to()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/intro/ =====
Given a series of timestamped heartbeats and a liveness interval, determine the
overall liveness of a system. This aggregate can be used to report total uptime
or downtime as well as report the time ranges where the system was live or dead.
It's also possible to combine multiple heartbeat aggregates to determine the
overall health of a service. For example, the heartbeat aggregates from a
primary and standby server could be combined to see if there was ever a window
where both machines were down at the same time.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/dead_ranges/ =====
# dead_ranges()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/live_at/ =====
# live_at()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/heartbeat_agg/ =====
# heartbeat_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/num_live_ranges/ =====
# num_live_ranges()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/heartbeat_agg/interpolated_downtime/ =====
# interpolated_downtime()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n/min_n/ =====
# min_n()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n/intro/ =====
Get the N smallest values from a column.
The `min_n()` functions give the same results as the regular SQL query `SELECT
... ORDER BY ... LIMIT n`. But unlike the SQL query, they can be composed and
combined like other aggregate hyperfunctions.
To get the N largest values, use [`max_n()`][max_n]. To get the N smallest
values with accompanying data, use [`min_n_by()`][min_n_by].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n/into_array/ =====
# into_array()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/min_n/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n_by/intro/ =====
Get the N largest values from a column, with an associated piece of data per
value. For example, you can return an accompanying column, or the full row.
The `max_n_by()` functions give the same results as the regular SQL query
`SELECT ... ORDER BY ... LIMIT n`. But unlike the SQL query, they can be
composed and combined like other aggregate hyperfunctions.
To get the N smallest values with accompanying data, use
[`min_n_by()`][min_n_by]. To get the N largest values without accompanying data,
use [`max_n()`][max_n].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n_by/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n_by/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n_by/max_n_by/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/kurtosis/ =====
# kurtosis()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/num_vals/ =====
# num_vals()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/intro/ =====
Perform common statistical analyses, such as calculating averages and standard
deviations, using this group of functions. These functions are similar to the
[Postgres statistical aggregates][pg-stats-aggs], but they include more
features and are easier to use in [continuous aggregates][caggs] and window
functions.
These functions work on one-dimensional data. To work with two-dimensional data,
for example to perform linear regression, see [the two-dimensional `stats_agg`
functions][stats_agg-2d].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/sum/ =====
# sum()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/stats_agg/ =====
# stats_agg() (one variable)
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/average/ =====
# average()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/stddev/ =====
# stddev()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/skewness/ =====
# skewness()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/rolling/ =====
# rolling()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-one-variable/variance/ =====
# variance()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/delta/ =====
# delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/idelta_left/ =====
# idelta_left()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/intro/ =====
Analyze data coming from gauges. Unlike counters, gauges can decrease as well as
increase.
If your value can only increase, use [`counter_agg`][counter_agg] instead to
appropriately account for resets.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/irate_right/ =====
# irate_right()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/extrapolated_delta/ =====
# extrapolated_delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/interpolated_delta/ =====
# interpolated_delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/irate_left/ =====
# irate_left()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/num_changes/ =====
# num_changes()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/interpolated_rate/ =====
# interpolated_rate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/intercept/ =====
# intercept()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/extrapolated_rate/ =====
# extrapolated_rate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/gauge_zero_time/ =====
# gauge_zero_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/corr/ =====
# corr()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/idelta_right/ =====
# idelta_right()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/gauge_agg/ =====
# gauge_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/rate/ =====
# rate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/with_bounds/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/time_delta/ =====
# time_delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/slope/ =====
# slope()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/gauge_agg/num_elements/ =====
# num_elements()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/open/ =====
# open()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/low/ =====
# low()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/candlestick/ =====
# candlestick()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/volume/ =====
# volume()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/candlestick_agg/ =====
# candlestick_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/low_time/ =====
# low_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/intro/ =====
Perform analysis of financial asset data. These specialized hyperfunctions make
it easier to write financial analysis queries that involve candlestick data.
They help you answer questions such as:
* What are the opening and closing prices of these stocks?
* When did the highest price occur for this stock?
This function group uses the [two-step aggregation][two-step-aggregation]
pattern. In addition to the usual aggregate function,
[`candlestick_agg`][candlestick_agg], it also includes the pseudo-aggregate
function `candlestick`. `candlestick_agg` produces a candlestick aggregate from
raw tick data, which can then be used with the accessor and rollup functions in
this group. `candlestick` takes pre-aggregated data and transforms it into the
same format that `candlestick_agg` produces. This allows you to use the
accessors and rollups with existing candlestick data.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/close_time/ =====
# close_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/close/ =====
# close()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/open_time/ =====
# open_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/vwap/ =====
# vwap()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/high/ =====
# high()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/candlestick_agg/high_time/ =====
# high_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/count_min_sketch/approx_count/ =====
# approx_count()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/count_min_sketch/intro/ =====
Count the number of times a value appears in a column, using the probabilistic
[`count-min sketch`][count-min-sketch] data structure and its associated
algorithms. For applications where a small error rate is tolerable, this can
result in huge savings in both CPU time and memory, especially for large
datasets.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/count_min_sketch/count_min_sketch/ =====
# count_min_sketch()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/topn/ =====
# topn()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/intro/ =====
Get the most common elements of a set and their relative frequency. The
estimation uses the [SpaceSaving][spacingsaving-algorithm] algorithm.
This group of functions contains two aggregate functions, which let you set the
cutoff for keeping track of a value in different ways. [`freq_agg`](#freq_agg)
allows you to specify a minimum frequency, and [`mcv_agg`](#mcv_agg) allows
you to specify the target number of values to keep.
To estimate the absolute number of times a value appears, use [`count_min_sketch`][count_min_sketch].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/min_frequency/ =====
# min_frequency()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/freq_agg/ =====
# freq_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/max_frequency/ =====
# max_frequency()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/freq_agg/mcv_agg/ =====
# mcv_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/compact_state_agg/interpolated_duration_in/ =====
# interpolated_duration_in()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/compact_state_agg/duration_in/ =====
# duration_in()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/compact_state_agg/intro/ =====
Given a system or value that switches between discrete states, aggregate the
amount of time spent in each state. For example, you can use the `compact_state_agg`
functions to track how much time a system spends in `error`, `running`, or
`starting` states.
`compact_state_agg` is designed to work with a relatively small number of states. It
might not perform well on datasets where states are mostly distinct between
rows.
If you need to track when each state is entered and exited, use the
[`state_agg`][state_agg] functions. If you need to track the liveness of a
system based on a heartbeat signal, consider using the
[`heartbeat_agg`][heartbeat_agg] functions.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/compact_state_agg/compact_state_agg/ =====
# compact_state_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/compact_state_agg/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/compact_state_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/hyperloglog/intro/ =====
Estimate the number of distinct values in a dataset. This is also known as
cardinality estimation. For large datasets and datasets with high cardinality
(many distinct values), this can be much more efficient in both CPU and memory
than an exact count using `count(DISTINCT)`.
The estimation uses the [`hyperloglog++`][hyperloglog] algorithm. If you aren't
sure what parameters to set for the `hyperloglog`, try using the
[`approx_count_distinct`][approx_count_distinct] aggregate, which sets some
reasonable default values.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/hyperloglog/distinct_count/ =====
# distinct_count()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/hyperloglog/hyperloglog/ =====
# hyperloglog()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/hyperloglog/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/hyperloglog/stderror/ =====
# stderror()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/hyperloglog/approx_count_distinct/ =====
# approx_count_distinct()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n/max_n/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n/intro/ =====
Get the N largest values from a column.
The `max_n()` functions give the same results as the regular SQL query `SELECT
... ORDER BY ... LIMIT n`. But unlike the SQL query, they can be composed and
combined like other aggregate hyperfunctions.
To get the N smallest values, use [`min_n()`][min_n]. To get the N largest
values with accompanying data, use [`max_n_by()`][max_n_by].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n/into_array/ =====
# into_array()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n/into_values/ =====
# into_values()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/max_n/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/interpolated_integral/ =====
# interpolated_integral()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/first_time/ =====
# first_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/intro/ =====
Calculate time-weighted summary statistics, such as averages (means) and
integrals. Time weighting is used when data is unevenly sampled over time. In
that case, a straight average gives misleading results, as it biases towards
more frequently sampled values.
For example, a sensor might silently spend long periods of time in a steady
state, and send data only when a significant change occurs. The regular mean
counts the steady-state reading as only a single point, whereas a time-weighted
mean accounts for the long period of time spent in the steady state. In essence,
the time-weighted mean takes an integral over time, then divides by the elapsed
time.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/last_val/ =====
# last_val()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/interpolated_average/ =====
# interpolated_average()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/average/ =====
# average()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/first_val/ =====
# first_val()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/time_weight/ =====
# time_weight()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/integral/ =====
# integral()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/time_weight/last_time/ =====
# last_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/sum_y_x/ =====
# sum_y() | sum_x()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/kurtosis_y_x/ =====
# kurtosis_y() | kurtosis_x()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/x_intercept/ =====
# x_intercept()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/determination_coeff/ =====
# determination_coeff()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/variance_y_x/ =====
# variance_y() | variance_x()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/skewness_y_x/ =====
# skewness_y() | skewness_x()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/num_vals/ =====
# num_vals()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/intro/ =====
Perform linear regression analysis, for example to calculate correlation
coefficient and covariance, on two-dimensional data. You can also calculate
common statistics, such as average and standard deviation, on each dimension
separately. These functions are similar to the [Postgres statistical
aggregates][pg-stats-aggs], but they include more features and are easier to use
in [continuous aggregates][caggs] and window functions. The linear regressions
are based on the standard least-squares fitting method.
These functions work on two-dimensional data. To work with one-dimensional data,
for example to calculate the average and standard deviation of a single
variable, see [the one-dimensional `stats_agg` functions][stats_agg-1d].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/stats_agg/ =====
# stats_agg() (two variables)
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/average_y_x/ =====
# average_y() | average_x()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/intercept/ =====
# intercept()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/stddev_y_x/ =====
# stddev_y() | stddev_x()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/corr/ =====
# corr()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/covariance/ =====
# covariance()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/rolling/ =====
# rolling()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/stats_agg-two-variables/slope/ =====
# slope()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/uddsketch/ =====
# uddsketch()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/percentile_agg/ =====
# percentile_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/mean/ =====
# mean()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/approx_percentile/ =====
# approx_percentile()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/num_vals/ =====
# num_vals()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/intro/ =====
Estimate the value at a given percentile, or the percentile rank of a given
value, using the UddSketch algorithm. This estimation is more memory- and
CPU-efficient than an exact calculation using Postgres's `percentile_cont` and
`percentile_disc` functions.
`uddsketch` is one of two advanced percentile approximation aggregates provided
in TimescaleDB Toolkit. It produces stable estimates within a guaranteed
relative error.
The other advanced percentile approximation aggregate is [`tdigest`][tdigest],
which is more accurate at extreme quantiles, but is somewhat dependent on input
order.
If you aren't sure which aggregate to use, try the default percentile estimation
method, [`percentile_agg`][percentile_agg]. It uses the `uddsketch` algorithm
with some sensible defaults.
For more information about percentile approximation algorithms, see the
[algorithms overview][algorithms].
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/approx_percentile_rank/ =====
# approx_percentile_rank()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/error/ =====
# error()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/rollup/ =====
# rollup()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/uddsketch/approx_percentile_array/ =====
# approx_percentile_array()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/delta/ =====
# delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/idelta_left/ =====
# idelta_left()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/first_time/ =====
# first_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/intro/ =====
Analyze data whose values are designed to monotonically increase, and where any
decreases are treated as resets. The `counter_agg` functions simplify this task,
which can be difficult to do in pure SQL.
If it's possible for your readings to decrease as well as increase, use [`gauge_agg`][gauge_agg]
instead.
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/irate_right/ =====
# irate_right()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/last_val/ =====
# last_val()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/extrapolated_delta/ =====
# extrapolated_delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/interpolated_delta/ =====
# interpolated_delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/counter_zero_time/ =====
# counter_zero_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/irate_left/ =====
# irate_left()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/num_changes/ =====
# num_changes()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/interpolated_rate/ =====
# interpolated_rate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/intercept/ =====
# intercept()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/extrapolated_rate/ =====
# extrapolated_rate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/rollup/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/corr/ =====
# corr()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/idelta_right/ =====
# idelta_right()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/first_val/ =====
# first_val()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/num_resets/ =====
# num_resets()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/last_time/ =====
# last_time()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/counter_agg/ =====
# counter_agg()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/rate/ =====
# rate()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/with_bounds/ =====
# API Reference
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/time_delta/ =====
# time_delta()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/slope/ =====
# slope()
===== PAGE: https://docs.tigerdata.com/api/_hyperfunctions/counter_agg/num_elements/ =====
# num_elements()
===== PAGE: https://docs.tigerdata.com/migrate/dual-write-and-backfill/dual-write-from-timescaledb/ =====
# Migrate from TimescaleDB using dual-write and backfill
This document provides detailed step-by-step instructions to migrate data using
the [dual-write and backfill][dual-write-and-backfill] migration method from a
source database which is using TimescaleDB to Tiger Cloud.
In the context of migrations, your existing production database is referred to
as the SOURCE database, the Tiger Cloud service that you are migrating your data to is the TARGET.
In detail, the migration process consists of the following steps:
1. Set up a target Tiger Cloud service.
1. Modify the application to write to a secondary database.
1. Migrate schema and relational data from source to target.
1. Start the application in dual-write mode.
1. Determine the completion point `T`.
1. Backfill time-series data from source to target.
1. Enable background jobs (policies) in the target database.
1. Validate that all data is present in target database.
1. Validate that target database can handle production load.
1. Switch application to treat target database as primary (potentially
continuing to write into source database, as a backup).
If you get stuck, you can get help by either opening a support request, or take
your issue to the `#migration` channel in the [community slack](https://slack.timescale.com/),
where the developers of this migration method are there to help.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## 1. Set up a target database instance in Tiger Cloud
[Create a Tiger Cloud service][create-service].
If you intend on migrating more than 400 GB, open a support request to
ensure that enough disk is pre-provisioned on your Tiger Cloud service.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## 2. Modify the application to write to the target database
How exactly to do this is dependent on the language that your application is
written in, and on how exactly your ingestion and application function. In the
simplest case, you simply execute two inserts in parallel. In the general case,
you must think about how to handle the failure to write to either the source or
target database, and what mechanism you want to or can build to recover from
such a failure.
Should your time-series data have foreign-key references into a plain table,
you must ensure that your application correctly maintains the foreign key
relations. If the referenced column is a `*SERIAL` type, the same row inserted
into the source and target _may not_ obtain the same autogenerated id. If this
happens, the data backfilled from the source to the target is internally
inconsistent. In the best case it causes a foreign key violation, in the worst
case, the foreign key constraint is maintained, but the data references the
wrong foreign key. To avoid these issues, best practice is to follow
[live migration].
You may also want to execute the same read queries on the source and target
database to evaluate the correctness and performance of the results which the
queries deliver. Bear in mind that the target database spends a certain amount
of time without all data being present, so you should expect that the results
are not the same for some period (potentially a number of days).
## 3. Set up schema and migrate relational data to target database
This section leverages `pg_dumpall` and `pg_dump` to migrate the roles and
relational schema that you are using in the source database to the target
database.
The PostgresSQL versions of the source and target databases can be of different
versions, as long as the target version is greater than that of the source.
The version of TimescaleDB used in both databases must be exactly the same.
For the sake of convenience, connection strings to the source and target
databases are referred to as `source` and `target` throughout this guide.
This can be set in your shell, for example:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://:@:/"
### 3a. Dump the database roles from the source database
bash pg_dumpall -d "source" \ -l database name \ --quote-all-identifiers \ --roles-only \ --file=roles.sql
Tiger Cloud services do not support roles with superuser access. If your SQL
dump includes roles that have such permissions, you'll need to modify the file
to be compliant with the security model.
You can use the following `sed` command to remove unsupported statements and
permissions from your roles.sql file:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "tsdbadmin";/d' \ -e '/ALTER ROLE "tsdbadmin"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
This command works only with the GNU implementation of sed (sometimes referred
to as gsed). For the BSD implementation (the default on macOS), you need to
add an extra argument to change the `-i` flag to `-i ''`.
To check the sed version, you can use the command `sed --version`. While the
GNU version explicitly identifies itself as GNU, the BSD version of sed
generally doesn't provide a straightforward --version flag and simply outputs
an "illegal option" error.
A brief explanation of this script is:
- `CREATE ROLE "postgres"`; and `ALTER ROLE "postgres"`: These statements are
removed because they require superuser access, which is not supported
by Timescale.
- `(NO)SUPERUSER` | `(NO)REPLICATION` | `(NO)BYPASSRLS`: These are permissions
that require superuser access.
- `GRANTED BY role_specification`: The GRANTED BY clause can also have permissions that
require superuser access and should therefore be removed. Note: according to the
TimescaleDB documentation, the GRANTOR in the GRANTED BY clause must be the
current user, and this clause mainly serves the purpose of SQL compatibility.
Therefore, it's safe to remove it.
### 3b. Dump all plain tables and the TimescaleDB catalog from the source database
bash pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --exclude-table-data='_timescaledb_internal.*' \ --file=dump.sql
- `--exclude-table-data='_timescaledb_internal.*'` dumps the structure of the
hypertable chunks, but not the data. This creates empty chunks on the target,
ready for the backfill process.
- `--no-tablespaces` is required because Tiger Cloud does not support
tablespaces other than the default. This is a known limitation.
- `--no-owner` is required because Tiger Cloud's `tsdbadmin` user is not a
superuser and cannot assign ownership in all cases. This flag means that
everything is owned by the user used to connect to the target, regardless of
ownership in the source. This is a known limitation.
- `--no-privileges` is required because the `tsdbadmin` user for your Tiger Cloud service is not a
superuser and cannot assign privileges in all cases. This flag means that
privileges assigned to other users must be reassigned in the target database
as a manual clean-up task. This is a known limitation.
If the source database has the TimescaleDB extension installed in a schema
other than "public" it causes issues on Tiger Cloud. Edit the dump file to remove
any references to the non-public schema. The extension must be in the "public"
schema on Tiger Cloud. This is a known limitation.
### 3c. Ensure that the correct TimescaleDB version is installed
It is very important that the version of the TimescaleDB extension is the same
in the source and target databases. This requires upgrading the TimescaleDB
extension in the source database before migrating.
You can determine the version of TimescaleDB in the target database with the
following command:
bash psql target -c "SELECT extversion FROM pg_extension WHERE extname = 'timescaledb';"
To update the TimescaleDB extension in your source database, first ensure that
the desired version is installed from your package repository. Then you can
upgrade the extension with the following query:
bash psql source -c "ALTER EXTENSION timescaledb UPDATE TO '';"
For more information and guidance, consult the [Upgrade TimescaleDB] page.
### 3d. Load the roles and schema into the target database, and turn off all background jobs
bash psql -X -d "target" \ -v ON_ERROR_STOP=1 \ --echo-errors \ -f roles.sql \ -c 'select public.timescaledb_pre_restore();' \ -f dump.sql \ -f - <<'EOF' begin; select public.timescaledb_post_restore();
-- disable all background jobs select public.alter_job(id::integer, scheduled=>false) from _timescaledb_config.bgw_job where id >= 1000 ; commit; EOF
Background jobs are turned off to prevent continuous aggregate refresh jobs
from updating the continuous aggregate with incomplete/missing data.
The continuous aggregates must be manually updated in the required range once
the migration is complete.
## 4. Start application in dual-write mode
With the target database set up, your application can now be started in
dual-write mode.
## 5. Determine the completion point `T`
After dual-writes have been executing for a while, the target hypertable
contains data in three time ranges: missing writes, late-arriving data, and the
"consistency" range
<img
class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/hypertable_backfill_consistency.png"
alt="Hypertable dual-write ranges"
/>
### Missing writes
If the application is made up of multiple writers, and these writers did not
all simultaneously start writing into the target hypertable, there is a period
of time in which not all writes have made it into the target hypertable. This
period starts when the first writer begins dual-writing, and ends when the last
writer begins dual-writing.
### Late-arriving data
Some applications have late-arriving data: measurements which have a timestamp
in the past, but which weren't written yet (for example from devices which had
intermittent connectivity issues). The window of late-arriving data is between
the present moment, and the maximum lateness.
### Consistency range
The consistency range is the range in which there are no missing writes, and in
which all data has arrived, that is between the end of the missing writes range
and the beginning of the late-arriving data range.
The length of these ranges is defined by the properties of the application,
there is no one-size-fits-all way to determine what they are.
### Completion point
The completion point `T` is an arbitrarily chosen time in the consistency range.
It is the point in time to which data can safely be backfilled, ensuring that
there is no data loss.
The completion point should be expressed as the type of the `time` column of
the hypertables to be backfilled. For instance, if you're using a `TIMESTAMPTZ`
`time` column, then the completion point may be `2023-08-10T12:00:00.00Z`. If
you're using a `BIGINT` column it may be `1695036737000`.
If you are using a mix of types for the `time` columns of your hypertables, you
must determine the completion point for each type individually, and backfill
each set of hypertables with the same type independently from those of other
types.
## 6. Backfill data from source to target
The simplest way to backfill from TimescaleDB, is to use the
[timescaledb-backfill][timescaledb-backfill] backfill tool. It efficiently
copies hypertables with the columnstore or compression enabled, and data stored in continuous
aggregates from one database to another.
`timescaledb-backfill` performs best when executed from a machine located close
to the target database. The ideal scenario is an EC2 instance located in the
same region as the Tiger Cloud service. Use a Linux-based distribution on x86_64.
With the instance that will run the timescaledb-backfill ready, log in and
download timescaledb-backfill:
bash wget https://assets.timescale.com/releases/timescaledb-backfill-x86_64-linux.tar.gz tar xf timescaledb-backfill-x86_64-linux.tar.gz sudo mv timescaledb-backfill /usr/local/bin/
Running timescaledb-backfill is a four-phase process:
1. Stage:
This step prepares metadata about the data to be copied in the target
database. On completion, it outputs the number of chunks to be copied.
bash timescaledb-backfill stage --source source --target target --until
1. Copy:
This step copies data on a chunk-by-chunk basis from the source to the
target. If it fails or is interrupted, it can safely be resumed. You should
be aware of the `--parallelism` parameter, which dictates how many
connections are used to copy data. The default is 8, which, depending on the
size of your source and target databases, may be too high or too low. You
should closely observe the performance of your source database and tune this
parameter accordingly.
bash timescaledb-backfill copy --source source --target target
1. Verify (optional):
This step verifies that the data in the source and target is the same. It
reads all the data on a chunk-by-chunk basis from both the source and target
databases, so may also impact the performance of your source database.
bash timescaledb-backfill verify --source source --target target
1. Clean:
This step removes the metadata which was created in the target database by
the `stage` command.
bash timescaledb-backfill clean --target target
## 7. Enable background jobs in target database
Before enabling the jobs, verify if any continuous aggregate refresh policies
exist.
bash psql -d target \ -c "select count(*) from _timescaledb_config.bgw_job where proc_name = 'policy_refresh_continuous_aggregate'"
If they do exist, refresh the continuous aggregates before re-enabling the
jobs. The timescaledb-backfill tool provides a utility to do this:
bash timescaledb-backfill refresh-caggs --source source --target target
Once the continuous aggregates are updated, you can re-enable all background
jobs:
bash psql -d target -f - <true) from _timescaledb_config.bgw_job where id >= 1000; EOF
If the backfill process took long enough for there to be significant
retention/compression work to be done, it may be preferable to run the jobs
manually to have control over the pacing of the work until it is caught up
before re-enabling.
## 8. Validate that all data is present in target database
Now that all data has been backfilled, and the application is writing data to
both databases, the contents of both databases should be the same. How exactly
this should best be validated is dependent on your application.
If you are reading from both databases in parallel for every production query,
you could consider adding an application-level validation that both databases
are returning the same data.
Another option is to compare the number of rows in the source and target
tables, although this reads all data in the table which may have an impact on
your production workload. `timescaledb-backfill`'s `verify` subcommand performs
this check.
Another option is to run `ANALYZE` on both the source and target tables and
then look at the `reltuples` column of the `pg_class` table on a chunk-by-chunk
basis. The result is not exact, but doesn't require reading all rows from the
table.
## 9. Validate that target database can handle production load
Now that dual-writes have been in place for a while, the target database should
be holding up to production write traffic. Now would be the right time to
determine if the target database can serve all production traffic (both reads
_and_ writes). How exactly this is done is application-specific and up to you
to determine.
## 10. Switch production workload to target database
Once you've validated that all the data is present, and that the target
database can handle the production workload, the final step is to switch to the
target database as your primary. You may want to continue writing to the source
database for a period, until you are certain that the target database is
holding up to all production traffic.
===== PAGE: https://docs.tigerdata.com/migrate/dual-write-and-backfill/dual-write-from-other/ =====
# Migrate from non-Postgres using dual-write and backfill
This document provides detailed step-by-step instructions to migrate data using
the [dual-write and backfill][dual-write-and-backfill] migration method from a
source database which is not using Postgres to Tiger Cloud.
In the context of migrations, your existing production database is referred to
as the SOURCE database, the Tiger Cloud service that you are migrating your data to is the TARGET.
In detail, the migration process consists of the following steps:
1. Set up a target Tiger Cloud service.
1. Modify the application to write to a secondary database.
1. Set up schema and migrate relational data to target database.
1. Start the application in dual-write mode.
1. Determine the completion point `T`.
1. Backfill time-series data from source to target.
1. Enable background jobs (policies) in the target database.
1. Validate that all data is present in target database.
1. Validate that target database can handle production load.
1. Switch application to treat target database as primary (potentially
continuing to write into source database, as a backup).
If you get stuck, you can get help by either opening a support request, or take
your issue to the `#migration` channel in the [community slack](https://slack.timescale.com/),
where the developers of this migration method are there to help.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## 1. Set up a target database instance in Tiger Cloud
[Create a Tiger Cloud service][create-service].
If you intend on migrating more than 400 GB, open a support request to
ensure that enough disk is pre-provisioned on your Tiger Cloud service.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## 2. Modify the application to write to the target database
How exactly to do this is dependent on the language that your application is
written in, and on how exactly your ingestion and application function. In the
simplest case, you simply execute two inserts in parallel. In the general case,
you must think about how to handle the failure to write to either the source or
target database, and what mechanism you want to or can build to recover from
such a failure.
Should your time-series data have foreign-key references into a plain table,
you must ensure that your application correctly maintains the foreign key
relations. If the referenced column is a `*SERIAL` type, the same row inserted
into the source and target _may not_ obtain the same autogenerated id. If this
happens, the data backfilled from the source to the target is internally
inconsistent. In the best case it causes a foreign key violation, in the worst
case, the foreign key constraint is maintained, but the data references the
wrong foreign key. To avoid these issues, best practice is to follow
[live migration].
You may also want to execute the same read queries on the source and target
database to evaluate the correctness and performance of the results which the
queries deliver. Bear in mind that the target database spends a certain amount
of time without all data being present, so you should expect that the results
are not the same for some period (potentially a number of days).
## 3. Set up schema and migrate relational data to target database
Describing exactly how to migrate your data from every possible source is not
feasible, instead we tell you what needs to be done, and hope that you find
resources to support you.
In this step, you need to prepare the database to receive time-series data
which is dual-written from your application. If you're migrating from another
time-series database then you only need to worry about setting up the schema
for the hypertables which will contain time-series data. For some background on
what hypertables are, consult the [tables and hypertables] section of the
getting started guide.
If you're migrating from a relational database containing both relational and
time-series data, you also need to set up the schema for the relational data,
and copy it over in this step, excluding any of the time-series data. The
time-series data is backfilled in a subsequent step.
Our assumption in the dual-write and backfill scenario is that the volume of
relational data is either very small in relation to the time-series data, so
that it is not problematic to briefly stop your production application while
you copy the relational data, or that it changes infrequently, so you can get a
snapshot of the relational metadata without stopping your application. If this
is not the case for your application, you should reconsider using the
dual-write and backfill method.
If you're planning on experimenting with continuous aggregates, we recommend
that you first complete the dual-write and backfill migration, and only then
create continuous aggregates on the data. If you create continuous aggregates
on a hypertable before backfilling data into it, you must refresh the
continuous aggregate over the whole time range to ensure that there are no
holes in the aggregated data.
## 4. Start application in dual-write mode
With the target database set up, your application can now be started in
dual-write mode.
## 5. Determine the completion point `T`
After dual-writes have been executing for a while, the target hypertable
contains data in three time ranges: missing writes, late-arriving data, and the
"consistency" range
<img
class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/hypertable_backfill_consistency.png"
alt="Hypertable dual-write ranges"
/>
### Missing writes
If the application is made up of multiple writers, and these writers did not
all simultaneously start writing into the target hypertable, there is a period
of time in which not all writes have made it into the target hypertable. This
period starts when the first writer begins dual-writing, and ends when the last
writer begins dual-writing.
### Late-arriving data
Some applications have late-arriving data: measurements which have a timestamp
in the past, but which weren't written yet (for example from devices which had
intermittent connectivity issues). The window of late-arriving data is between
the present moment, and the maximum lateness.
### Consistency range
The consistency range is the range in which there are no missing writes, and in
which all data has arrived, that is between the end of the missing writes range
and the beginning of the late-arriving data range.
The length of these ranges is defined by the properties of the application,
there is no one-size-fits-all way to determine what they are.
### Completion point
The completion point `T` is an arbitrarily chosen time in the consistency range.
It is the point in time to which data can safely be backfilled, ensuring that
there is no data loss.
The completion point should be expressed as the type of the `time` column of
the hypertables to be backfilled. For instance, if you're using a `TIMESTAMPTZ`
`time` column, then the completion point may be `2023-08-10T12:00:00.00Z`. If
you're using a `BIGINT` column it may be `1695036737000`.
If you are using a mix of types for the `time` columns of your hypertables, you
must determine the completion point for each type individually, and backfill
each set of hypertables with the same type independently from those of other
types.
## 6. Backfill data from source to target
Dump the data from your source database on a per-table basis into CSV format,
and restore those CSVs into the target database using the
`timescaledb-parallel-copy` tool.
### 6a. Determine the time range of data to be copied
Determine the window of data that to be copied from the source database to the
target. Depending on the volume of data in the source table, it may be sensible
to split the source table into multiple chunks of data to move independently.
In the following steps, this time range is called `<start>` and `<end>`.
Usually the `time` column is of type `timestamp with time zone`, so the values
of `<start>` and `<end>` must be something like `2023-08-01T00:00:00Z`. If the
`time` column is not a `timestamp with time zone` then the values of `<start>`
and `<end>` must be the correct type for the column.
If you intend to copy all historic data from the source table, then the value
of `<start>` can be `'-infinity'`, and the `<end>` value is the value of the
completion point `T` that you determined.
### 6b. Remove overlapping data in the target
The dual-write process may have already written data into the target database
in the time range that you want to move. In this case, the dual-written data
must be removed. This can be achieved with a `DELETE` statement, as follows:
bash psql target -c "DELETE FROM WHERE time >= AND time < );"
The BETWEEN operator is inclusive of both the start and end ranges, so it is
not recommended to use it.
### 6d. Copy the data
Refer to the documentation for your source database in order to determine how
to dump a table into a CSV. You must ensure the CSV contains only data before
the completion point. You should apply this filter when dumping the data from
the source database.
You can load a CSV file into a hypertable using `timescaledb-parallel-copy` as
follows. Set the number of workers equal to the number of CPU cores in your
target database:
timescaledb-parallel-copy \ --connection target \ --table \ --workers 8 \ --file
The above command is not transactional. If there is a connection issue, or some
other issue which causes it to stop copying, the partially copied rows must be
removed from the target (using the instructions in step 6b above), and then the
copy can be restarted.
### 6e. Enable policies that compress data in the target hypertable
In the following command, replace `<hypertable>` with the fully qualified table
name of the target hypertable, for example `public.metrics`:
bash psql -d target -f -v hypertable= - <<'EOF' SELECT public.alter_job(j.id, scheduled=>true) FROM _timescaledb_config.bgw_job j JOIN _timescaledb_catalog.hypertable h ON h.id = j.hypertable_id WHERE j.proc_schema IN ('_timescaledb_internal', '_timescaledb_functions') AND j.proc_name = 'policy_compression' AND j.id >= 1000 AND format('%I.%I', h.schema_name, h.table_name)::text::regclass = :'hypertable'::text::regclass; EOF
## 7. Validate that all data is present in target database
Now that all data has been backfilled, and the application is writing data to
both databases, the contents of both databases should be the same. How exactly
this should best be validated is dependent on your application.
If you are reading from both databases in parallel for every production query,
you could consider adding an application-level validation that both databases
are returning the same data.
Another option is to compare the number of rows in the source and target
tables, although this reads all data in the table which may have an impact on
your production workload.
## 8. Validate that target database can handle production load
Now that dual-writes have been in place for a while, the target database should
be holding up to production write traffic. Now would be the right time to
determine if the target database can serve all production traffic (both reads
_and_ writes). How exactly this is done is application-specific and up to you
to determine.
## 9. Switch production workload to target database
Once you've validated that all the data is present, and that the target
database can handle the production workload, the final step is to switch to the
target database as your primary. You may want to continue writing to the source
database for a period, until you are certain that the target database is
holding up to all production traffic.
===== PAGE: https://docs.tigerdata.com/migrate/dual-write-and-backfill/dual-write-from-postgres/ =====
# Migrate from Postgres using dual-write and backfill
This document provides detailed step-by-step instructions to migrate data using
the [dual-write and backfill][dual-write-and-backfill] migration method from a
source database which is using Postgres to Tiger Cloud.
In the context of migrations, your existing production database is referred to
as the SOURCE database, the Tiger Cloud service that you are migrating your data to is the TARGET.
In detail, the migration process consists of the following steps:
1. Set up a target Tiger Cloud service.
1. Modify the application to write to the target database.
1. Migrate schema and relational data from source to target.
1. Start the application in dual-write mode.
1. Determine the completion point `T`.
1. Backfill time-series data from source to target.
1. Validate that all data is present in target database.
1. Validate that target database can handle production load.
1. Switch application to treat target database as primary (potentially
continuing to write into source database, as a backup).
If you get stuck, you can get help by either opening a support request, or take
your issue to the `#migration` channel in the [community slack](https://slack.timescale.com/),
where the developers of this migration method are there to help.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## 1. Set up a target database instance in Tiger Cloud
[Create a Tiger Cloud service][create-service].
If you intend on migrating more than 400 GB, open a support request to
ensure that enough disk is pre-provisioned on your Tiger Cloud service.
You can open a support request directly from [Tiger Cloud Console][support-link],
or by email to [support@tigerdata.com](mailto:support@tigerdata.com).
## 2. Modify the application to write to the target database
How exactly to do this is dependent on the language that your application is
written in, and on how exactly your ingestion and application function. In the
simplest case, you simply execute two inserts in parallel. In the general case,
you must think about how to handle the failure to write to either the source or
target database, and what mechanism you want to or can build to recover from
such a failure.
Should your time-series data have foreign-key references into a plain table,
you must ensure that your application correctly maintains the foreign key
relations. If the referenced column is a `*SERIAL` type, the same row inserted
into the source and target _may not_ obtain the same autogenerated id. If this
happens, the data backfilled from the source to the target is internally
inconsistent. In the best case it causes a foreign key violation, in the worst
case, the foreign key constraint is maintained, but the data references the
wrong foreign key. To avoid these issues, best practice is to follow
[live migration].
You may also want to execute the same read queries on the source and target
database to evaluate the correctness and performance of the results which the
queries deliver. Bear in mind that the target database spends a certain amount
of time without all data being present, so you should expect that the results
are not the same for some period (potentially a number of days).
## 3. Set up schema and migrate relational data to target database
You would probably like to convert some of your large tables which contain
time-series data into hypertables. This step consists of identifying those
tables, excluding their data from the database dump, copying the database
schema and tables, and setting up the time-series tables as hypertables. The
data is backfilled into these hypertables in a subsequent step.
For the sake of convenience, connection strings to the source and target
databases are referred to as `source` and `target` throughout this guide.
This can be set in your shell, for example:
bash export SOURCE="postgres://:@:/" export TARGET="postgres://:@:/"
### 3a. Dump the database roles from the source database
bash pg_dumpall -d "source" \ -l database name \ --quote-all-identifiers \ --roles-only \ --file=roles.sql
Tiger Cloud services do not support roles with superuser access. If your SQL
dump includes roles that have such permissions, you'll need to modify the file
to be compliant with the security model.
You can use the following `sed` command to remove unsupported statements and
permissions from your roles.sql file:
bash sed -i -E \ -e '/CREATE ROLE "postgres";/d' \ -e '/ALTER ROLE "postgres"/d' \ -e '/CREATE ROLE "tsdbadmin";/d' \ -e '/ALTER ROLE "tsdbadmin"/d' \ -e 's/(NO)*SUPERUSER//g' \ -e 's/(NO)*REPLICATION//g' \ -e 's/(NO)BYPASSRLS//g' \ -e 's/GRANTED BY "[^"]"//g' \ roles.sql
This command works only with the GNU implementation of sed (sometimes referred
to as gsed). For the BSD implementation (the default on macOS), you need to
add an extra argument to change the `-i` flag to `-i ''`.
To check the sed version, you can use the command `sed --version`. While the
GNU version explicitly identifies itself as GNU, the BSD version of sed
generally doesn't provide a straightforward --version flag and simply outputs
an "illegal option" error.
A brief explanation of this script is:
- `CREATE ROLE "postgres"`; and `ALTER ROLE "postgres"`: These statements are
removed because they require superuser access, which is not supported
by Timescale.
- `(NO)SUPERUSER` | `(NO)REPLICATION` | `(NO)BYPASSRLS`: These are permissions
that require superuser access.
- `GRANTED BY role_specification`: The GRANTED BY clause can also have permissions that
require superuser access and should therefore be removed. Note: according to the
TimescaleDB documentation, the GRANTOR in the GRANTED BY clause must be the
current user, and this clause mainly serves the purpose of SQL compatibility.
Therefore, it's safe to remove it.
### 3b. Determine which tables to convert to hypertables
Ideal candidates for hypertables are large tables containing
[time-series data].
This is usually data with some form of timestamp value (`TIMESTAMPTZ`,
`TIMESTAMP`, `BIGINT`, `INT` etc.) as the primary dimension, and some other
measurement values.
### 3c. Dump all tables from the source database, excluding data from hypertable candidates
pg_dump -d "source" \ --format=plain \ --quote-all-identifiers \ --no-tablespaces \ --no-owner \ --no-privileges \ --exclude-table-data= \ --file=dump.sql
- `--exclude-table-data` is used to exclude all data from hypertable
candidates. You can either specify a table pattern, or specify
`--exclude-table-data` multiple times, once for each table to be converted.
- `--no-tablespaces` is required because Tiger Cloud does not support
tablespaces other than the default. This is a known limitation.
- `--no-owner` is required because Tiger Cloud's `tsdbadmin` user is not a
superuser and cannot assign ownership in all cases. This flag means that
everything is owned by the user used to connect to the target, regardless of
ownership in the source. This is a known limitation.
- `--no-privileges` is required because the `tsdbadmin` user for your Tiger Cloud service is not a
superuser and cannot assign privileges in all cases. This flag means that
privileges assigned to other users must be reassigned in the target database
as a manual clean-up task. This is a known limitation.
### 3d. Load the roles and schema into the target database
psql -X -d "target" \ -v ON_ERROR_STOP=1 \ --echo-errors \ -f roles.sql \ -f dump.sql
### 3e. Convert the plain tables to hypertables, optionally compress data in the columnstore
For each table which should be converted to a hypertable in the target
database, execute:
sql SELECT create_hypertable('', by_range('
The `by_range` dimension builder is an addition to TimescaleDB
2.13. For simpler cases, like this one, you can also create the
hypertable using the old syntax:
sql SELECT create_hypertable('', '
For more information about the options which you can pass to
`create_hypertable`, consult the [create_table API reference]. For
more information about hypertables in general, consult the
[hypertable documentation].
You may also wish to consider taking advantage of some of Tiger Cloud's killer
features, such as:
- [retention policies] to automatically drop unneeded data
- [tiered storage] to automatically move data to Tiger Cloud's low-cost bottomless object storage tier
- [hypercore] to reduce the size of your hypertables by compressing data in the columnstore
- [continuous aggregates] to write blisteringly fast aggregate queries on your data
## 4. Start application in dual-write mode
With the target database set up, your application can now be started in
dual-write mode.
## 5. Determine the completion point `T`
After dual-writes have been executing for a while, the target hypertable
contains data in three time ranges: missing writes, late-arriving data, and the
"consistency" range
<img
class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/hypertable_backfill_consistency.png"
alt="Hypertable dual-write ranges"
/>
### Missing writes
If the application is made up of multiple writers, and these writers did not
all simultaneously start writing into the target hypertable, there is a period
of time in which not all writes have made it into the target hypertable. This
period starts when the first writer begins dual-writing, and ends when the last
writer begins dual-writing.
### Late-arriving data
Some applications have late-arriving data: measurements which have a timestamp
in the past, but which weren't written yet (for example from devices which had
intermittent connectivity issues). The window of late-arriving data is between
the present moment, and the maximum lateness.
### Consistency range
The consistency range is the range in which there are no missing writes, and in
which all data has arrived, that is between the end of the missing writes range
and the beginning of the late-arriving data range.
The length of these ranges is defined by the properties of the application,
there is no one-size-fits-all way to determine what they are.
### Completion point
The completion point `T` is an arbitrarily chosen time in the consistency range.
It is the point in time to which data can safely be backfilled, ensuring that
there is no data loss.
The completion point should be expressed as the type of the `time` column of
the hypertables to be backfilled. For instance, if you're using a `TIMESTAMPTZ`
`time` column, then the completion point may be `2023-08-10T12:00:00.00Z`. If
you're using a `BIGINT` column it may be `1695036737000`.
If you are using a mix of types for the `time` columns of your hypertables, you
must determine the completion point for each type individually, and backfill
each set of hypertables with the same type independently from those of other
types.
## 6. Backfill data from source to target
Dump the data from your source database on a per-table basis into CSV format,
and restore those CSVs into the target database using the
`timescaledb-parallel-copy` tool.
### 6a. Determine the time range of data to be copied
Determine the window of data that to be copied from the source database to the
target. Depending on the volume of data in the source table, it may be sensible
to split the source table into multiple chunks of data to move independently.
In the following steps, this time range is called `<start>` and `<end>`.
Usually the `time` column is of type `timestamp with time zone`, so the values
of `<start>` and `<end>` must be something like `2023-08-01T00:00:00Z`. If the
`time` column is not a `timestamp with time zone` then the values of `<start>`
and `<end>` must be the correct type for the column.
If you intend to copy all historic data from the source table, then the value
of `<start>` can be `'-infinity'`, and the `<end>` value is the value of the
completion point `T` that you determined.
### 6b. Remove overlapping data in the target
The dual-write process may have already written data into the target database
in the time range that you want to move. In this case, the dual-written data
must be removed. This can be achieved with a `DELETE` statement, as follows:
bash psql target -c "DELETE FROM WHERE time >= AND time < );"
The BETWEEN operator is inclusive of both the start and end ranges, so it is
not recommended to use it.
### 6d. Copy the data with a streaming copy
Execute the following command, replacing `<source table>` and `<hypertable>`
with the fully qualified names of the source table and target hypertable
respectively:
bash psql source -f - <<EOF \copy (
SELECT * FROM <source table> WHERE time >= <start> AND time < <end> \
) TO stdout WITH (format CSV);" | timescaledb-parallel-copy \
--connection target \ --table \ --log-batches \ --batch-size=1000 \ --workers=4 EOF
The above command is not transactional. If there is a connection issue, or some
other issue which causes it to stop copying, the partially copied rows must be
removed from the target (using the instructions in step 6b above), and then the
copy can be restarted.
### 6e. Enable policies that compress data in the target hypertable
In the following command, replace `<hypertable>` with the fully qualified table
name of the target hypertable, for example `public.metrics`:
bash psql -d target -f -v hypertable= - <<'EOF' SELECT public.alter_job(j.id, scheduled=>true) FROM _timescaledb_config.bgw_job j JOIN _timescaledb_catalog.hypertable h ON h.id = j.hypertable_id WHERE j.proc_schema IN ('_timescaledb_internal', '_timescaledb_functions') AND j.proc_name = 'policy_compression' AND j.id >= 1000 AND format('%I.%I', h.schema_name, h.table_name)::text::regclass = :'hypertable'::text::regclass; EOF
## 7. Validate that all data is present in target database
Now that all data has been backfilled, and the application is writing data to
both databases, the contents of both databases should be the same. How exactly
this should best be validated is dependent on your application.
If you are reading from both databases in parallel for every production query,
you could consider adding an application-level validation that both databases
are returning the same data.
Another option is to compare the number of rows in the source and target
tables, although this reads all data in the table which may have an impact on
your production workload.
Another option is to run `ANALYZE` on both the source and target tables and
then look at the `reltuples` column of the `pg_class` table. This is not exact,
but doesn't require reading all rows from the table. Note: for hypertables, the
reltuples value belongs to the chunk table, so you must take the sum of
`reltuples` for all chunks belonging to the hypertable. If the chunk is
compressed in one database, but not the other, then this check cannot be used.
## 8. Validate that target database can handle production load
Now that dual-writes have been in place for a while, the target database should
be holding up to production write traffic. Now would be the right time to
determine if the target database can serve all production traffic (both reads
_and_ writes). How exactly this is done is application-specific and up to you
to determine.
## 9. Switch production workload to target database
Once you've validated that all the data is present, and that the target
database can handle the production workload, the final step is to switch to the
target database as your primary. You may want to continue writing to the source
database for a period, until you are certain that the target database is
holding up to all production traffic.
===== PAGE: https://docs.tigerdata.com/migrate/dual-write-and-backfill/timescaledb-backfill/ =====
# Migrate with timescaledb-backfill
Dual-write and backfill is a method to write from your application to two
databases at once, and gives tooling and guidance to move your existing data
from the one database to the other. It is specifically catered for, and relies
on, your data being predominantly append-only time-series data. As such, it
comes with some caveats and prerequisites which live migration does not
(dual-write and backfill does not support executing `UPDATE` or `DELETE`
statements on your data). Additionally, it requires you to make changes to the
ingest pipeline of your application.
The `timescaledb-backfill` tool is a command-line utility designed to support
migrations from Tiger Cloud services by copying historic data from one database
to another ("backfilling"). `timescaledb-backfill` efficiently copies
hypertable and continuous aggregates chunks directly, without the need for
intermediate storage, or converting chunks from the columnstore to the rowstore. It operates
transactionally, ensuring data integrity throughout the migration process. It
is designed to be used in the [dual-write and backfill][dual-write-backfill]
migration procedure.
## Limitations
- The tool only supports backfilling of hypertables. Schema migrations and
non-hypertable migrations should be handled separately before using this
tool.
- The tool is optimized for append-only workloads. Other scenarios may not
be fully supported.
- To prevent continuous aggregates from refreshing with incomplete data, any
refresh and retention policies targeting the tables that are going to be
backfilled should be turned off.
## Installation
The tool performs best when executed in an instance located close to the target
database. The ideal scenario is an EC2 instance located in the same region as
the Tiger Cloud service. Use a Linux-based distribution on x86_64.
With the instance that will run the timescaledb-backfill ready, log in and
download the tool's binary:
sh wget https://assets.timescale.com/releases/timescaledb-backfill-x86_64-linux.tar.gz tar xf timescaledb-backfill-x86_64-linux.tar.gz sudo mv timescaledb-backfill /usr/local/bin/
## How to use
The timescaledb-backfill tool offers four main commands: `stage`, `copy`,
`verify` and `clean`. The workflow involves creating tasks, copying chunks,
verifying data integrity and cleaning up the administrative schema after the
migration.
In the context of migrations, your existing production database is referred to
as the SOURCE database, the Tiger Cloud service that you are migrating your data to is the TARGET.
- **Stage Command:** is used to create copy tasks for hypertable chunks based
on the specified completion point (`--until`). If a starting point (`--from`)
is not specified, data will be copied from the beginning of time up to the
completion point (`--until`). An optional filter (`--filter`) can be used to
refine the hypertables and continuous aggregates targeted for staging.
sh timescaledb-backfill stage --source source --target target --until '2016-01-02T00:00:00'
The tables to be included in the stage can be controlled by providing
filtering options:
`--filter`: this option accepts a POSIX regular expression to match schema-qualified hypertable names or continuous aggregate view names. Only hypertables and/or continuous aggregates matching the filter are staged.
By default, the filter includes only the matching objects, and does not
concern itself with dependencies between objects. Depending on what is intended, this could be problematic for
continuous aggregates, as they form a dependency hierarchy. This behaviour
can be modified through cascade options.
For example, assuming a hierarchy of continuous aggregates for hourly, daily,
and weekly rollups of data in an underlying hypertable called `raw_data` (all
in the `public` schema). This could look as follows:
raw_data -> hourly_agg -> daily_agg -> monthly_agg
If the filter `--filter='^public\.raw_data$'` is applied, then no data from the
continuous aggregates is staged. If the filter
`--filter='^public\.daily_agg$'` is applied, then only materialized data in the
continuous aggregate `daily_agg` is staged.
`--cascade-up`: when activated, this option ensures that any continuous
aggregates which depend on the filtered object are included in the staging
process. It is called "cascade up" because it cascades up the hierarchy.
Using the example from before, if the filter
`--filter='^public\.raw_data$' --cascade up` is applied, the data in `raw_data`,
`hourly_agg`, `daily_agg`, and `monthly_agg` is staged.
`--cascade-down`: when activated, this option ensures that any objects which
the filtered object depends on are included in the staging process. It is
called "cascade down" because it cascades down the hierarchy.
Using the example from before, if the filter
`--filter='^public\.daily_agg$' --cascade-down` is applied, the data in
`daily_agg`, `hourly_agg`, and `raw_data` is staged.
The `--cascade-up` and `--cascade-down` options can be combined. Using the
example from before, if the filter
`--filter='^public\.daily_agg$' --cascade-up --cascade-down` is applied, data in
all objects in the example scenario is staged.
sh timescaledb-backfill stage --source source --target target
--until '2016-01-02T00:00:00' \
--filter '^public\.daily_agg$' \
--cascade-up \
--cascade-down
- **Copy Command:** processes the tasks created during the staging phase and
copies the corresponding hypertable chunks to the target Tiger Cloud service.
sh timescaledb-backfill copy --source source --target target
In addition to the `--source` and `--target` parameters, the `copy` command
takes one optional parameter:
`--parallelism` specifies the number of `COPY` jobs which will be run in
parallel, the default is 8. It should ideally be set to the number of cores
that the source and target database have, and is the most important parameter
in dictating both how much load the source database experiences, and how
quickly data is transferred from the source to the target database.
- **Verify Command:** checks for discrepancies between the source and target
chunks' data. It compares the results of the count for each chunk's table, as
well as per-column count, max, min, and sum values (when applicable,
depending on the column data type).
sh timescaledb-backfill verify --source source --target target
In addition to the `--source` and `--target` parameters, the `verify` command
takes one optional parameter:
`--parallelism` specifies the number of verification jobs which will be run
in parallel, the default is 8. It should ideally be set to the number of cores
that the source and target database have, and is the most important parameter
in dictating both how much load the source and target databases experience
during verification, and how long it takes for verification to complete.
- **Refresh Continuous Aggregates Command:** refreshes the continuous
aggregates of the target system. It covers the period from the last refresh
in the target to the last refresh in the source, solving the problem of
continuous aggregates being outdated beyond the coverage of the refresh
policies.
sh timescaledb-backfill refresh-caggs --source source --target target
To refresh the continuous aggregates, the command executes the following SQL
statement for all the matched continuous aggregates:
sql CALL refresh_continuous_aggregate({CAGG NAME}, {TARGET_WATERMARK}, {SOURCE_WATERMARK})
The continuous aggregates to be refreshed can be controlled by providing
filtering options:
`--filter`: this option accepts a POSIX regular expression to match
schema-qualified hypertable continuous aggregate view names.
By default, the filter includes only the matching objects, and does not
concern itself with dependencies between objects. Depending on what is
intended, this could be problematic as continuous aggregates form a
dependency hierarchy. This behaviour can be modified through cascade options.
For example, assuming a hierarchy of continuous aggregates for hourly, daily,
and weekly rollups of data in an underlying hypertable called `raw_data` (all
in the `public` schema). This could look as follows:
raw_data -> hourly_agg -> daily_agg -> monthly_agg
If the filter `--filter='^public\.daily_agg$'` is applied, only
materialized data in the continuous aggregate `daily_agg` will be updated.
However, this approach can lead to potential issues. For example, if
`hourly_agg` is not up to date, then `daily_agg` won't be either, as it
requires the missing data from `hourly_agg`. Additionally, it's important to
remember to refresh `monthly_agg` at some point to ensure its data remains
current. In both cases, relying solely on refresh policies may result in data
gaps if the policy doesn't cover the entire required period.
`--cascade-up`: when activated, this option ensures that any continuous
aggregates which depend on the filtered object are refreshed. It is called
"cascade up" because it cascades up the hierarchy. Using the example from
before, if the filter `--filter='^public\.daily_agg$' --cascade up` is
applied, the `hourly_agg`, `daily_agg`, and `monthly_agg` will be refreshed.
`--cascade-down`: when activated, this option ensures that any continuous
aggregates which the filtered object depends on are refreshed. It is called
"cascade down" because it cascades down the hierarchy. Using the example from
before, if the filter `--filter='^public\.daily_agg$' --cascade-down` is
applied, the data in `daily_agg` and `hourly_agg` will be refreshed.
The `--cascade-up` and `--cascade-down` options can be combined. Using the
example from before, if the filter `--filter='^public\.daily_agg$'
--cascade-up --cascade-down` is applied, then all the continuous aggregates
will be refreshed.
- **Clean Command:** removes the administrative schema (`__backfill`) that was
used to store the tasks once the migration is completed successfully.
sh timescaledb-backfill clean --target target
### Usage examples
- Backfilling with a filter and until date:
sh timescaledb-backfill stage --source $SOURCE_DB --target $TARGET_DB
--filter '.*\.my_table.*' \
--until '2016-01-02T00:00:00'
timescaledb-backfill copy --source source --target target
timescaledb-backfill refresh-caggs --source source --target target
timescaledb-backfill verify --source source --target target
timescaledb-backfill clean --target target
- Running multiple stages with different filters and until dates:
sh timescaledb-backfill stage --source source --target target
--filter '^schema1\.table_with_time_as_timestampz$' \
--until '2015-01-01T00:00:00'
timescaledb-backfill stage --source source --target target
--filter '^schema1\.table_with_time_as_bigint$' \
--until '91827364'
timescaledb-backfill stage --source source --target target
--filter '^schema2\..*' \
--until '2017-01-01T00:00:00'
timescaledb-backfill copy --source source --target target
timescaledb-backfill refresh-caggs --source source --target target
timescaledb-backfill verify --source source --target target
timescaledb-backfill clean --target target
- Backfilling a specific period of time with from and until:
sh timescaledb-backfill stage --source $SOURCE_DB --target $TARGET_DB
--from '2015-01-02T00:00:00' \
--until '2016-01-02T00:00:00'
timescaledb-backfill copy --source source --target target
timescaledb-backfill clean --target target
- Refreshing a continuous aggregates hierarchy
sh timescaledb-backfill refresh-caggs --source source --target target
--filter='^public\.daily_agg$' --cascade-up --cascade-down
### Stop and resume
The `copy` command can be safely stopped by sending an interrupt signal
(SIGINT) to the process. This can be achieved by using the Ctrl-C keyboard
shortcut from the terminal where the tool is currently running.
When the tool receives the first signal, it interprets it as a request for a
graceful shutdown. It then notifies the copy workers that they should exit once
they finish copying the chunk they are currently processing. Depending on the
chunk size, this could take many minutes to complete.
When a second signal is received, it forces the tool to shut down immediately,
interrupting all ongoing work. Due to the tool's usage of transactions, there
is no risk of data inconsistency when using forced shutdown.
While a graceful shutdown waits for in-progress chunks to finish copying, a
force shutdown rolls back the in-progress copy transactions. Any data
copied into those chunks is lost, but the database is left in a transactional
consistent state, and the backfill process can be safely resumed.
### Inspect tasks progress
Each hypertable chunk that's going to be backfilled has a corresponding task
stored in the target's database `__backfill.task` table. You can use this
information to inspect the backfill's progress:
sql select
hypertable_schema,
hypertable_name,
count(*) as total_chunks,
count(worked) as finished_chunks,
count(worked is null) pending_chunks
from __backfill.task group by
1,
2
===== PAGE: https://docs.tigerdata.com/use-timescale/query-data/about-query-data/ =====
# About querying data
Querying data in TimescaleDB works just like querying data in Postgres. You
can reuse your existing queries if you're moving from another Postgres
database.
TimescaleDB also provides some additional features to help with data analysis:
* Use [PopSQL][popsql] to work on data with centralized SQL queries, interactive visuals and real-time collaboration
* The [`SkipScan`][skipscan] feature speeds up `DISTINCT` queries
* [Hyperfunctions][hyperfunctions] improve the experience of writing many data
analysis queries
* [Function pipelines][pipelines] bring functional programming to SQL queries,
making it easier to perform consecutive transformations of data
===== PAGE: https://docs.tigerdata.com/use-timescale/query-data/select/ =====
# SELECT data
You can query data from a hypertable using a standard
[`SELECT`][postgres-select] command. All SQL clauses and features are supported.
## Basic query examples
Here are some examples of basic `SELECT` queries.
Return the 100 most-recent entries in the table `conditions`. Order the rows
from newest to oldest:
sql SELECT * FROM conditions ORDER BY time DESC LIMIT 100;
Return the number of entries written to the table `conditions` in the last 12
hours:
sql SELECT COUNT(*) FROM conditions WHERE time > NOW() - INTERVAL '12 hours';
### Advanced query examples
Here are some examples of more advanced `SELECT` queries.
Get information about the weather conditions at each location, for each
15-minute period within the last 3 hours. Calculate the number of
measurements taken, the maximum temperature, and the maximum humidity. Order the
results by maximum temperature.
This examples uses the [`time_bucket`][time_bucket] function to aggregate data
into 15-minute buckets:
sql SELECT time_bucket('15 minutes', time) AS fifteen_min,
location,
COUNT(*),
MAX(temperature) AS max_temp,
MAX(humidity) AS max_hum
FROM conditions WHERE time > NOW() - INTERVAL '3 hours' GROUP BY fifteen_min, location ORDER BY fifteen_min DESC, max_temp DESC;
Count the number of distinct locations with air conditioning that have reported
data in the last day:
sql SELECT COUNT(DISTINCT location) FROM conditions JOIN locations
ON conditions.location = locations.location
WHERE locations.air_conditioning = True
AND time > NOW() - INTERVAL '1 day';
===== PAGE: https://docs.tigerdata.com/use-timescale/query-data/advanced-analytic-queries/ =====
# Perform advanced analytic queries
You can use TimescaleDB for a variety of analytical queries. Some of these
queries are native Postgres, and some are additional functions provided by TimescaleDB and TimescaleDB Toolkit. This section contains the most common and useful analytic queries.
## Calculate the median and percentile
Use [`percentile_cont`][percentile_cont] to calculate percentiles. You can also
use this function to look for the fiftieth percentile, or median. For example, to
find the median temperature:
sql SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY temperature) FROM conditions;
You can also use TimescaleDB Toolkit to find the
[approximate percentile][toolkit-approx-percentile].
## Calculate the cumulative sum
Use `sum(sum(column)) OVER(ORDER BY group)` to find the cumulative sum. For
example:
sql SELECT location, sum(sum(temperature)) OVER(ORDER BY location) FROM conditions GROUP BY location;
## Calculate the moving average
For a simple moving average, use the `OVER` windowing function over a number of
rows, then compute an aggregation function over those rows. For example, to find
the smoothed temperature of a device by averaging the ten most recent readings:
sql SELECT time, AVG(temperature) OVER(ORDER BY time
ROWS BETWEEN 9 PRECEDING AND CURRENT ROW)
AS smooth_temp
FROM conditions WHERE location = 'garage' and time > NOW() - INTERVAL '1 day' ORDER BY time DESC;
## Calculate the increase in a value
To calculate the increase in a value, you need to account for counter resets.
Counter resets can occur if a host reboots or container restarts. This example
finds the number of bytes sent, and takes counter resets into account:
sql SELECT time, (
CASE
WHEN bytes_sent >= lag(bytes_sent) OVER w
THEN bytes_sent - lag(bytes_sent) OVER w
WHEN lag(bytes_sent) OVER w IS NULL THEN NULL
ELSE bytes_sent
END
) AS "bytes" FROM net WHERE interface = 'eth0' AND time > NOW() - INTERVAL '1 day' WINDOW w AS (ORDER BY time) ORDER BY time
## Calculate the rate of change
Like [increase](#calculate-the-increase-in-a-value), rate applies to a situation
with monotonically increasing counters. If your sample interval is variable or
you use different sampling intervals between different series, it is helpful to
normalize the values to a common time interval to make the calculated values
comparable. This example finds bytes per second sent, and takes counter resets
into account:
sql SELECT time, (
CASE
WHEN bytes_sent >= lag(bytes_sent) OVER w
THEN bytes_sent - lag(bytes_sent) OVER w
WHEN lag(bytes_sent) OVER w IS NULL THEN NULL
ELSE bytes_sent
END
) / extract(epoch from time - lag(time) OVER w) AS "bytes_per_second" FROM net WHERE interface = 'eth0' AND time > NOW() - INTERVAL '1 day' WINDOW w AS (ORDER BY time) ORDER BY time
## Calculate the delta
In many monitoring and IoT use cases, devices or sensors report metrics that do
not change frequently, and any changes are considered anomalies. When you query
for these changes in values over time, you usually do not want to transmit all
the values, but only the values where changes were observed. This helps to
minimize the amount of data sent. You can use a combination of window functions
and subselects to achieve this. This example uses diffs to filter rows where
values have not changed and only transmits rows where values have changed:
sql SELECT time, value FROM ( SELECT time,
value,
value - LAG(value) OVER (ORDER BY time) AS diff
FROM hypertable) ht WHERE diff IS NULL OR diff != 0;
## Calculate the change in a metric within a group
To group your data by some field, and calculate the change in a metric within
each group, use `LAG ... OVER (PARTITION BY ...)`. For example, given some
weather data, calculate the change in temperature for each city:
sql SELECT ts, city_name, temp_delta FROM ( SELECT
ts,
city_name,
avg_temp - LAG(avg_temp) OVER (PARTITION BY city_name ORDER BY ts) as temp_delta
FROM weather_metrics_daily ) AS temp_change WHERE temp_delta IS NOT NULL ORDER BY bucket;
## Group data into time buckets
The [`time_bucket`][time_bucket] function in TimescaleDB extends the Postgres
[`date_bin`][date_bin] function. Time bucket accepts arbitrary time intervals,
as well as optional offsets, and returns the bucket start time. For example:
sql SELECT time_bucket('5 minutes', time) AS five_min, avg(cpu) FROM metrics GROUP BY five_min ORDER BY five_min DESC LIMIT 12;
## Get the first or last value in a column
The [`first`][first] and [`last`][last] functions allow you to get
the value of one column as ordered by another. This is commonly used in an
aggregation. These examples find the last element of a group:
sql SELECT location, last(temperature, time) FROM conditions GROUP BY location;
sql SELECT time_bucket('5 minutes', time) five_min, location, last(temperature, time) FROM conditions GROUP BY five_min, location ORDER BY five_min DESC LIMIT 12;
## Generate a histogram
The [`histogram`][histogram] function allows you to generate a
histogram of your data. This example defines a histogram with five buckets
defined over the range 60 to 85. The generated histogram has seven bins; the
first is for values below the minimum threshold of 60, the middle five bins are
for values in the stated range and the last is for values above 85:
sql SELECT location, COUNT(*),
histogram(temperature, 60.0, 85.0, 5)
FROM conditions WHERE time > NOW() - INTERVAL '7 days' GROUP BY location;
This query outputs data like this:
bash location | count | histogram ------------+-------+------------------------- office | 10080 | {0,0,3860,6220,0,0,0} basement | 10080 | {0,6056,4024,0,0,0,0} garage | 10080 | {0,2679,957,2420,2150,1874,0}
## Fill gaps in time-series data
You can display records for a selected time range, even if no data exists for
part of the range. This is often called gap filling, and usually involves an
operation to record a null value for any missing data.
In this example, the trading data that includes a `time` timestamp, the
`asset_code` being traded, the `price` of the asset, and the `volume` of the
asset being traded is used.
Create a query for the volume of the asset 'TIMS' being traded every day
for the month of September:
sql SELECT
time_bucket('1 day', time) AS date,
sum(volume) AS volume
FROM trades WHERE asset_code = 'TIMS'
AND time >= '2021-09-01' AND time < '2021-10-01'
GROUP BY date ORDER BY date DESC;
This query outputs data like this:
bash
date | volume
------------------------+-------- 2021-09-29 00:00:00+00 | 11315 2021-09-28 00:00:00+00 | 8216 2021-09-27 00:00:00+00 | 5591 2021-09-26 00:00:00+00 | 9182 2021-09-25 00:00:00+00 | 14359 2021-09-22 00:00:00+00 | 9855
You can see from the output that no records are included for 09-23, 09-24, or
09-30, because no trade data was recorded for those days. To include time
records for each missing day, you can use the `time_bucket_gapfill`
function, which generates a series of time buckets according to a given interval
across a time range. In this example, the interval is one day, across the month
of September:
sql SELECT time_bucket_gapfill('1 day', time) AS date, sum(volume) AS volume FROM trades WHERE asset_code = 'TIMS' AND time >= '2021-09-01' AND time < '2021-10-01' GROUP BY date ORDER BY date DESC;
This query outputs data like this:
bash
date | volume
------------------------+-------- 2021-09-30 00:00:00+00 | 2021-09-29 00:00:00+00 | 11315 2021-09-28 00:00:00+00 | 8216 2021-09-27 00:00:00+00 | 5591 2021-09-26 00:00:00+00 | 9182 2021-09-25 00:00:00+00 | 14359 2021-09-24 00:00:00+00 | 2021-09-23 00:00:00+00 | 2021-09-22 00:00:00+00 | 9855
You can also use the `time_bucket_gapfill` function to generate data
points that also include timestamps. This can be useful for graphic libraries
that require even null values to have a timestamp so that they can accurately
draw gaps in a graph. In this example, you generate 1080 data points across the
last two weeks, fill in the gaps with null values, and give each null value a
timestamp:
sql SELECT time_bucket_gapfill(INTERVAL '2 weeks' / 1080, time, now() - INTERVAL '2 weeks', now()) AS btime, sum(volume) AS volume FROM trades WHERE asset_code = 'TIMS' AND time >= now() - INTERVAL '2 weeks' AND time < now() GROUP BY btime ORDER BY btime;
This query outputs data like this:
bash
btime | volume
------------------------+---------- 2021-03-09 17:28:00+00 | 1085.25 2021-03-09 17:46:40+00 | 1020.42 2021-03-09 18:05:20+00 | 2021-03-09 18:24:00+00 | 1031.25 2021-03-09 18:42:40+00 | 1049.09 2021-03-09 19:01:20+00 | 1083.80 2021-03-09 19:20:00+00 | 1092.66 2021-03-09 19:38:40+00 | 2021-03-09 19:57:20+00 | 1048.42 2021-03-09 20:16:00+00 | 1063.17 2021-03-09 20:34:40+00 | 1054.10 2021-03-09 20:53:20+00 | 1037.78
### Fill gaps by carrying the last observation forward
If your data collections only record rows when the actual value changes,
your visualizations might still need all data points to properly display
your results. In this situation, you can carry forward the last observed
value to fill the gap. For example:
sql SELECT time_bucket_gapfill(INTERVAL '5 min', time, now() - INTERVAL '2 weeks', now()) as 5min, meter_id, locf(avg(data_value)) AS data_value FROM my_hypertable WHERE time > now() - INTERVAL '2 weeks' AND meter_id IN (1,2,3,4) GROUP BY 5min, meter_id
## Find the last point for each unique item
You can find the last point for each unique item in your database. For example,
the last recorded measurement from each IoT device, the last location of each
item in asset tracking, or the last price of a security. The standard approach
to minimize the amount of data to be searched for the last point is to use a
time predicate to tightly bound the amount of time, or the number of chunks, to
traverse. This method does not work unless all items have at least one record
within the time range. A more robust method is to use a last point query to
determine the last record for each unique item.
In this example, useful for asset tracking or fleet management, you create a
metadata table for each vehicle being tracked, and a second time-series table
containing the vehicle's location at a given time:
sql CREATE TABLE vehicles ( vehicle_id INTEGER PRIMARY KEY, vin_number CHAR(17), last_checkup TIMESTAMP );
CREATE TABLE location ( time TIMESTAMP NOT NULL, vehicle_id INTEGER REFERENCES vehicles (vehicle_id), latitude FLOAT, longitude FLOAT ) WITH ( tsdb.hypertable, tsdb.partition_column='time' );
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
You can use the first table, which gives a distinct set of vehicles, to
perform a `LATERAL JOIN` against the location table:
sql SELECT data.* FROM vehicles v INNER JOIN LATERAL (
SELECT * FROM location l
WHERE l.vehicle_id = v.vehicle_id
ORDER BY time DESC LIMIT 1
) AS data ON true ORDER BY v.vehicle_id, data.time DESC;
time | vehicle_id | latitude | longitude
----------------------------+------------+-----------+------------- 2017-12-19 20:58:20.071784 | 72 | 40.753690 | -73.980340 2017-12-20 11:19:30.837041 | 156 | 40.729265 | -73.993611 2017-12-15 18:54:01.185027 | 231 | 40.350437 | -74.651954
This approach requires keeping a separate table of distinct item identifiers or
names. You can do this by using a foreign key from the hypertable to the
metadata table, as shown in the `REFERENCES` definition in the example.
The metadata table can be populated through business logic, for example when a
vehicle is first registered with the system. Alternatively, you can dynamically
populate it using a trigger when inserts or updates are performed against the
hypertable. For example:
sql CREATE OR REPLACE FUNCTION create_vehicle_trigger_fn() RETURNS TRIGGER LANGUAGE PLPGSQL AS body$ BEGIN INSERT INTO vehicles VALUES(NEW.vehicle_id, NULL, NULL) ON CONFLICT DO NOTHING; RETURN NEW; END body$;
CREATE TRIGGER create_vehicle_trigger BEFORE INSERT OR UPDATE ON location FOR EACH ROW EXECUTE PROCEDURE create_vehicle_trigger_fn();
You could also implement this functionality without a separate metadata table by
performing a [loose index scan][loose-index-scan] over the `location`
hypertable, although this requires more compute resources. Alternatively, you
speed up your `SELECT DISTINCT` queries by structuring them so that TimescaleDB can
use its [SkipScan][skipscan] feature.
===== PAGE: https://docs.tigerdata.com/use-timescale/query-data/skipscan/ =====
# Get faster DISTINCT queries with SkipScan
Tiger Data SkipScan dramatically speeds up `DISTINCT` queries. It jumps directly to the first row of each distinct value in an
index instead of scanning all rows. First introduced for the rowstore hypertables and relational tables,
SkipScan now extends to columnstore hypertables, distinct aggregates like `COUNT(DISTINCT)`, and even multiple columns.
Since [TimescaleDB v2.2.0](https://github.com/timescale/timescaledb/releases/tag/2.2.0)
## Speed up `DISTINCT` queries
You use `DISTINCT` queries to get only the unique values in your data. For example, the IDs of customers who placed orders, the countries where your users are located, or the devices reporting into an IoT system. You might also have graphs and alarms that repeatedly query the most recent values for every device or service.
As your tables get larger, `DISTINCT` queries tend to get slower. Even when your index matches
the exact order and columns for these kinds of queries, Postgres (without SkipScan) has to scan the
entire index and then run deduplication. As the table grows, this operation keeps
getting slower.
SkipScan is an optimization for `DISTINCT` and `DISTINCT ON` queries, including multi-column `DISTINCT`. SkipScan allows queries to incrementally jump from one ordered value to the next,
without reading the rows in between. Conceptually, SkipScan is a regular IndexScan that skips across an
index looking for the next value that is greater than the current value.
When you issue a query that uses SkipScan, the `EXPLAIN` output includes a new `Custom Scan (SkipScan)`
operator, or node, that can quickly return distinct items from a properly
ordered index. As it locates one item, the SkipScan node quickly restarts the search for
the next item. This is a much more efficient way of finding distinct items in an
ordered index.
SkipScan cost is based on the ratio of distinct tuples to total tuples. If the number of distinct tuples is close to the total number of tuples, SkipScan is unlikely to be used due to its higher estimated cost.
Multi-column SkipScan is supported for queries that do not produce NULL distinct values. For example:
sql CREATE INDEX ON metrics(region, device, metric_type); -- All distinct columns have filters which don't allow NULLs: can use SkipScan SELECT DISTINCT ON (region, device, metric_type) * FROM metrics WHERE region IN ('UK','EU','JP') AND device > 1 AND metric_type IS NOT NULL ORDER BY region, device, metric_type, time DESC; -- Distinct columns are declared NOT NULL: can use SkipScan with index on (region, device) CREATE TABLE metrics(region TEXT NOT NULL, device INT NOT NULL, ...); SELECT DISTINCT ON (region, device) * FROM metrics ORDER BY region, device, time DESC;
For benchmarking information on how SkipScan compares to regular `DISTINCT`
queries, see the [SkipScan blog post][blog-skipscan].
## Use SkipScan queries
Design your layout:
- Rowstore: create an index starting with the `DISTINCT` columns, followed by your time sort. If the `DISTINCT` columns are not the first in your index, ensure any leading columns are used as constraints in your query. This means that if you are asking a question such as "retrieve a list of unique IDs in order" and "retrieve the last reading of each ID," you need at least one index like this:
```sql
CREATE INDEX "cpu_customer_tags_id_time_idx" \
ON readings (customer_id, tags_id, time DESC)
```
- Columnstore: set `timescaledb.compress_segmentby` to the distinct columns and `compress_orderby` to match your query’s sort. Compress your historical chunks.
With your index set up correctly, you should start to see immediate benefit for
`DISTINCT` queries. When SkipScan is chosen for your query, the `EXPLAIN
ANALYZE` output shows one or more `Custom Scan (SkipScan)` nodes, like this:
sql -> Unique -> Merge Append
Sort Key: _hyper_8_79_chunk.tags_id, _hyper_8_79_chunk."time" DESC
-> Custom Scan (SkipScan) on _hyper_8_79_chunk
-> Index Only Scan using _hyper_8_79_chunk_cpu_tags_id_time_idx on _hyper_8_79_chunk
Index Cond: (tags_id > NULL::integer)
-> Custom Scan (SkipScan) on _hyper_8_80_chunk
-> Index Only Scan using _hyper_8_80_chunk_cpu_tags_id_time_idx on _hyper_8_80_chunk
Index Cond: (tags_id > NULL::integer)
===== PAGE: https://docs.tigerdata.com/use-timescale/configuration/about-configuration/ =====
# About configuration in Tiger Cloud
By default, Tiger Cloud uses the default Postgres server configuration settings.
Most configuration values for a Tiger Cloud service are initially set in accordance with
best practices given the compute and storage settings of the service. Any time
you increase or decrease the compute for a service, the most essential values
are set to reflect the size of the new service.
There are times, however, when your specific workload could require tuning some
of the many available Tiger Cloud-specific and Postgres parameters. By providing the
ability to tune various runtime settings, Tiger Cloud provides the balance
and flexibility you need when running your workloads in a hosted environment.
You can use [service settings][settings] and [service operations][operations] to
customize Tiger Cloud configurations.
===== PAGE: https://docs.tigerdata.com/use-timescale/configuration/customize-configuration/ =====
# Configure database parameters
Tiger Cloud allows you to customize many Tiger Cloud-specific and Postgres
configuration options for each service individually. Most configuration values
for a service are initially set in accordance with best practices given the
compute and storage settings of the service. Any time you increase or decrease
the compute for a service, the most essential values are set to reflect the size
of the new service.
You can modify most parameters without restarting the service.
However, some changes do require a restart, resulting in some brief downtime
that is usually about 30 seconds. An example of a change that needs a
restart is modifying the compute resources of a running service.
## View service operation details
To modify configuration parameters, first select the service that you want to
modify. This displays the service details, with these tabs across the top:
`Overview`, `Actions`, `Explorer`, `Monitoring`, `Connections`, `SQL Editor`, `Operations`, and `AI`. Select `Operations`, then `Database parameters`.

### Modify basic parameters
Under the `Common parameters` tab, you can modify a limited set of the
parameters that are most often modified in a Tiger Cloud or Postgres instance.
To modify a configured value, hover over the value and click the revealed pencil
icon. This reveals an editable field to apply your change. Clicking anywhere
outside of that field saves the value to be applied.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/tsc-settings-change.webp"
alt="Change Tiger Cloud configuration parameters"/>
### Apply configuration changes
When you have modified the configuration parameters that you would like to
change, click `Apply changes`. For some changes, such as
`timescaledb.max_background_workers`, the service needs to be restarted. In this
case, the button reads `Apply changes and restart`.
A confirmation dialog is displayed which indicates whether a restart is
required. Click `Confirm` to apply the changes, and restart if necessary.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/tsc-settings-confirm.webp"
alt="Confirm Tiger Cloud configuration changes"/>
===== PAGE: https://docs.tigerdata.com/use-timescale/configuration/advanced-parameters/ =====
# Advanced parameters
It is possible to configure a wide variety of Tiger Cloud service database parameters by
navigating to the `Advanced parameters` tab under the `Database
configuration` heading. The advanced parameters are displayed in a scrollable and searchable list.

As with the basic database configuration parameters, any changes are highlighted
and the `Apply changes`, or `Apply changes and restart`, button is available,
prompting you to confirm changes before the service is modified.
## Multiple databases
To create more than one database, you need to create a new
service for each database. Tiger Cloud does not support multiple
databases within the same service. Having a separate service for each database
affords each database its own isolated resources.
You can also use [schemas][schemas] to organize tables into logical groups. A
single database can contain multiple schemas, which in turn contain tables. The
main difference between isolating with databases versus schemas is that a user
can access objects in any of the schemas in the database they are connected to,
so long as they have the corresponding privileges. Schemas can help isolate
smaller use cases that do not warrant their own service.
Please refer to the [Grand Unified Configuration (GUC) parameters][gucs] for a complete list.
## Policies
### `timescaledb.max_background_workers (int)`
Max background worker processes allocated to TimescaleDB. Set to at least 1 +
the number of databases loaded with the TimescaleDB extension in a Postgres instance. Default value is 16.
## Tiger Cloud service tuning
### `timescaledb.disable_load (bool)`
Disable the loading of the actual extension
===== PAGE: https://docs.tigerdata.com/use-timescale/ha-replicas/read-scaling/ =====
# Read scaling
When read-intensive workloads compete with high ingest rates, your primary data instance can become a bottleneck. Spiky query traffic, analytical dashboards, and business intelligence tools risk slowing down ingest performance and disrupting critical write operations.
With read replica sets in Tiger Cloud, you can scale reads horizontally and keep your applications responsive. By offloading queries to replicas, your service maintains high ingest throughput while serving large or unpredictable read traffic with ease. This approach not only protects write performance but also gives you confidence that your read-heavy apps and BI workloads will run smoothly—even under pressure.

This page shows you how to create and manage read replica sets in Tiger Cloud Console.
## What is read replication?
A read replica is a read-only copy of your primary database instance. Queries on read replicas have minimal impact on the performance of the primary instance. This enables you to interact with up-to-date production data for analysis, or to scale out reads beyond the limits of your primary instance. Read replicas can be short-lived and deleted when a session of data analysis is complete, or long-running to power an application or a business intelligence tool.
A read replica set in Tiger Cloud is a group of one or more read replica nodes that are accessed through the same endpoint. You query each set as a single replica. Tiger Cloud balances the load between the nodes in the set for you.
You can create as many read replica sets as you need. For security and resource isolation, each read replica set has unique connection details.
You use read replica sets for horizontal **read** scaling. To limit data loss for your Tiger Cloud services, use [high-availability replicas][ha].
## Prerequisites
To follow this procedure:
- Create a target Tiger Cloud service.
- Create a [read-only user][read-only-role] on the primary data instance.
A user with read-only permissions cannot make changes in the primary database. This user is propagated to the read replica set when you create it.
## Create a read replica set
To create a secure read replica set for your read-intensive apps:
1. **In [Tiger Cloud Console][timescale-console-services], select your target service**
1. **Click `Operations` > `Read scaling` > `Add a read replica set`**
1. **Configure your replica set**
Configure the number of nodes, compute size, connection pooling, and the name for your replica, then click `Create read replica set`.

1. **Save the connection information**
The username and password of a read replica set are the same as the primary service. They cannot be changed independently.
The connection information for each read replica set is unique. You can add or remove nodes from an existing set and the connection information of that set will remain the same. To find the connection information for an existing read replica set:
1. Select the primary service in Tiger Cloud Console.
1. Click `Operations` > `Read scaling`.
1. Click the 🔗 icon next to the replica set in the list.
## Edit a read replica set
You can edit an existing read replica set to better handle your reads. This includes changing the number of nodes, compute size, storage, and IOPS, as well as configuring VPC and other features.
To change the compute and storage configuration of your read replica set:
1. **In [Tiger Cloud Console][timescale-console-services], expand and click the read replica set under your primary service**

1. **Click `Operations` > `Compute and storage`**

1. **Change the replica configuration and click `Apply`**
## Manage data lag for your read replica sets
Read replica sets use asynchronous replication. This can cause a slight lag in data to the primary database instance. The lag
is measured in bytes, against the current state of the primary instance. To check the status and lag for your read replica set:
1. **In [Tiger Cloud Console][timescale-console-services], select your primary service**
1. **Click `Operations` > `Read scaling`**
You see a list of configured read replica sets for this service, including their status and lag:

1. **Configure the allowable lag**
1. Select the replica set in the list.
1. Click `Operations` > `Database parameters`.
1. Adjust `max_standby_streaming_delay` and `max_standby_archive_delay`.
This is not recommended for cases where changes must be immediately represented, for example, for user credentials.
## Delete a read replica set
To delete a replica set:
1. **In [Tiger Cloud Console][timescale-console-services], select your primary service**
1. **Click `Operations` > `Read scaling`**
1. **Click the trash icon next to a replica set**
Confirm the deletion when prompted.
===== PAGE: https://docs.tigerdata.com/use-timescale/ha-replicas/high-availability/ =====
# Manage high availability
For Tiger Cloud services where every second of uptime matters, Tiger Cloud delivers High Availability (HA) replicas.
These replicas safeguard your data and keep your service running smoothly, even in the face of unexpected failures.
By minimizing downtime and protecting against data loss, HA replicas ensure business continuity and give you the confidence
to operate without interruption, including during routine maintenance.

This page shows you how to choose the best high availability option for your service.
## What is HA replication?
HA replicas are exact, up-to-date copies of your database hosted in multiple AWS availability zones (AZ) within the same region as your primary node. They automatically take over operations if the original primary data node becomes unavailable. The primary node streams its write-ahead log (WAL) to the replicas to minimize the chances of data loss during failover.
HA replicas can be synchronous and asynchronous.
- Synchronous: the primary commits its next write once the replica confirms that the previous write is complete. There is no lag between the primary and the replica. They are in the same state at all times. This is preferable if you need the highest level of data integrity. However, this affects the primary ingestion time.
- Asynchronous: the primary commits its next write without the confirmation of the previous write completion. The asynchronous HA replicas often have a lag, in both time and data, compared to the primary. This is preferable if you need the shortest primary ingest time.

HA replicas have separate unique addresses that you can use to serve read-only requests in parallel to your
primary data node. When your primary data node fails, Tiger Cloud automatically fails over to
an HA replica within 30 seconds. During failover, the read-only address is unavailable while Tiger Cloud automatically creates a new HA replica. The time to make this replica depends on several factors, including the size of your data.
Operations such as upgrading your service to a new major or minor version may necessitate
a service restart. Restarts are run during the [maintenance window][upgrade]. To avoid any downtime, each data
node is updated in turn. That is, while the primary data node is updated, a replica is promoted to primary.
After the primary is updated and online, the same maintenance is performed on the HA replicas.
To ensure that all services have minimum downtime and data loss in the most common
failure scenarios and during maintenance, [rapid recovery][rapid-recovery] is enabled by default for all services.
## Choose an HA strategy
The following HA configurations are available in Tiger Cloud:
- **Non-production**: no replica, best for developer environments.
- **High availability**: a single async replica in a different AWS availability zone from your primary. Provides high availability with cost efficiency. Best for production apps.
- **Highest availability**: two replicas in different AWS availability zones from your primary. Available replication modes are:
- **High performance** - two async replicas. Provides the highest level of availability with two AZs and the ability to query the HA system. Best for apps where service availability is most critical.
- **High data integrity** - one sync replica and one async replica. The sync replica is identical to the primary at all times. Best for apps that can tolerate no data loss.
The following table summarizes the differences between these HA configurations:
|| High availability <br/> (1 async) | High performance <br/> (2 async) | High data integrity <br/> (1 sync + 1 async) |
|-------|----------|------------|-----|
|Write flow |The primary streams its WAL to the async replica, which may have a slight lag compared to the primary, providing 99.9% uptime SLA. |The primary streams its writes to both async replicas, providing 99.9+% uptime SLA.|The primary streams its writes to the sync and async replicas. The async replica is never ahead of the sync one.|
|Additional read replica|Recommended. Reads from the HA replica may cause availability and lag issues. |Not needed. You can still read from the HA replica even if one of them is down. Configure an additional read replica only if your read use case is significantly different from your write use case.|Highly recommended. If you run heavy queries on a sync replica, it may fall behind the primary. Specifically, if it takes too long for the replica to confirm a transaction, the next transaction is canceled.|
|Choosing the replica to read from manually| Not applicable. |Not available. Queries are load-balanced against all available HA replicas. |Not available. Queries are load-balanced against all available HA replicas.|
| Sync replication | Only async replicas are supported in this configuration. |Only async replicas are supported in this configuration. | Supported.|
| Failover flow | <ul><li>If the primary fails, the replica becomes the primary while a new node is created, with only seconds of downtime.</li><li>If the replica fails, a new async replica is created without impacting the primary. If you read from the async HA replica, those reads fail until the new replica is available.</li></ul> |<ul><li>If the primary fails, one of the replicas becomes the primary while a new node is created, with the other one still available for reads.</li><li>If the replica fails, a new async replica is created in another AZ, without impacting the primary. The newly created replica is behind the primary and the original replica while it catches up.</li></ul>|<ul><li>If the primary fails, the sync replica becomes the primary while a new node is created, with the async one still available for reads.</li><li>If the async replica fails, a new async replica is created. Heavy reads on the sync replica may delay the ingest time of the primary while a new async replica is created. Data integrity remains high but primary ingest performance may degrade.</li><li>If the sync replica fails, the async replica becomes the sync one, and a new async replica is created. The primary may experience some ingest performance degradation during this time.</li></ul>|
| Cost composition | Primary + async (2x) |Primary + 2 async (3x)|Primary + 1 async + 1 sync (3x)|
| Tier | Performance, Scale, and Enterprise |Scale and Enterprise|Scale and Enterprise|
The `High` and `Highest` HA strategies are available with the [Scale and the Enterprise][pricing-plans] pricing plans.
To enable HA for a service:
1. In [Tiger Cloud Console][cloud-login], select the service to enable replication for.
1. Click `Operations`, then select `High availability`.
1. Choose your replication strategy, then click `Change configuration`.

1. In `Change high availability configuration`, click `Change config`.
To change your HA replica strategy, click `Change configuration`, choose a strategy and click `Change configuration`.
To download the connection information for the HA replica, either click the link next to the replica
`Active configuration`, or find the information in the `Overview` tab for this service.
## Test failover for your HA replicas
To test the failover mechanism, you can trigger a switchover. A switchover is a
safe operation that attempts a failover, and throws an error if the replica or
primary is not in a state to safely switch.
1. Connect to your primary node as `tsdbadmin` or another user that is part of
the `tsdbowner` group.
You can also connect to the HA replica and check its node using this procedure.
1. At the `psql` prompt, connect to the `postgres` database:
```sql
\c postgres
```
You should see `postgres=>` prompt.
1. Check if your node is currently in recovery:
```sql
select pg_is_in_recovery();
```
1. Check which node is currently your primary:
```sql
select * from pg_stat_replication;
```
Note the `application_name`. This is your service ID followed by the
node. The important part is the `-an-0` or `-an-1`.
1. Schedule a switchover:
```sql
CALL tscloud.cluster_switchover();
```
By default, the switchover occurs in 30 secs. You can change the time by passing
an interval, like this:
```sql
CALL tscloud.cluster_switchover('15 seconds'::INTERVAL);
```
1. Wait for the switchover to occur, then check which node is your primary:
```sql
SELECT * FROM pg_stat_replication;
```
You should see a notice that your connection has been reset, like this:
```sql
FATAL: terminating connection due to administrator command
SSL connection has been closed unexpectedly
The connection to the server was lost. Attempting reset: Succeeded.
```
1. Check the `application_name`. If your primary was `-an-1` before, it should
now be `-an-0`. If it was `-an-0`, it should now be `-an-1`.
===== PAGE: https://docs.tigerdata.com/use-timescale/data-tiering/tiered-data-replicas-forks/ =====
# Replicas and forks with tiered data
There is one more thing that makes Tiered Storage even more amazing: when you keep data in the low-cost object storage tier,
you pay for this data only once, regardless of whether you have a [high-availability replica][ha-replica]
or [read replicas][read-replica] running in your service. We call this the savings multiplication effect of Tiered Storage.
The same applies to [forks][operations-forking], which you can use, for example, for running tests or creating dev environments.
When creating one (or more) forks, you won't be billed for data shared with the primary in the low-cost storage.
If you decide to tier more data that's not in the primary, you will pay to store it in the low-cost tier,
but you will still see substantial savings by moving that data from the high-performance tier of the fork to the cheaper object storage tier.
## How this works behind the scenes
Once you tier data to the low-cost object storage tier, we keep a reference to that data on your Database's catalog.
Creating a replica or forking a primary server only copies the references and the metadata we keep on the catalog for all tiered data.
On the billing side, we only count and bill once for the data tiered, not for each reference there may exist towards that data.
## What happens when a chunk is dropped or untiered on a fork
Dropping or untiering a chunk from a fork does not delete it from any other servers that reference the same chunk.
You can have one, multiple or 0 servers referencing the same chunk of data:
* That means that deleting data from a fork does not affect the other servers (including the primary);
it just removes the reference to that data, which is for all intends and purposes equal to deleting that data from the point of view of that fork
* The primary and other servers are unaffected, as they still have their references and the metadata on their catalogs intact
* We never delete anything on the object storage tier if at least one server references it:
The data is only permanently deleted (or hard deleted as we internally call this operation) once the references drop to 0
As described above, tiered chunks are only counted once for billing purposes, so dropping or untiering a chunk that is shared with other servers
from a fork will not affect billing as it was never counted for billing purposes.
Droping or untiering a chunk that was only tiered on that fork works as expected and is covered in more detail in the following section.
## What happens when a chunk is modified on a fork
As a reminder, tiered data is immutable - there is no such thing as updating the data.
You can untier or drop a chunk, in which case what is described in the previous section covers what happens.
And you can tier new data, at which point a fork deviates from the primary in a similar way as all forks do.
New data tiered are not shared with parent or sibling servers, this is new data tiered for that server and we count them as a new object for the purposes of billing.
If you decide to tier more data that's not in the primary, you will pay to store it in the low-cost tier,
but you will still see substantial savings by moving that data from the high-performance tier of the fork to the cheaper object storage tier.
Similar to other types of storage tiers, this type of deviation can not happen for replicas as they have to be identical with the primary server, that's why we don't mention replicas when discussing about droping chunks or tiering additional data.
## What happens with backups and PITR
As discussed above, we never delete anything on the object storage tier if at least one server references it.
The data is only permanently deleted (or hard deleted as we internally call this operation) once the references drop to 0.
In addition to that, we delay hard deleting the data by 14 days, so that in case of a restore or PITR, all tiered data will be available.
In the case of such a restore, new references are added to the deleted tiered chunks, so they are not any more candidates for a hard deletion.
Once 14 days pass after soft deleting the data,that is the number of references to the tiered data drop to 0, we hard delete the tiered data.
===== PAGE: https://docs.tigerdata.com/use-timescale/data-tiering/enabling-data-tiering/ =====
# Manage storage and tiering
The tiered storage architecture in Tiger Cloud includes a high-performance storage tier and a low-cost object storage tier:
- You use [high-performance storage][high-performance-storage] to store and query frequently accessed data.
- You use [low-cost object storage][low-cost-storage] to cut costs by migrating rarely used data from the high-performance storage. After you
enable tiered storage, you then either [create automated tiering policies][tiering-policies] or [manually tier and untier data][manual-tier].
You can query the data on the object storage tier, but you cannot modify it. Make sure that you are not tiering data that needs to be **actively modified**.
For low-cost storage, Tiger Data charges only for the size of your data in S3 in the Apache Parquet format, regardless of whether it was compressed in Tiger Cloud before tiering. There are no additional expenses, such as data transfer or compute.
## High-performance storage tier
By default, Tiger Cloud stores your service data in the standard high-performance storage. This storage tier comes in the standard and enhanced types. Enhanced storage is available under the [Enterprise pricing plan][pricing-plans] only.
### Standard high-performance storage
This storage type gives you up to 16 TB of storage and is available under [all pricing plans][pricing-plans]. You change the IOPS value to better suit your needs in Tiger Cloud Console:
1. **In [Tiger Cloud Console][console], select your service, then click `Operations` > `Compute and storage`**
By default, the type of high-performance storage is set to `Standard`.
1. **Select the IOPS value in the `I/O boost` dropdown**
- Under the [Performance pricing plan][pricing-plans], IOPS is set to 3,000 - 5,000 autoscale and cannot be changed.
- Under the [Scale and Enterprise pricing plans][pricing-plans], IOPS is set to 5,000 - 8,000 autoscale and can be upgraded to 16,000 IOPS.

1. **Click `Apply`**
### Enhanced high-performance storage
<Availability products={['cloud']} price_plans={['enterprise']} />
This storage type gives you up to 64 TB and 32,000 IOPS, and is available under the [Enterprise pricing plan][pricing-plans]. To get enhanced storage:
1. **In [Tiger Cloud Console][console], select your service, then click `Operations` > `Compute and storage`**
1. **Select `Enhanced` in the `Storage type` dropdown**

The enhanced storage is currently not available in `sa-east-1`.
1. **Select the IOPS value in the `I/O boost` dropdown**
Select between 8,000, 16,000, 24,000, and 32,0000 IOPS. The value that you can apply depends on the number of CPUs in your service. Tiger Cloud Console notifies you if your selected IOPS requires increasing the number of CPUs. To increase IOPS to 64,000, click `Contact us` and we will be in touch to confirm the details.

1. **Click `Apply`**
You change from enhanced storage to standard in the same way. If you are using over 16 TB of enhanced storage, changing back to standard is not available until you shrink your data to be under 16 TB. You can make changes to the storage type and I/O boost settings without any downtime. Wait at least 6 hours to attempt another change.
## Low-cost object storage tier
<Availability products={['cloud']} price_plans={['enterprise', 'scale']} />
You enable the low-cost object storage tier in Tiger Cloud Console and then tier the data with policies or manually.
### Enable tiered storage
You enable tiered storage from the `Overview` tab in Tiger Cloud Console.
1. **In [Tiger Cloud Console][console], select the service to modify**
1. **In `Explorer`, click `Storage configuration` > `Tiering storage`, then click `Enable tiered storage`**

Once enabled, you can proceed to [tier data manually][manual-tier] or [set up tiering policies][tiering-policies]. When tiered storage is enabled, you see the amount of data in the tiered object storage.
### Automate tiering with policies
A tiering policy automatically moves any chunks that only contain data
older than the `move_after` threshold to the object storage tier. This works similarly to a
[data retention policy][data-retention], but chunks are moved rather than deleted.
A tiering policy schedules a job that runs periodically to asynchronously migrate eligible chunks to object storage. Chunks are considered tiered once they appear in the `timescaledb_osm.tiered_chunks` view.
You can add tiering policies to [hypertables][hypertable], including [continuous aggregates][caggs]. To manage tiering policies, [connect to your service][connect-to-service] and run the queries below in the data mode, the SQL editor, or using `psql`.
#### Add a tiering policy
To add a tiering policy, call `add_tiering_policy`:
sql SELECT add_tiering_policy(hypertable REGCLASS, move_after INTERVAL, if_not_exists BOOL = false);
For example, to tier chunks that are more than three days old in the `example` [hypertable][hypertable]:
sql SELECT add_tiering_policy('example', INTERVAL '3 days');
By default, a tiering policy runs hourly on your database. To change this interval, call `alter_job`.
#### Remove a tiering policy
To remove an existing tiering policy, call `remove_tiering_policy`:
sql SELECT remove_tiering_policy(hypertable REGCLASS, if_exists BOOL = false);
For example, to remove the tiering policy from the `example` hypertable:
sql SELECT remove_tiering_policy('example');
If you remove a tiering policy, the remaining scheduled chunks are not tiered. However, chunks in tiered storage are not untiered. You [untier chunks manually][manual-tier] to local storage.
### Manually tier and untier chunks
If tiering policies do not meet your current needs, you can tier and untier chunks manually. To do so, [connect to your service][connect-to-service] and run the queries below in the data mode, the SQL editor, or using `psql`.
#### Tier chunks
Tiering a chunk is an asynchronous process that schedules the chunk to be tiered. In the following example, you tier chunks older than three days in the `example` hypertable. You then list the tiered chunks.
1. **Select all chunks in `example` that are older than three days:**
sql SELECT show_chunks('example', older_than => INTERVAL '3 days');
This returns a list of chunks. Take a note of the chunk names:
sql _timescaledb_internal._hyper_1_1_chunk _timescaledb_internal._hyper_1_2_chunk
1. **Call `tier_chunk` to manually tier each chunk:**
sql SELECT tier_chunk('_timescaledb_internal._hyper_1_1_chunk');
1. **Repeat for all chunks you want to tier.**
Tiering a chunk schedules it for migration to the object storage tier, but the migration won't happen immediately. Chunks are tiered one at a time in order to minimize database resource consumption. A chunk is marked as migrated and deleted from the standard storage only after it has been durably stored in the object storage tier. You can continue to query a chunk during migration.
1. **To see which chunks are tiered into the object storage tier, use the `tiered_chunks` informational view:**
```sql
SELECT * FROM timescaledb_osm.tiered_chunks;
```
To see which chunks are scheduled for tiering either by policy or by a manual call, but have not yet been tiered, use this view:
sql SELECT * FROM timescaledb_osm.chunks_queued_for_tiering ;
#### Untier chunks
To update data in a tiered chunk, move it back to the standard high-performance storage tier in Tiger Cloud. Untiering chunks is a synchronous process. Chunks are renamed when the data is untiered.
To untier a chunk, call the `untier_chunk` stored procedure.
1. **Check which chunks are currently tiered:**
```sql
SELECT * FROM timescaledb_osm.tiered_chunks ;
```
Sample output:
```sql
hypertable_schema | hypertable_name | chunk_name | range_start | range_end
-------------------+-----------------+------------------+------------------------+------------------------
public | sample | _hyper_1_1_chunk | 2023-02-16 00:00:00+00 | 2023-02-23 00:00:00+00
(1 row)
```
1. **Call `untier_chunk`**:
```sql
CALL untier_chunk('_hyper_1_1_chunk');
```
1. **See the details of the chunk with `timescaledb_information.chunks`**:
```sql
SELECT * FROM timescaledb_information.chunks;
```
Sample output:
```sql
-[ RECORD 1 ]----------+-------------------------
hypertable_schema | public
hypertable_name | sample
chunk_schema | _timescaledb_internal
chunk_name | _hyper_1_4_chunk
primary_dimension | ts
primary_dimension_type | timestamp with time zone
range_start | 2023-02-16 00:00:00+00
range_end | 2020-03-23 00:00:00+00
range_start_integer |
range_end_integer |
is_compressed | f
chunk_tablespace |
data_nodes |
```
### Disable tiering
If you no longer want to use tiered storage for a particular hypertable, drop the associated metadata by calling `disable_tiering`.
1. **To drop all tiering policies associated with a table, call `remove_tiering_policy`**.
1. **Make sure that there is no tiered data associated with this hypertable**:
1. List the tiered chunks associated with this hypertable:
```sql
select * from timescaledb_osm.tiered_chunks
```
1. If you have any tiered chunks, either untier this data, or drop these chunks from tiered storage.
1. **Use `disable_tiering` to drop all tiering-related metadata for the hypertable**:
sql select disable_tiering('my_hypertable_name');
1. **Verify that tiering has been disabled by listing the hypertables that have tiering enabled**:
sql select * from timescaledb_osm.tiered_hypertables;
===== PAGE: https://docs.tigerdata.com/use-timescale/data-tiering/querying-tiered-data/ =====
# Querying Tiered Data
Once rarely used data is tiered and migrated to the object storage tier, it can still be queried
with standard SQL by enabling the `timescaledb.enable_tiered_reads` GUC.
By default, the GUC is set to `false`, so that queries do not touch tiered data.
The `timescaledb.enable_tiered_reads` GUC, or Grand Unified Configuration variable, is a setting
that controls if tiered data is queried. The configuration variable can be set at different levels,
including globally for the entire database server, for individual databases, and for individual
sessions.
With tiered reads enabled, you can query your data normally even when it's distributed across different storage tiers.
Your hypertable is spread across the tiers, so queries and `JOIN`s work and fetch the same data as usual.
By default, tiered data is not accessed by queries. Querying tiered data may slow down query performance
as the data is not stored locally on the high-performance storage tier. See [Performance considerations](#performance-considerations).
## Enable querying tiered data for a single query
1. Enable `timescaledb.enable_tiered_reads` before querying the hypertable with tiered data and reset it after it is complete:
sql set timescaledb.enable_tiered_reads = true; SELECT count(*) FROM example; set timescaledb.enable_tiered_reads = false;
This queries data from all chunks including tiered chunks and non tiered chunks:
```sql
||count|
|---|
|1000|
```
## Enable querying tiered data for a single session
All future queries within a session can be enabled to use the object storage tier by enabling `timescaledb.enable_tiered_reads` within a session.
1. Enable `timescaledb.enable_tiered_reads` for an entire session:
```sql
set timescaledb.enable_tiered_reads = true;
```
All future queries in that session are configured to read from tiered data and locally stored data.
## Enable querying tiered data in all future sessions
You can also enable queries to read from tiered data always by following these steps:
1. Enable `timescaledb.enable_tiered_reads` for all future sessions:
sql alter database tsdb set timescaledb.enable_tiered_reads = true;
In all future created sessions, `timescaledb.enable_tiered_reads` initializes with `enabled`.
## Query data in the object storage tier
This section illustrates how querying tiered storage works.
Consider a simple database with a standard `devices` table and a `metrics` hypertable. After enabling tiered storage, you can see which chunks are tiered to the object storage tier:
sql
chunk_name | range_start | range_end
------------------+------------------------+------------------------ _hyper_2_4_chunk | 2015-12-31 00:00:00+00 | 2016-01-07 00:00:00+00 _hyper_2_3_chunk | 2017-08-17 00:00:00+00 | 2017-08-24 00:00:00+00 (2 rows)
The following query fetches data only from the object storage tier. This makes sense based on the
`WHERE` clause specified by the query and the chunk ranges listed above for this
hypertable.
sql EXPLAIN SELECT * FROM metrics where ts < '2017-01-01 00:00+00';
QUERY PLAN
Foreign Scan on osm_chunk_2 (cost=0.00..0.00 rows=2 width=20) Filter: (ts < '2017-01-01 00:00:00'::timestamp without time zone) Match tiered objects: 1 Row Groups:
_timescaledb_internal._hyper_2_4_chunk: 0
(5 rows)
If your query does not need to touch the object storage tier, it will only
process the chunks in the standard storage. The following query refers to newer data that is not yet tiered to the object storage tier.
`Match tiered objects :0 ` in the plan indicates that no tiered data matches the query constraint. So data in the object storage is not touched at all.
sql EXPLAIN SELECT * FROM metrics where ts > '2022-01-01 00:00+00';
QUERY PLAN
Append (cost=0.15..25.02 rows=568 width=20) -> Index Scan using _hyper_2_5_chunk_metrics_ts_idx on _hyper_2_5_chunk (co st=0.15..22.18 rows=567 width=20)
Index Cond: (ts > '2022-01-01 00:00:00'::timestamp without time zone)
-> Foreign Scan on osm_chunk_2 (cost=0.00..0.00 rows=1 width=20)
Filter: (ts > '2022-01-01 00:00:00'::timestamp without time zone)
Match tiered objects: 0
Row Groups:
(7 rows)
Here is another example with a `JOIN` that does not touch tiered data:
sql EXPLAIN SELECT ts, device_id, description FROM metrics JOIN devices ON metrics.device_id = devices.id WHERE metrics.ts > '2023-08-01';
QUERY PLAN
Hash Join (cost=32.12..184.55 rows=3607 width=44) Hash Cond: (devices.id = _hyper_4_9_chunk.device_id) -> Seq Scan on devices (cost=0.00..22.70 rows=1270 width=36) -> Hash (cost=25.02..25.02 rows=568 width=12)
-> Append (cost=0.15..25.02 rows=568 width=12)
-> Index Scan using _hyper_4_9_chunk_metrics_ts_idx on _hyper_4_
9_chunk (cost=0.15..22.18 rows=567 width=12)
Index Cond: (ts > '2023-08-01 00:00:00+00'::timestamp with
time zone)
-> Foreign Scan on osm_chunk_3 (cost=0.00..0.00 rows=1 width=12
)
Filter: (ts > '2023-08-01 00:00:00+00'::timestamp with time
zone)
Match tiered objects: 0
Row Groups:
(11 rows)
## Performance considerations
Queries over tiered data are expected to be slower than over local data. However, in a limited number of scenarios tiered reads can impact query planning time over local data as well. In order to prevent any unexpected performance degradation for application queries, we keep the GUC `timescaledb.enable_tiered_reads` set to `false`.
* Queries without time boundaries specified are expected to perform slower when querying tiered data, both during query planning and during query execution. TimescaleDBs chunk exclusion algorithms cannot be applied for this case.
sql SELECT * FROM device_readings WHERE id = 10;
* Queries with predicates computed at runtime (such as `NOW()`) are not always optimized at
planning time and as a result might perform slower than statically assigned values
when querying against the object storage tier.
For example, this query is optimized at planning time:
sql SELECT * FROM metrics WHERE ts > '2023-01-01' AND ts < '2023-02-01'
The following query does not do chunk pruning at query planning time:
sql SELECT * FROM metrics WHERE ts < now() - '10 days':: interval
At the moment, queries against tiered data work best when the query optimizer can apply planning time optimizations.
* Text and non-native types (JSON, JSONB, GIS) filtering is slower when querying tiered data.
===== PAGE: https://docs.tigerdata.com/use-timescale/data-tiering/about-data-tiering/ =====
# About Tiger Cloud storage tiers
The tiered storage architecture in Tiger Cloud includes a high-performance storage tier and a low-cost object storage tier. You use the high-performance tier for data that requires quick access, and the object tier for rarely used historical data. Tiering policies move older data asynchronously and periodically from high-performance to low-cost storage, sparing you the need to do it manually. Chunks from a single hypertable, including compressed chunks, can stretch across these two storage tiers.

## High-performance storage
High-performance storage is where your data is stored by default, until you [enable tiered storage][manage-tiering] and [move older data to the low-cost tier][move-data]. In the high-performance storage, your data is stored in the block format and optimized for frequent querying. The [hypercore row-columnar storage engine][hypercore] available in this tier is designed specifically for real-time analytics. It enables you to compress the data in the high-performance storage by up to 90%, while improving performance. Coupled with other optimizations, Tiger Cloud high-performance storage makes sure your data is always accessible and your queries run at lightning speed.
Tiger Cloud high-performance storage comes in the following types:
- **Standard** (default): based on [AWS EBS gp3][aws-gp3] and designed for general workloads. Provides up to 16 TB of storage and 16,000 IOPS.
- **Enhanced**: based on [EBS io2][ebs-io2] and designed for high-scale, high-throughput workloads. Provides up to 64 TB of storage and 32,000 IOPS.
[See the differences][aws-storage-types] in the underlying AWS storage. You [enable enhanced storage][enable-enhanced] as needed in Tiger Cloud Console.
## Low-cost storage
<Availability products={['cloud']} price_plans={['enterprise', 'scale']} />
Once you [enable tiered storage][manage-tiering], you can start moving rarely used data to the object tier. The object tier is based on AWS S3 and stores your data in the [Apache Parquet][parquet] format. Within a Parquet file, a set of rows is grouped together to form a row group. Within a row group, values for a single column across multiple rows are stored together. The original size of the data in your service, compressed or uncompressed, does not correspond directly to its size in S3. A compressed hypertable may even take more space in S3 than it does in Tiger Cloud.
Apache Parquet allows for more efficient scans across longer time periods, and Tiger Cloud uses other metadata and query optimizations to reduce the amount of data that needs to be fetched to satisfy a query, such as:
- **Chunk skipping**: exclude the chunks that fall outside the query time window.
- **Row group skipping**: identify the row groups within the Parquet object that satisfy the query.
- **Column skipping**: fetch only columns that are requested by the query.
The following query is against a tiered dataset and illustrates the optimizations:
sql EXPLAIN ANALYZE SELECT count(*) FROM ( SELECT device_uuid, sensor_id FROM public.device_readings WHERE observed_at > '2023-08-28 00:00+00' and observed_at < '2023-08-29 00:00+00' GROUP BY device_uuid, sensor_id ) q;
QUERY PLAN
Aggregate (cost=7277226.78..7277226.79 rows=1 width=8) (actual time=234993.749..234993.750 rows=1 loops=1) -> HashAggregate (cost=4929031.23..7177226.78 rows=8000000 width=68) (actual time=184256.546..234913.067 rows=1651523 loops=1)
Group Key: osm_chunk_1.device_uuid, osm_chunk_1.sensor_id
Planned Partitions: 128 Batches: 129 Memory Usage: 20497kB Disk Usage: 4429832kB
-> Foreign Scan on osm_chunk_1 (cost=0.00..0.00 rows=92509677 width=68) (actual time=345.890..128688.459 rows=92505457 loops=1)
Filter: ((observed_at > '2023-08-28 00:00:00+00'::timestamp with time zone) AND (observed_at < '2023-08-29 00:00:00+00'::timestamp with t
ime zone))
Rows Removed by Filter: 4220
Match tiered objects: 3
Row Groups:
_timescaledb_internal._hyper_1_42_chunk: 0-74
_timescaledb_internal._hyper_1_43_chunk: 0-29
_timescaledb_internal._hyper_1_44_chunk: 0-71
S3 requests: 177
S3 data: 224423195 bytes
Planning Time: 6.216 ms Execution Time: 235372.223 ms (16 rows)
`EXPLAIN` illustrates which chunks are being pulled in from the object storage tier:
1. Fetch data from chunks 42, 43, and 44 from the object storage tier.
1. Skip row groups and limit the fetch to a subset of the offsets in the
Parquet object that potentially match the query filter. Only fetch the data
for `device_uuid`, `sensor_id`, and `observed_at` as the query needs only these 3 columns.
The object storage tier is more than an archiving solution. It is also:
- **Cost-effective:** store high volumes of data at a lower cost. You pay only for what you store, with no extra cost for queries.
- **Scalable:** scale past the restrictions of even the enhanced high-performance storage tier.
- **Online:** your data is always there and can be [queried when needed][querying-tiered-data].
By default, tiered data is not included when you query from a Tiger Cloud service. To access tiered data, you [enable tiered reads][querying-tiered-data] for a query, a session, or even for all sessions. After you enable tiered reads, when you run regular SQL queries, a behind-the-scenes process transparently pulls data from wherever it's located: the standard high-performance storage tier, the object storage tier, or both. You can `JOIN` against tiered data, build views, and even define continuous aggregates on it. In fact, because the implementation of continuous aggregates also uses hypertables, they can be tiered to low-cost storage as well.
For low-cost storage, Tiger Data charges only for the size of your data in S3 in the Apache Parquet format, regardless of whether it was compressed in Tiger Cloud before tiering. There are no additional expenses, such as data transfer or compute.
The low-cost storage tier comes with the following limitations:
- **Limited schema modifications**: some schema modifications are not allowed
on hypertables with tiered chunks.
_Allowed_ modifications include: renaming the hypertable, adding columns
with `NULL` defaults, adding indexes, changing or renaming the hypertable
schema, and adding `CHECK` constraints. For `CHECK` constraints, only
untiered data is verified.
Columns can also be deleted, but you cannot subsequently add a new column
to a tiered hypertable with the same name as the now-deleted column.
_Disallowed_ modifications include: adding a column with non-`NULL`
defaults, renaming a column, changing the data type of a
column, and adding a `NOT NULL` constraint to the column.
- **Limited data changes**: you cannot insert data into, update, or delete a
tiered chunk. These limitations take effect as soon as the chunk is
scheduled for tiering.
- **Inefficient query planner filtering for non-native data types**: the query
planner speeds up reads from our object storage tier by using metadata
to filter out columns and row groups that don't satisfy the query. This works for all
native data types, but not for non-native types, such as `JSON`, `JSONB`,
and `GIS`.
* **Latency**: S3 has higher access latency than local storage. This can affect the
execution time of queries in latency-sensitive environments, especially
lighter queries.
* **Number of dimensions**: you cannot use tiered storage with hypertables
partitioned on more than one dimension. Make sure your hypertables are
partitioned on time only, before you enable tiered storage.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/overview/ =====
# About security in Tiger Cloud
Protecting data starts with secure software engineering. At Tiger Data, we embed security into every stage of
development, from static code analysis and automated dependency scanning to rigorous code security reviews.
To go even further, we developed [pgspot](https://github.com/timescale/pgspot), an open-source extension to identify security
issues with Postgres extensions, which strengthens the broader ecosystem as well as our own platform. Tiger Data products do not have any identified weaknesses.

This page lists the additional things we do to ensure operational security and to lock down Tiger Cloud services.
To see our security features at a glance, see [Tiger Data Security][security-at-timescale].
## Role-based access
Tiger Cloud provides role-based access for you to:
* Administer your Tiger Cloud project
In Tiger Cloud Console, users with the Owner, Admin, and Viewer roles have different permissions to manage users and services in the project.
* Manage data in each service
To restrict access to your data on the database level, you can create other roles on top of the default tsdbadmin role.
## Data encryption
Your data on Tiger Cloud is encrypted both in transit and at rest. Both active
databases and backups are encrypted.
Tiger Cloud uses AWS as its cloud provider, with all the security that AWS
provides. Data encryption uses the industry-standard AES-256 algorithm.
Cryptographic keys are managed by
[AWS Key Management Service (AWS KMS)][aws-kms]. Keys are never stored in plaintext.
For more information about AWS security, see the AWS documentation on security
in [Amazon Elastic Compute Cloud][ec2-security] and
[Elastic Block Storage][ebs-security].
## Networking security
Customer access to Tiger Cloud services is only provided over TLS-encrypted
connections. There is no option to use unencrypted plaintext connections.
## Networking with Virtual Private Cloud (VPC) peering
When using VPC peering, **no public Internet-based access** is provided to the
service. Service addresses are published in public DNS, but they can only be
connected to from the customer's peered VPC using private network addresses.
VPC peering only enables communication to be initiated from your Customer VPC to
Tiger Cloud services running in the Tiger Cloud VPC. Tiger Cloud cannot initiate
communication with your VPC. To learn how to set up VPC Peering, see
[Secure your Tiger Cloud services with VPC Peering and AWS PrivateLink][vpc-peering].
## IP address allow lists
You can allow only trusted IP addresses to access your Tiger Cloud services. You do this by
creating [IP address allow lists][ip-allowlist] and attaching them to your services.
## Operator access
Normally all the resources required for providing Tiger Cloud services are
automatically created, maintained and terminated by the Tiger Cloud
infrastructure. No manual operator intervention is required.
However, the Tiger Data operations team has the capability to securely
log in to the service virtual machines for troubleshooting purposes. These
accesses are audit logged.
No customer access to the virtual machine level is provided.
## GDPR compliance
Tiger Data complies with the European Union's General Data Protection Regulation
(GDPR), and all practices are covered by our
[Privacy Policy][timescale-privacy-policy]
and the [Terms of Service][tsc-tos]. All customer data is
processed in accordance with Tiger Data's GDPR-compliant
[Data Processor Addendum][tsc-data-processor-addendum],
which applies to all Tiger Data customers.
Tiger Data operators never access customer data, unless explicitly requested by
the customer to troubleshoot a technical issue. The Tiger Data operations team
has mandatory recurring training regarding the applicable policies.
## HIPAA compliance
The Tiger Cloud [Enterprise plan][pricing-plan-features] is Health Insurance Portability and Accountability Act
(HIPAA) compliant. This allows organizations to securely manage and analyze sensitive healthcare data, ensuring they
meet regulatory requirements while building compliant applications.
## SOC 2 compliance
Tiger Cloud is SOC 2 Type 2 compliant. This ensures that organizations can securely manage customer data in alignment with industry standards for security, availability, processing integrity, confidentiality, and privacy. It helps businesses meet trust requirements while confidently building applications that handle sensitive information. The annual SOC 2 report is available to customers on the Scale or Enterprise pricing plans. Open a [support ticket][open-support-ticket] to get access to it.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/strict-ssl/ =====
# Connect with a stricter SSL mode
The default connection string for Tiger Cloud uses the Secure Sockets Layer (SSL) mode `require`.
Users can choose not to use Transport Layer Security (TLS) while connecting to their databases, but connecting to production databases without encryption is strongly discouraged. To
achieve even stronger security, clients may select to verify the identity of the
server. If you want your connection client to verify the server's identity, you
can connect with an [SSL mode][ssl-modes] of `verify-ca` or `verify-full`. To
do so, you need to store a copy of the certificate chain where your connection
tool can find it.
This section provides instructions for setting up a stricter SSL connection.
## SSL certificates
As part of the secure connection protocol, the server proves its identity by
providing clients with a certificate. This certificate should be issued and
signed by a well-known and trusted Certificate Authority.
Because requesting a certificate from a Certificate Authority takes some time,
Tiger Cloud services are initialized with a self-signed certificate. This
lets you start up a service immediately. After your service is started, a
signed certificate is requested behind the scenes. The new certificate is
usually received within 30 minutes. Your certificate is then replaced
with almost no interruption. Connections are reset, and most clients reconnect
automatically.
With the signed certificate, you can switch your connections to a stricter SSL
mode, such as `verify-ca` or `verify-full`.
For more information on the different SSL modes, see the [Postgres SSL mode
descriptions][ssl-modes].
## Connect to your database with a stricter SSL mode
To set up a stricter SSL connection:
1. Generate a copy of your certificate chain and store it in the right location
1. Change your Tiger Cloud connection string
### Connecting to your database with a stricter SSL mode
1. Use the `openssl` tool to connect to your Tiger Cloud service and get
the certificate bundle. Store the bundle in a file called `bundle.crt`.
Replace `service URL with port` with your Tiger Cloud connection URL:
```shell
openssl s_client -showcerts -partial_chain -starttls postgres \
-connect service URL with port < /dev/null 2>/dev/null | \
awk '/BEGIN CERTIFICATE/,/END CERTIFICATE/{ print }' > bundle.crt
```
1. Copy the bundle to your clipboard:
<Terminal>
```shell
pbcopy < bundle.crt
```
```shell
xclip -sel clip < bundle.crt
```
```shell
clip.exe < bundle.crt
```
</Terminal>
1. Navigate to <https://whatsmychaincert.com/>. This online tool generates a
full certificate chain, including the root Certificate Authority certificate, which is not
included in the certificate bundle returned by the database.
1. Paste your certificate bundle in the provided box.
Check `Include Root Certificate`. Click `Generate Chain`.
1. Save the downloaded certificate chain to `~/.postgresql/root.crt`.
1. Change your Tiger Cloud connection string from `sslmode=require` to
either `sslmode=verify-full` or `sslmode=verify-ca`. For example, to
connect to your database with `psql`, run:
```shell
psql "postgres://tsdbadmin@service URL with port/tsdb?sslmode=verify-full"
```
## Verify the certificate type used by your database
To check whether the certificate has been replaced yet, connect to your
database instance and inspect the returned certificate. We are using two
certificate providers - Google and ZeroSSL, that's why chances are you can have
a certificate issued by either of those CAs:
shell openssl s_client -showcerts -partial_chain -starttls postgres -connect : < /dev/null 2>/dev/null | grep "Google|ZeroSSL"
===== PAGE: https://docs.tigerdata.com/use-timescale/security/transit-gateway/ =====
# Peer your Tiger Cloud services with AWS Transit Gateway
[AWS Transit Gateway][aws-transit-gateway] enables you to securely connect to your Tiger Cloud from AWS, Google Cloud, Microsoft Azure, or any other cloud or on-premise environment.
You use AWS Transit Gateway as a traffic controller for your network. Instead of setting up multiple direct connections to different clouds, on-premise data centers, and other AWS services, you connect everything to AWS Transit Gateway. This simplifies your network and makes it easier to manage and scale.
You can then create a peering connection between your Tiger Cloud services and AWS Transit Gateway in Tiger Cloud. This means that, no matter how big or complex your infrastructure is, you can connect securely to your Tiger Cloud services.
For enhanced security, you can add peering connections to multiple Transit Gateways with overlapping CIDRs—Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID. Otherwise, the existing connection is reused for your services in the same project and region.
To configure this secure connection, you:
1. Connect your infrastructure to AWS Transit Gateway.
1. Create a Tiger Cloud Peering VPC with a peering connection to AWS Transit Gateway.
1. Accept and configure the peering connection on your side.
1. Attach individual services to the Peering VPC.
AWS Transit Gateway enables you to connect from almost any environment, this page provides examples for the most common use cases.
1. **Create a Peering VPC in [Tiger Cloud Console][console-login]**
1. In `Security` > `VPC`, click `Create a VPC`:

1. Choose your region and IP range, name your VPC, then click `Create VPC`:

Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans]. If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your plan in [Tiger Cloud Console][console-login].
1. Add a peering connection:
1. In the `VPC Peering` column, click `Add`.
1. Provide your AWS account ID, Transit Gateway ID, CIDR ranges, and AWS region. Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID.

1. Click `Add connection`.
1. **Accept and configure peering connection in your AWS account**
Once your peering connection appears as `Processing`, you can accept and configure it in AWS:
1. Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as `Connected` in Tiger Cloud Console.
1. Configure at least the following in your AWS account networking:
- Your subnet route table to route traffic to your Transit Gateway for the Peering VPC CIDRs.
- Your Transit Gateway route table to route traffic to the newly created Transit Gateway peering attachment for the Peering VPC CIDRs.
- Security groups to allow outbound TCP 5432.
1. **Attach a Tiger Cloud service to the Peering VPC In [Tiger Cloud Console][console-services]**
1. Select the service you want to connect to the Peering VPC.
1. Click `Operations` > `Security` > `VPC`.
1. Select the VPC, then click `Attach VPC`.
You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
1. **Connect your infrastructure to AWS Transit Gateway**
Establish connectivity between Azure and AWS. See the [AWS architectural documentation][azure-aws] for details.
1. **Create a Peering VPC in [Tiger Cloud Console][console-login]**
1. In `Security` > `VPC`, click `Create a VPC`:

1. Choose your region and IP range, name your VPC, then click `Create VPC`:

Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans]. If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your plan in [Tiger Cloud Console][console-login].
1. Add a peering connection:
1. In the `VPC Peering` column, click `Add`.
1. Provide your AWS account ID, Transit Gateway ID, CIDR ranges, and AWS region. Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID.

1. Click `Add connection`.
1. **Accept and configure peering connection in your AWS account**
Once your peering connection appears as `Processing`, you can accept and configure it in AWS:
1. Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as `Connected` in Tiger Cloud Console.
1. Configure at least the following in your AWS account networking:
- Your subnet route table to route traffic to your Transit Gateway for the Peering VPC CIDRs.
- Your Transit Gateway route table to route traffic to the newly created Transit Gateway peering attachment for the Peering VPC CIDRs.
- Security groups to allow outbound TCP 5432.
1. **Attach a Tiger Cloud service to the Peering VPC In [Tiger Cloud Console][console-services]**
1. Select the service you want to connect to the Peering VPC.
1. Click `Operations` > `Security` > `VPC`.
1. Select the VPC, then click `Attach VPC`.
You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
1. **Connect your infrastructure to AWS Transit Gateway**
Establish connectivity between Google Cloud and AWS. See [Connect HA VPN to AWS peer gateways][gcp-aws].
1. **Create a Peering VPC in [Tiger Cloud Console][console-login]**
1. In `Security` > `VPC`, click `Create a VPC`:

1. Choose your region and IP range, name your VPC, then click `Create VPC`:

Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans]. If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your plan in [Tiger Cloud Console][console-login].
1. Add a peering connection:
1. In the `VPC Peering` column, click `Add`.
1. Provide your AWS account ID, Transit Gateway ID, CIDR ranges, and AWS region. Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID.

1. Click `Add connection`.
1. **Accept and configure peering connection in your AWS account**
Once your peering connection appears as `Processing`, you can accept and configure it in AWS:
1. Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as `Connected` in Tiger Cloud Console.
1. Configure at least the following in your AWS account networking:
- Your subnet route table to route traffic to your Transit Gateway for the Peering VPC CIDRs.
- Your Transit Gateway route table to route traffic to the newly created Transit Gateway peering attachment for the Peering VPC CIDRs.
- Security groups to allow outbound TCP 5432.
1. **Attach a Tiger Cloud service to the Peering VPC In [Tiger Cloud Console][console-services]**
1. Select the service you want to connect to the Peering VPC.
1. Click `Operations` > `Security` > `VPC`.
1. Select the VPC, then click `Attach VPC`.
You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
1. **Connect your infrastructure to AWS Transit Gateway**
Establish connectivity between your on-premise infrastructure and AWS. See the [Centralize network connectivity using AWS Transit Gateway][aws-onprem].
1. **Create a Peering VPC in [Tiger Cloud Console][console-login]**
1. In `Security` > `VPC`, click `Create a VPC`:

1. Choose your region and IP range, name your VPC, then click `Create VPC`:

Your service and Peering VPC must be in the same AWS region. The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans]. If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your plan in [Tiger Cloud Console][console-login].
1. Add a peering connection:
1. In the `VPC Peering` column, click `Add`.
1. Provide your AWS account ID, Transit Gateway ID, CIDR ranges, and AWS region. Tiger Cloud creates a new isolated connection for every unique Transit Gateway ID.

1. Click `Add connection`.
1. **Accept and configure peering connection in your AWS account**
Once your peering connection appears as `Processing`, you can accept and configure it in AWS:
1. Accept the peering request coming from Tiger Cloud. The request can take up to 5 min to arrive. Within 5 more minutes after accepting, the peering should appear as `Connected` in Tiger Cloud Console.
1. Configure at least the following in your AWS account networking:
- Your subnet route table to route traffic to your Transit Gateway for the Peering VPC CIDRs.
- Your Transit Gateway route table to route traffic to the newly created Transit Gateway peering attachment for the Peering VPC CIDRs.
- Security groups to allow outbound TCP 5432.
1. **Attach a Tiger Cloud service to the Peering VPC In [Tiger Cloud Console][console-services]**
1. Select the service you want to connect to the Peering VPC.
1. Click `Operations` > `Security` > `VPC`.
1. Select the VPC, then click `Attach VPC`.
You cannot attach a Tiger Cloud service to multiple Tiger Cloud VPCs at the same time.
You can now securely access your services in Tiger Cloud.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/ip-allow-list/ =====
# IP allow list
You can restrict access to your Tiger Cloud services to trusted IP addresses only. This prevents unauthorized connections without the need for a [Virtual Private Cloud][vpc-peering]. Creating IP allow lists helps comply with security standards such as SOC 2 or HIPAA that require IP filtering. This is especially useful in regulated industries like finance, healthcare, and government.
For a more fine-grained control, you create separate IP allow lists for [the ops mode and the data mode][modes].
## Create and attach an IP allow list in the ops mode
You create an IP allow list at the [project level][members], then attach your service to it.
You attach a service to either one VPC, or one IP allow list. You cannot attach a service to a VPC and an IP allow list at the same time.
1. **In [Tiger Cloud Console][console], select `Security` > `IP Allow List`, then click `Create IP Allow List`**

1. **Enter your trusted IP addresses**
The number of IP addresses that you can include in one list depends on your [pricing plan][pricing-plans].

1. **Name your allow list and click `Create IP Allow List`**
Click `+ Create IP Allow List` to create another list. The number of IP allow lists you can create depends on your [pricing plan][pricing-plans].
1. **Select a Tiger Cloud service, then click `Operations` > `Security` > `IP Allow List`**

1. **Select the list in the drop-down and click `Apply`**
1. **Type `Apply` in the confirmation popup**
You have created and attached an IP allow list for the operations available in the ops mode. You can unattach or change the list attached to a service from the same tab.
## Create an IP allow list in the data mode
You create an IP allow list in the data mode settings.
1. **In [Tiger Cloud Console][console], toggle `Data`**
1. **Click the project name in the upper left corner, then select `Settings`**
1. **Scroll down and toggle `IP Allowlist`**
1. **Add IP addresses**
1. Click `Add entry`.
1. Enter an IP address or a range of IP addresses.
1. Click `Add`.
1. When all the IP addresses have been added, click `Apply`.
1. Click `Confirm`.
You have successfully added an IP allow list for querying your service in the data mode.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/multi-factor-authentication/ =====
# Multi-factor user authentication
You can use two-factor authentication to log in to your Tiger Data account. Two-factor authentication, also known as two-step verification or 2FA, enables
secure logins that require an authentication code in addition to your user
password. The code is provided by an authenticator app on your mobile device. There are multiple authenticator apps available.

This page describes how to configure two-factor authentication with Google Authenticator.
## Prerequisites
Before you begin, make sure you have:
* Installed the [Google Authenticator application][install-google-authenticator]
on your mobile device.
## Configure two-factor authentication with Google Authenticator
Take the following steps to configure two-factor authentication:
1. Log in to [Tiger Cloud Console][cloud-login] with your username and password. 2FA is not available if you log in with Google SSO.
1. Click the `User name` icon in the bottom left of Tiger Cloud Console and select `Account`.
1. In `Account`, click `Add two-factor authentication`.
1. On your mobile device, open Google Authenticator, tap `+`, and select
`Scan a QR code`.
1. Scan the QR code provided by Tiger Cloud Console in `Connect to an authenticator app` and click `Next`.
1. In Tiger Cloud Console, enter the verification code provided by Google Authenticator, and click `Next`.
1. In `Save your recovery codes`, copy, download, or print the
recovery codes. These are used to recover
your account if you lose your device.
1. Verify that you have saved your recovery codes, by clicking `OK, I saved my
recovery codes`.
1. If two-factor authentication is enabled correctly, an email notification is
sent to you.
If you lose access to the mobile device you use for multi-factor authentication,
and you do not have access to your recovery codes, you cannot sign in to your
Tiger Data account. To regain access to your account,
contact [support@tigerdata.com](mailto:support@tigerdata.com).
## Regenerate recovery codes
If you do not have access to your authenticator app and need to log in to
Tiger Cloud Console, you can use your recovery codes. Recovery codes are single-use. If you've used all 10
recovery codes, or lost access to them, you can generate another list. Generating a new list invalidates all previously generated codes.
1. Log in to [Tiger Cloud Console][cloud-login] with your username and password.
1. Click the `User name` icon in the bottom left and select `Account`.
1. In `Account`, navigate to `Two-factor authentication`.
1. Click `Regenerate recovery codes`.
1. In `Two-factor authentication`, enter the verification code from
your authenticator app.
Alternatively, if you do not have access to the authenticator app,
click `Use recovery code instead` to enter a recovery code.
1. Click `Next`.
1. In `Save your recovery codes`, copy, download, or print the
recovery codes. These are used to recover
your account if you lose your device.
1. Verify that you have saved your recovery codes, by clicking `OK, I saved my recovery codes`.
## Remove two-factor authentication
If you need to enroll a new device for two-factor authentication, you can
remove two-factor authentication from your account and then add it
again with your new device.
1. Log in to [Tiger Cloud Console][cloud-login] with your username and password.
1. Click the `User name` icon in the bottom left of Tiger Cloud Console and select `Account`.
1. In `Account`, navigate to `Two-factor authentication`.
1. Click `Remove two-factor authentication`.
1. Enter the verification code from your authenticator app to confirm. Alternatively click `Use recovery code instead` to type the
recovery code.
1. Click `Remove`.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/client-credentials/ =====
# Client credentials
You can use client credentials to programmatically access resources instead
of using your username and password. You can generate multiple client
credentials for different applications or use cases rather than a single set of
user credentials for everything.
## Create client credentials
When you create client credentials, a public key and a private key are generated.
These keys act as the username and password for programmatic client
applications. It is important that you save these keys in a safe place. You can
also delete these client credentials when the client applications no longer need
access to Tiger Cloud resources. For more information about obtaining an access
token programmatically, see the
[Tiger Cloud Terraform provider documentation][terraform-provider].
### Creating client credentials
1. [Log in to your Tiger Data account][cloud-login].
1. Navigate to the `Project Settings` page to create client credentials for
your project.
1. In the `Project Settings` page, click `Create credentials`.
1. In the `New client credentials` dialog, you can view the `Public key` and the
`Secret Key`.
Copy your secret key and store it in a secure place. You won't be able to
view the `Secret Key` again in the console.
1. Click `Done`.
You can use these keys in your client applications to access Tiger Cloud
resources inside the respective project.
Tiger Cloud generates a default `Name` for the client credentials.
1. Click the ⋮ menu and select `Rename credentials`.
1. In the `Edit credential name` dialog, type the new name and click `Accept`.
### Deleting client credentials
1. [Log in to your Tiger Data account][cloud-login].
1. Navigate to the `Project Settings` page to view client credentials for
your project.
1. In the `Project Settings` page, click the ⋮ menu of the client credential,
and select `Delete`.
1. In the `Are you sure` dialog, type the name of the client credential, and
click `Delete`.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/members/ =====
# Control access to Tiger Cloud projects
When you sign up for a [30-day free trial][sign-up], Tiger Cloud creates a project with built-in role-based access.
This includes the following roles:
- **Owner**: Tiger Cloud assigns this role to you when your project is created. As the Owner, you can add and delete other users, transfer project ownership, administer services, and edit project settings.
- **Admin**: the Owner assigns this role to other users in the project. A user with the Admin role has the same scope of rights as the Owner but cannot transfer project ownership.
- **Developer**: the Owner and Admins assign this role to other users in the project. A Developer can build, deploy, and operate services across projects, but does not have administrative privileges over users, roles, or billing. A Developer can invite other users to the project, but only with the Viewer role.
- **Viewer**: the Owner and Admins assign this role to other users in the project. A Viewer has limited, read-only access to Tiger Cloud Console. This means that a Viewer cannot modify services and their configurations in any way. A Viewer has no access to the data mode and has read-queries-only access to SQL editor.

If you have the [Enterprise pricing plan][pricing-plans], you can use your company [SAML][saml]
identity provider to log in to Console.
User roles in a Tiger Cloud project do not overlap with the database-level roles for the individual services. This page describes the project roles available in Console. For the database-level user roles, see [Manage data security in your Tiger Cloud service][database-rbac].
## Add a user to your project
New users do not need to have a Tiger Data account before you add them, they are
prompted to create one when they respond to the confirmation email. Existing users
join a project in addition to the other projects they are already members of.
To add a user to a project:
1. In [Tiger Cloud Console][cloud-login], click `Invite users`, then click `Add new user`.
1. Type the email address of the person that you want to add, select their role, and click `Invite
user`.

[Enterprise pricing plan][pricing-plans] and SAML users receive a notification in Console. Users in the
other pricing plans receive a confirmation email. The new user then [joins the project][join-a-project].
## Join a project
When you are asked to join a project, Tiger Cloud Console sends you an invitation email. Follow the
instructions in the invitation email to join the project:
1. **In the invitation email, click `Accept Invite`**
Tiger Cloud opens.
1. **Follow the setup wizard and create a new account**
You are added to the project you were invited to.
1. **In the invitation email, click `Accept Invite`**
Tiger Cloud Console opens, and you are added to the project.
1. **Log in to Console using your company's identity provider**
1. **Click `Notifications`, then accept the invitation**
Tiger Cloud Console opens, and you are added to the project. As you are now included in more than one project, you can easily [change projects][change-project].
## Resend a project invitation
Project invitations are valid for 7 days. To resend a project invitation:
1. In [Tiger Cloud Console][cloud-login], click `Invite users`.
1. Next to the person you want to invite to your project, click `Resend invitation`.

## Change your current project
To change the project you are currently working in:
1. In [Tiger Cloud Console][cloud-login], click the project name > `Current project` in the top left.

1. Select the project you want to use.
## Transfer project ownership
Each Tiger Cloud project has one Owner. As the project Owner, you have rights to
add and delete users, edit project settings, and transfer the Owner role to another user. When you transfer
ownership to another user, you lose your ownership rights.
To transfer project ownership:
1. In [Tiger Cloud Console][cloud-login], click `Invite users`.
1. Next to the person you want to transfer project ownership to, click `⋮` > `Transfer project ownership`.

If you are unable to transfer ownership, hover over the greyed out button to see the details.
1. Enter your password, and click `Verify`.
1. Complete the two-factor authentication challenge and click `Confirm`.
If you have the [Enterprise pricing plan][pricing-plans], and log in to Tiger Cloud using [SAML authentication][saml]
or have not enabled [two-factor authentication][2fa], [contact support](https://www.tigerdata.com/contact) to transfer
project ownership.
## Leave a project
To stop working in a project:
1. In [Tiger Cloud Console][cloud-login], click `Invite users`.
1. Click `⋮` > `Leave project`, then click `Leave`.
Your account is removed from the project immediately, you can no longer access this project.
## Change roles of other users in a project
The Owner can change the roles of all users in the project. An Admin can change the roles of all users other than the Owner. Developer and Viewer cannot change the roles of other users.
To change the role for another user:
1. In [Tiger Cloud Console][cloud-login], click `Invite users`.
1. Next to the corresponding user, select another role in the dropdown.

The user role is changed immediately.
## Remove users from a project
To remove a user's access to a project:
1. In [Tiger Cloud Console][cloud-login], click `Invite users`.
1. Next to the person you want to remove, click `⋮` > `Remove`.

1. In `Remove user`, click `Remove`.
The user is deleted immediately, they can no longer access your project.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/vpc/ =====
# Virtual Private Cloud
You use Virtual Private Cloud (VPC) peering to ensure that your Tiger Cloud services are
only accessible through your secured AWS infrastructure. This reduces the potential
attack vector surface and improves security.
The data isolation architecture that ensures a highly secure connection between your apps and
Tiger Cloud is:

Your customer apps run inside your AWS Customer VPC, your Tiger Cloud services always run
inside the secure Tiger Cloud VPC. You control secure communication between apps in
your VPC and your services using a dedicated Peering VPC. The AWS PrivateLink connecting
Tiger Cloud VPC to the dedicated Peering VPC gives the same level of protection as using a direct
AWS PrivateLink connection. It only enables communication to be initiated from your Customer VPC
to services running in the Tiger Cloud VPC. Tiger Cloud cannot initiate communication with your Customer VPC.
To configure this secure connection, you first create a Peering VPC with
AWS PrivateLink in Tiger Cloud Console. After you have accepted and configured the
peering connection to your Customer VPC, you use AWS Security Groups to
restrict the apps in your Customer VPC that are visible to the Peering VPC.
The last step is to attach individual services to the Peering VPC in Tiger Cloud Console.
* You create each Peering VPC on a [Tiger Cloud project level][project-members].
* You **can attach**:
* Up to 50 Customer VPCs to a Peering VPC.
* A Tiger Cloud service to a single Peering VPC at a time.
The service and the Peering VPC must be in the same AWS region. However, you can peer a Customer VPC and a Peering VPC that are in different regions.
* Multiple Tiger Cloud services to the same Peering VPC.
* You **cannot attach** a Tiger Cloud service to multiple Peering VPCs at the same time.
The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans].
If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your pricing plan in [Tiger Cloud Console][console-login].
## Prerequisites
To set up VPC peering, you need the following permissions in your AWS account:
* Accept VPC peering requests
* Configure route table rules
* Configure security group and firewall rules
## Set up a secured connection between Tiger Cloud and AWS
To connect to a Tiger Cloud service using VPC peering, your apps and infrastructure must be already
running in an Amazon Web Services (AWS) VPC. You can peer your VPC from any AWS region.
However, your Peering VPC must be within one of the [Cloud-supported regions][tsc-regions].
The stages to create a secured connection between Tiger Cloud services and your AWS infrastructure are:
1. [Create a Peering VPC in Tiger Cloud Console][aws-vpc-setup-vpc]
1. [Complete the VPC connection in your AWS][aws-vpc-complete]
1. [Set up security groups in your AWS][aws-vpc-security-groups]
1. [Attach a Tiger Cloud service to the Peering VPC][aws-vpc-connect-vpcs]
### Create a Peering VPC in Tiger Cloud Console
Create the VPC and the peering connection that enables you to securely route traffic
between Tiger Cloud and your Customer VPC in a logically isolated virtual network.
1. **In [Tiger Cloud Console > Security > VPC][console-vpc], click `Create a VPC`**

1. **Choose your region and IP range, name your VPC, then click `Create VPC`**

The IP ranges of the Peering VPC and Customer VPC should not overlap.
1. **For as many peering connections as you need**:
1. In the `VPC Peering` column, click `Add`.
2. Enter information about your existing Customer VPC, then click `Add Connection`.

* You **can attach**:
* Up to 50 Customer VPCs to a Peering VPC.
* A Tiger Cloud service to a single Peering VPC at a time.
The service and the Peering VPC must be in the same AWS region. However, you can peer a Customer VPC and a Peering VPC that are in different regions.
* Multiple Tiger Cloud services to the same Peering VPC.
* You **cannot attach** a Tiger Cloud service to multiple Peering VPCs at the same time.
The number of Peering VPCs you can create in your project depends on your [pricing plan][pricing-plans].
If you need another Peering VPC, either contact [support@tigerdata.com](mailto:support@tigerdata.com) or change your pricing plan in [Tiger Cloud Console][console-login].
Tiger Cloud sends a peering request to your AWS account so you can [complete the VPC connection in AWS][aws-vpc-complete].
### Complete the VPC connection in AWS
When you receive the Tiger Cloud peering request in AWS, edit your routing table to match
the `IP Range` and `CIDR block` between your Customer and Peering VPCs.
When you peer a VPC with multiple CIDRs, all CIDRs are added to the Tiger Cloud rules automatically.
After you have finished peering, further changes in your VPC's CIDRs are not detected automatically.
If you need to refresh the CIDRs, recreate the peering connection.
The request acceptance process is an important safety mechanism. Do not accept a
peering request from an unknown account.
1. **In [AWS > VPC Dashboard > Peering connections][aws-dashboard], select the peering connection
request from Tiger Cloud**
Copy the peering connection ID to the clipboard. The connection request starts with `pcx-`.
1. **In the peering connection, click `Route Tables`, then select the `Route Table ID`
that corresponds to your VPC**
1. **In `Routes`, click `Edit routes`**
You see the list of existing destinations.
.
If you do not already have a destination that corresponds to the `IP range / CIDR block` of
your Peering VPC:
1. Click `Add route`, and set:
* `Destination`: the CIDR block of your Peering VPC. For example: `10.0.0.7/17`.
* `Target`: the peering connection ID you copied to your clipboard.
2. Click `Save changes`.
Network traffic is secured between your AWS account and Tiger Cloud for this project.
### Set up security groups in AWS
Security groups allow specific inbound and outbound traffic at the resource level.
You can associate a VPC with one or more security groups, and each instance in your
VPC may belong to a different set of security groups. The security group choices
for your VPC are:
* Create a security group to use for your Tiger Cloud VPC only.
* Associate your VPC with an existing security group.
* Do nothing, your VPC is automatically associated with the default one.
To create a security group specific to your Tiger Cloud Peering VPC:
1. **[AWS > VPC Dashboard > Security Groups][aws-security-groups], click `Create security group`**
1. **Enter the rules for this security group**:
<img class="main-content__illustration"
src="https://assets.timescale.com/docs/images/aws-vpc-securitygroup.webp"
alt="The AWS Security Groups dashboard"/>
* `VPC`: select the VPC that is peered with Tiger Cloud.
* `Inbound rules`: leave empty.
* `Outbound rules`:
* `Type`: `Custom TCP`
* `Protocol`: `TCP`
* `Port range`: `5432`
* `Destination`: `Custom`
* `Info`: the CIDR block of your Tiger Cloud Peering VPC.
1. **Click `Add rule`, then click `Create security group`**
### Attach a Tiger Cloud service to the Peering VPC
Now that Tiger Cloud is communicating securely with your AWS infrastructure, you can attach
one or more services to the Peering VPC.
After you attach a service to a Peering VPC, you can only access it through the peered
AWS VPC. It is no longer accessible using the public internet.
1. **In [Tiger Cloud Console > Services][console-services] select the service you want to
connect to the Peering VPC**
1. **Click `Operations` > `Security` > `VPC`**
1. **Select the VPC, then click `Attach VPC`**
And that is it, your service is now securely communicating with your AWS
account inside a VPC.
## Migrate a Tiger Cloud service between VPCs
To ensure that your applications continue to run without interruption, you keep
service attached to the Peering VPC. However, you can change the Peering VPC your
service is attached to, or disconnect from the Peering VPC and enable access to the
service from the public internet.
Tiger Cloud uses a different DNS for services that are attached to a Peering VPC.
When you migrate a service between public access and a Peering VPC, you need
to update your connection string.
1. **In [Tiger Cloud Console > Services][console-services] select the service to migrate**
If you don't have a service, [create a new one][create-service].
1. **Click `Operations` > `Security` > `VPC`**
1. **Select the VPC, then click `Attach VPC`**
Migration takes a few minutes to complete and requires a change to DNS settings for the
service. The service is not accessible during this time. If you receive a DNS error, allow
some time for DNS propagation.
===== PAGE: https://docs.tigerdata.com/use-timescale/security/read-only-role/ =====
# Manage data security in your Tiger Cloud service
When you create a service, Tiger Cloud assigns you the tsdmadmin role. This role has full permissions to modify data in your service. However, Tiger Cloud does not provide superuser access. tsdmadmin is not a superuser.
As tsdmadmin, you can use standard Postgres means to create other roles or assign individual permissions. This page shows you how to create a read-only role for your database. Adding a read-only role does not provide resource isolation. To restrict the access of a read-only user, as well as isolate resources, create a [read replica][read-scaling] instead.
The database-level roles for the individual services in your project do not overlap with the Tiger Cloud project user roles. This page describes the database-level roles. For user roles available in Console, see [Control user access to Tiger Cloud projects][console-rbac].
## Create a read-only user
You can create a read-only user to provide limited access to your database.
1. Connect to your service as the tsdbadmin user.
1. Create the new role:
```sql
CREATE ROLE readaccess;
```
1. Grant the appropriate permissions for the role, as required. For example, to
grant `SELECT` permissions to a specific table, use:
```sql
GRANT SELECT ON TO readaccess;
```
To grant `SELECT` permissions to all tables in a specific schema, use:
```sql
GRANT SELECT ON ALL TABLES IN SCHEMA <SCHEMA_NAME> TO readaccess;
```
1. Create a new user:
```sql
CREATE USER read_user WITH PASSWORD 'read_password';
```
1. Assign the role to the new user:
```sql
GRANT readaccess TO read_user;
```
===== PAGE: https://docs.tigerdata.com/use-timescale/security/saml/ =====
# SAML (Security Assertion Markup Language)
Tiger Cloud offers SAML authentication as part of its [Enterprise][enterprise-tier] offering. SAML (Security Assertion Markup Language) is an open standard for exchanging authentication and authorization data between parties. With SAML enabled Tiger Cloud customers can log into their Tiger Data account using their existing SSO service provider credentials.
Tiger Cloud supports most SAML providers that can handle IDP-initiated login
### SAML offers many benefits for the Enterprise including:
- Improved security: SAML centralizes user authentication with an identity provider (IdP). This makes it more difficult for attackers to gain access to user accounts.
- Reduced IT costs: SAML can help companies reduce IT costs by eliminating the need to manage multiple user accounts and passwords.
- Improved user experience: SAML makes it easier for users to access multiple applications and resources.
### Reach out to your CSM/sales contact to get started. The connection process looks like the following:
1. Configure the IdP to support SAML authentication. This will involve creating a new application and configuring the IdP with the settings provided by your contact.
1. Provide your contact with the requested details about your IdP.
1. Test the SAML authentication process to make sure that it is working correctly.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/alter/ =====
# Altering and updating table schemas
To modify the schema of an existing hypertable, you can use the `ALTER TABLE`
command. When you change the hypertable schema, the changes are also propagated
to each underlying chunk.
While you can change the schema of an existing hypertable, you cannot change
the schema of a continuous aggregate. For continuous aggregates, the only
permissible changes are renaming a view, setting a schema, changing the owner,
and adjusting other parameters.
For example, to add a new column called `address` to a table called `distributors`:
sql ALTER TABLE distributors ADD COLUMN address varchar(30);
This creates the new column, with all existing entries recording `NULL` for the
new column.
Changing the schema can, in some cases, consume a lot of resources. This is
especially true if it requires underlying data to be rewritten. If you want to
check your schema change before you apply it, you can use a `CHECK` constraint,
like this:
sql ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);
This scans the table to verify that existing rows meet the constraint, but does
not require a table rewrite.
For more information, see the
[Postgres ALTER TABLE documentation][postgres-alter-table].
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/about-constraints/ =====
# About constraints
Constraints are rules that apply to your database columns. This prevents you
from entering invalid data into your database. When you create, change, or
delete constraints on your hypertables, the constraints are propagated to the
underlying chunks, and to any indexes.
Hypertables support all standard Postgres constraint types. For foreign keys in particular, the following is supported:
- Foreign key constraints from a hypertable referencing a regular table
- Foreign key constraints from a regular table referencing a hypertable
Foreign keys from a hypertable referencing another hypertable **are not supported**.
For example, you can create a table that only allows positive device IDs, and
non-null temperature readings. You can also check that time values for all
devices are unique. To create this table, with the constraints, use this
command:
sql CREATE TABLE conditions (
time TIMESTAMPTZ
temp FLOAT NOT NULL,
device_id INTEGER CHECK (device_id > 0),
location INTEGER REFERENCES locations (id),
PRIMARY KEY(time, device_id)
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
This example also references values in another `locations` table using a foreign
key constraint.
Time columns used for partitioning must not allow `NULL` values. A
`NOT NULL` constraint is added by default to these columns if it doesn't already exist.
For more information on how to manage constraints, see the
[Postgres docs][postgres-createconstraint].
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/about-indexing/ =====
# About indexes
Because looking up data can take a long time, especially if you have a lot of
data in your hypertable, you can use an index to speed up read operations from
non-compressed chunks in the rowstore (which use their [own columnar indexes][about-compression]).
You can create an index on any combination of columns. To define an index as a `UNIQUE` or `PRIMARY KEY` index, it must include the partitioning column (this is usually the time column).
Which column you choose to create your
index on depends on what kind of data you have stored.
When you create a hypertable, set the datatype for the `time` column as
`timestamptz` and not `timestamp`.
For more information, see [Postgres timestamp][postgresql-timestamp].
While it is possible to add an index that does not include the `time` column,
doing so results in very slow ingest speeds. For time-series data, indexing
on the time column allows one index to be created per chunk.
Consider a simple example with temperatures collected from two locations named
`office` and `garage`:
An index on `(location, time DESC)` is organized like this:
sql garage-0940 garage-0930 garage-0920 garage-0910 office-0930 office-0920 office-0910
An index on `(time DESC, location)` is organized like this:
sql 0940-garage 0930-garage 0930-office 0920-garage 0920-office 0910-garage 0910-office
A good rule of thumb with indexes is to think in layers. Start by choosing the
columns that you typically want to run equality operators on, such as
`location = garage`. Then finish by choosing columns you want to use range
operators on, such as `time > 0930`.
As a more complex example, imagine you have a number of devices tracking
1,000 different retail stores. You have 100 devices per store, and 5 different
types of devices. All of these devices report metrics as `float` values, and you
decide to store all the metrics in the same table, like this:
sql CREATE TABLE devices (
time timestamptz,
device_id int,
device_type int,
store_id int,
value float
);
When you create this table, an index is automatically generated on the time
column, making it faster to query your data based on time.
If you want to query your data on something other than time, you can create
different indexes. For example, you might want to query data from the last month
for just a given `device_id`. Or you could query all data for a single
`store_id` for the last three months.
You want to keep the index on time so that you can quickly filter for a given
time range, and add another index on `device_id` and `store_id`. This creates a
composite index. A composite index on `(store_id, device_id, time)` orders by
`store_id` first. Each unique `store_id`, will then be sorted by `device_id` in
order. And each entry with the same `store_id` and `device_id` are then ordered
by `time`. To create this index, use this command:
sql CREATE INDEX ON devices (store_id, device_id, time DESC);
When you have this composite index on your hypertable, you can run a range of
different queries. Here are some examples:
sql SELECT * FROM devices WHERE store_id = x
This queries the portion of the list with a specific `store_id`. The index is
effective for this query, but could be a bit bloated; an index on just
`store_id` would probably be more efficient.
sql SELECT * FROM devices WHERE store_id = x, time > 10
This query is not effective, because it would need to scan multiple sections of
the list. This is because the part of the list that contains data for
`time > 10` for one device would be located in a different section than for a
different device. In this case, consider building an index on `(store_id, time)`
instead.
sql SELECT * FROM devices WHERE device_id = M, time > 10
The index in the example is useless for this query, because the data for
`device M` is located in a completely different section of the list for each
`store_id`.
sql SELECT * FROM devices WHERE store_id = M, device_id = M, time > 10
This is an accurate query for this index. It narrows down the list to a very
specific portion.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/json/ =====
# JSONB support for semi-structured data
You can use JSON and JSONB to provide semi-structured data. This is most useful
for data that contains user-defined fields, such as field names that are defined
by individual users and vary from user to user. We recommend using this in a
semi-structured way, for example:
sql CREATE TABLE metrics ( time TIMESTAMPTZ, user_id INT, device_id INT, data JSONB );
When you are defining a schema using JSON, ensure that common fields, such as
`time`, `user_id`, and `device_id`, are pulled outside of the JSONB structure
and stored as columns. This is because field accesses are more efficient on
table columns than inside JSONB structures. Storage is also more efficient.
You should also use the JSONB data type, that is, JSON stored in a binary
format, rather than JSON data type. JSONB data types are more efficient in both
storage overhead and lookup performance.
Use JSONB for user-defined data rather than sparse data. This works best for most
data sets. For sparse data, use NULLable fields and, if possible, run on top of
a compressed file system like ZFS. This will work better than a JSONB data type,
unless the data is extremely sparse, for example, more than 95% of fields for a
row are empty.
## Index the JSONB structure
When you index JSONB data across all fields, it is usually best to use a GIN
(generalized inverted) index. In most cases, you can use the default GIN
operator, like this:
sql CREATE INDEX idxgin ON metrics USING GIN (data);
For more information about GIN indexes, see the
[Postgres documentation][json-indexing].
This index only optimizes queries where the `WHERE` clause uses the `?`, `?&`,
`?|`, or `@>` operator. For more information about these operators, see the
[Postgres documentation][json-operators].
## Index individual fields
JSONB columns sometimes have common fields containing values that are useful to
index individually. Indexes like this can be useful for ordering operations on
field values, [multicolumn indexes][multicolumn-index], and indexes on
specialized types, such as a postGIS geography type. Another advantage of
indexes on individual field values is that they are often smaller than GIN
indexes on the entire JSONB field. To create an index like this, it is usually
best to use a [partial index][partial-index] on an [expression][expression-index]
accessing the field. For example:
sql CREATE INDEX idxcpu ON metrics(((data->>'cpu')::double precision)) WHERE data ? 'cpu';
In this example, the expression being indexed is the `cpu` field inside the
`data` JSONB object, cast to a double. The cast reduces the size of the index by
storing the much smaller double, instead of a string. The `WHERE` clause ensures
that the only rows included in the index are those that contain a `cpu` field,
because the `data ? 'cpu'` returns `true`. This also serves to reduce the size
of the index by not including rows without a `cpu` field. Note that in order for
a query to use the index, it must have `data ? 'cpu'` in the WHERE clause.
This expression can also be used with a multi-column index, for example, by
adding `time DESC` as a leading column. Note, however, that to enable index-only
scans, you need `data` as a column, not the full expression
`((data->>'cpu')::double precision)`.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/about-tablespaces/ =====
# About tablespaces
Tablespaces are used to determine the physical location of the tables and
indexes in your database. In most cases, you want to use faster storage to store
data that is accessed frequently, and slower storage for data that is accessed
less often.
Hypertables consist of a number of chunks, and each chunk can be located in a
specific tablespace. This allows you to grow your hypertables across many disks.
When you create a new chunk, a tablespace is automatically selected to store the
chunk's data.
You can attach and detach tablespaces on a hypertable. When a disk runs
out of space, you can [detach][detach_tablespace] the full tablespace from the
hypertable, and than [attach][attach_tablespace] a tablespace associated with a
new disk. To see the tablespaces for you hypertable, use the
[`show_tablespaces`][show_tablespaces]
command.
## How hypertable chunks are assigned tablespaces
A hypertable can be partitioned in multiple dimensions, but only one of the
dimensions is used to determine the tablespace assigned to a particular
hypertable chunk. If a hypertable has one or more hash-partitioned, or space,
dimensions, it uses the first hash-partitioned dimension. Otherwise, it uses the
first time dimension.
This strategy ensures that hash-partitioned hypertables have chunks co-located
according to hash partition, as long as the list of tablespaces attached to the
hypertable remains the same. Modulo calculation is used to pick a tablespace, so
there can be more partitions than tablespaces. For example, if there are two
tablespaces, partition number three uses the first tablespace.
Hypertables that are only time-partitioned add new partitions continuously, and
therefore have chunks assigned to tablespaces in a way similar to round-robin.
It is possible to attach more tablespaces than there are partitions for the
hypertable. In this case, some tablespaces remain unused until others are detached
or additional partitions are added. This is especially true for hash-partitioned
tables.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/about-schemas/ =====
# Table management
A database schema defines how the tables and indexes in your database are
organized. Using a schema that is appropriate for your workload can result in
significant performance improvements. Conversely, using a poorly suited schema
can result in significant performance degradation.
If you are working with semi-structured data, such as readings from IoT sensors
that collect varying measurements, you might need a flexible schema. In this
case, you can use Postgres JSON and JSONB data types.
TimescaleDB supports all table objects supported within Postgres, including
data types, indexes, and triggers. However, when you create a hypertable, set the
datatype for the `time` column as `timestamptz` and not `timestamp`. For more
information, see [Postgres timestamp][postgresql-timestamp].
This section explains how to design your schema, how indexing and tablespaces
work, and how to use Postgres constraint types. It also includes examples to
help you create your own schema, and learn how to use JSON and JSONB for
semi-structured data.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/indexing/ =====
# Indexing data
You can use an index on your database to speed up read operations. You can
create an index on any combination of columns. TimescaleDB supports all table objects supported
within Postgres, including data types, indexes, and triggers.
You can create an index using the `CREATE INDEX` command. For example, to create
an index that sorts first by `location`, then by `time`, in descending order:
sql CREATE INDEX ON conditions (location, time DESC);
You can run this command before or after you convert a regular Postgres table
to a hypertable.
## Default indexes
Some indexes are created by default when you perform certain actions on your
database.
When you create a hypertable with a call to [`CREATE TABLE`][hypertable-create-table], a time index
is created on your data. If you want to manually create a time index, you can use this command:
sql CREATE INDEX ON conditions (time DESC);
You can also create an additional index on another column and time. For example:
sql CREATE INDEX ON conditions (location, time DESC);
TimescaleDB also creates sparse indexes per compressed chunk for optimization. You can manually set up those indexes when you call [`CREATE TABLE`][hypertable-create-table] or [`ALTER_TABLE`][alter-table].
For more information about the order to use when declaring indexes, see the
[about indexing][about-index] section.
If you do not want to create default indexes, you can set
`create_default_indexes` to `false` when you create a hypertable. For example:
sql CREATE TABLE conditions ( time TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, device TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL ) WITH ( tsdb.hypertable, tsdb.partition_column='time', tsdb.create_default_indexes=false );
## OldCreateHypertable
Refer to the installation documentation for detailed setup instructions.
## Best practices for indexing
If you have sparse data, with columns that are often NULL, you can add a clause
to the index, saying `WHERE column IS NOT NULL`. This prevents the index from
indexing NULL data, which can lead to a more compact and efficient index. For
example:
sql CREATE INDEX ON conditions (time DESC, humidity) WHERE humidity IS NOT NULL;
To define an index as a `UNIQUE` or `PRIMARY KEY` index, the index must include
the time column and the partitioning column, if you are using one. For example,
a unique index must include at least the `(time, location)` columns, in addition
to any other columns you want to use. Generally,
time-series data uses `UNIQUE` indexes more rarely than relational data.
If you do not want to create an index in a single transaction, you can use the
[`CREATE_INDEX`][create-index]
function. This uses a separate function to create an index on each chunk,
instead of a single transaction for the entire hypertable. This means that you
can perform other actions on the table while the index is being created, rather
than having to wait until index creation is complete.
You can also use the
[Postgres `WITH` clause](https://www.postgresql.org/docs/current/queries-with.html)
to perform indexing transactions on an individual chunk.
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/triggers/ =====
# Triggers
TimescaleDB supports the full range of Postgres triggers. Creating, altering,
or dropping triggers on a hypertable propagates the changes to all of the
underlying chunks.
## Create a trigger
This example creates a new table called `error_conditions` with the same schema
as `conditions`, but that only stores records which are considered errors. An
error, in this case, is when an application sends a `temperature` or `humidity`
reading with a value that is greater than or equal to 1000.
### Creating a trigger
1. Create a function that inserts erroneous data into the `error_conditions`
table:
```sql
CREATE OR REPLACE FUNCTION record_error()
RETURNS trigger AS $record_error$
BEGIN
IF NEW.temperature >= 1000 OR NEW.humidity >= 1000 THEN
INSERT INTO error_conditions
VALUES(NEW.time, NEW.location, NEW.temperature, NEW.humidity);
END IF;
RETURN NEW;
END;
$record_error$ LANGUAGE plpgsql;
```
1. Create a trigger that calls this function whenever a new row is inserted
into the hypertable:
```sql
CREATE TRIGGER record_error
BEFORE INSERT ON conditions
FOR EACH ROW
EXECUTE PROCEDURE record_error();
```
1. All data is inserted into the `conditions` table, but rows that contain errors
are also added to the `error_conditions` table.
TimescaleDB supports the full range of triggers, including `BEFORE INSERT`,
`AFTER INSERT`, `BEFORE UPDATE`, `AFTER UPDATE`, `BEFORE DELETE`, and
`AFTER DELETE`. For more information, see the
[Postgres docs][postgres-createtrigger].
===== PAGE: https://docs.tigerdata.com/use-timescale/schema-management/foreign-data-wrappers/ =====
# Foreign data wrappers
You use Postgres foreign data wrappers (FDWs) to query external data sources from a Tiger Cloud service. These external data sources can be one of the following:
- Other Tiger Cloud services
- Postgres databases outside of Tiger Cloud
If you are using VPC peering, you can create FDWs in your Customer VPC to query a service in your Tiger Cloud project. However, you can't create FDWs in your Tiger Cloud services to query a data source in your Customer VPC. This is because Tiger Cloud VPC peering uses AWS PrivateLink for increased security. See [VPC peering documentation][vpc-peering] for additional details.
Postgres FDWs are particularly useful if you manage multiple Tiger Cloud services with different capabilities, and need to seamlessly access and merge regular and time-series data.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Query another data source
To query another data source:
You create Postgres FDWs with the `postgres_fdw` extension, which is enabled by default in Tiger Cloud.
1. **Connect to your service**
See [how to connect][connect].
1. **Create a server**
Run the following command using your [connection details][connection-info]:
sql CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host '', dbname 'tsdb', port '');
1. **Create user mapping**
Run the following command using your [connection details][connection-info]:
sql CREATE USER MAPPING FOR tsdbadmin SERVER myserver OPTIONS (user 'tsdbadmin', password '');
1. **Import a foreign schema (recommended) or create a foreign table**
- Import the whole schema:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
FROM SERVER myserver
INTO foreign_stuff ;
```
- Alternatively, import a limited number of tables:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
LIMIT TO (table1, table2)
FROM SERVER myserver
INTO foreign_stuff;
```
- Create a foreign table. Skip if you are importing a schema:
```sql
CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
)
SERVER film_server;
```
A user with the `tsdbadmin` role assigned already has the required `USAGE` permission to create Postgres FDWs. You can enable another user, without the `tsdbadmin` role assigned, to query foreign data. To do so, explicitly grant the permission. For example, for a new `grafana` user:
sql CREATE USER grafana;
GRANT grafana TO tsdbadmin;
CREATE SCHEMA fdw AUTHORIZATION grafana;
CREATE SERVER db1 FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host '', dbname 'tsdb', port '');
CREATE USER MAPPING FOR grafana SERVER db1 OPTIONS (user 'tsdbadmin', password '');
GRANT USAGE ON FOREIGN SERVER db1 TO grafana;
SET ROLE grafana;
IMPORT FOREIGN SCHEMA public
FROM SERVER db1
INTO fdw;
You create Postgres FDWs with the `postgres_fdw` extension. See [documenation][enable-fdw-docs] on how to enable it.
1. **Connect to your database**
Use [`psql`][psql] to connect to your database.
1. **Create a server**
Run the following command using your [connection details][connection-info]:
sql CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host '', dbname '', port '');
1. **Create user mapping**
Run the following command using your [connection details][connection-info]:
sql CREATE USER MAPPING FOR postgres SERVER myserver OPTIONS (user 'postgres', password '');
1. **Import a foreign schema (recommended) or create a foreign table**
- Import the whole schema:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
FROM SERVER myserver
INTO foreign_stuff ;
```
- Alternatively, import a limited number of tables:
```sql
CREATE SCHEMA foreign_stuff;
IMPORT FOREIGN SCHEMA public
LIMIT TO (table1, table2)
FROM SERVER myserver
INTO foreign_stuff;
```
- Create a foreign table. Skip if you are importing a schema:
```sql
CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
)
SERVER film_server;
```
===== PAGE: https://docs.tigerdata.com/use-timescale/write-data/insert/ =====
# Insert data
Insert data into a hypertable with a standard [`INSERT`][postgres-insert] SQL
command.
## Insert a single row
To insert a single row into a hypertable, use the syntax `INSERT INTO ...
VALUES`. For example, to insert data into a hypertable named `conditions`:
sql INSERT INTO conditions(time, location, temperature, humidity) VALUES (NOW(), 'office', 70.0, 50.0);
## Insert multiple rows
You can also insert multiple rows into a hypertable using a single `INSERT`
call. This works even for thousands of rows at a time. This is more efficient
than inserting data row-by-row, and is recommended when possible.
Use the same syntax, separating rows with a comma:
sql INSERT INTO conditions VALUES
(NOW(), 'office', 70.0, 50.0),
(NOW(), 'basement', 66.5, 60.0),
(NOW(), 'garage', 77.0, 65.2);
You can insert multiple rows belonging to different
chunks within the same `INSERT` statement. Behind the scenes, TimescaleDB batches the rows by chunk, and writes to each chunk in a single
transaction.
## Insert and return data
In the same `INSERT` command, you can return some or all of the inserted data by
adding a `RETURNING` clause. For example, to return all the inserted data, run:
sql INSERT INTO conditions VALUES (NOW(), 'office', 70.1, 50.1) RETURNING *;
This returns:
sql time | location | temperature | humidity ------------------------------+----------+-------------+---------- 2017-07-28 11:42:42.846621+00 | office | 70.1 | 50.1 (1 row)
===== PAGE: https://docs.tigerdata.com/use-timescale/write-data/about-writing-data/ =====
# About writing data
TimescaleDB supports writing data in the same way as Postgres, using `INSERT`,
`UPDATE`, `INSERT ... ON CONFLICT`, and `DELETE`.
TimescaleDB is optimized for running real-time analytics workloads on time-series data. For this reason, hypertables are optimized for
inserts to the most recent time intervals. Inserting data with recent time
values gives
[excellent performance](https://www.timescale.com/blog/postgresql-timescaledb-1000x-faster-queries-90-data-compression-and-much-more).
However, if you need to make frequent updates to older time intervals, you
might see lower write throughput.
===== PAGE: https://docs.tigerdata.com/use-timescale/write-data/upsert/ =====
# Upsert data
Upserting is an operation that performs both:
* Inserting a new row if a matching row doesn't already exist
* Either updating the existing row, or doing nothing, if a matching row
already exists
Upserts only work when you have a unique index or constraint. A matching row is
one that has identical values for the columns covered by the index or
constraint.
In Postgres, a primary key is a unique index with a `NOT NULL` constraint.
If you have a primary key, you automatically have a unique index.
## Create a table with a unique constraint
The examples in this section use a `conditions` table with a unique constraint
on the columns `(time, location)`. To create a unique constraint, use `UNIQUE
(<COLUMNS>)` while defining your table:
sql CREATE TABLE conditions ( time TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL, UNIQUE (time, location) );
You can also create a unique constraint after the table is created. Use the
syntax `ALTER TABLE ... ADD CONSTRAINT ... UNIQUE`. In this example, the
constraint is named `conditions_time_location`:
sql ALTER TABLE conditions ADD CONSTRAINT conditions_time_location
UNIQUE (time, location);
When you add a unique constraint to a table, you can't insert data that violates
the constraint. In other words, if you try to insert data that has identical
values to another row, within the columns covered by the constraint, you get an
error.
Unique constraints must include all partitioning columns. That means unique
constraints on a hypertable must include the time column. If you added other
partitioning columns to your hypertable, the constraint must include those as
well. For more information, see the section on
[hypertables and unique indexes](https://docs.tigerdata.com/use-timescale/latest/hypertables/hypertables-and-unique-indexes/).
## Insert or update data to a table with a unique constraint
You can tell the database to insert new data if it doesn't violate the
constraint, and to update the existing row if it does. Use the syntax `INSERT
INTO ... VALUES ... ON CONFLICT ... DO UPDATE`.
For example, to update the `temperature` and `humidity` values if a row with the
specified `time` and `location` already exists, run:
sql INSERT INTO conditions VALUES ('2017-07-28 11:42:42.846621+00', 'office', 70.2, 50.1) ON CONFLICT (time, location) DO UPDATE
SET temperature = excluded.temperature,
humidity = excluded.humidity;
## Insert or do nothing to a table with a unique constraint
You can also tell the database to do nothing if the constraint is violated. The
new data is not inserted, and the old row is not updated. This is useful when
writing many rows as one batch, to prevent the entire transaction from failing.
The database engine skips the row and moves on.
To insert or do nothing, use the syntax `INSERT INTO ... VALUES ... ON CONFLICT
DO NOTHING`:
sql INSERT INTO conditions VALUES ('2017-07-28 11:42:42.846621+00', 'office', 70.1, 50.0) ON CONFLICT DO NOTHING;
===== PAGE: https://docs.tigerdata.com/use-timescale/write-data/delete/ =====
# Delete data
You can delete data from a hypertable using a standard
[`DELETE`][postgres-delete] SQL command. If you want to delete old data once it
reaches a certain age, you can also drop entire chunks or set up a data
retention policy.
## Delete data with DELETE command
To delete data from a table, use the syntax `DELETE FROM ...`. In this example,
data is deleted from the table `conditions`, if the row's `temperature` or
`humidity` is below a certain level:
sql DELETE FROM conditions WHERE temperature < 35 OR humidity < 60;
If you delete a lot of data, run
[`VACUUM`](https://www.postgresql.org/docs/current/sql-vacuum.html) or
`VACUUM FULL` to reclaim storage from the deleted or obsolete rows.
## Delete data by dropping chunks
TimescaleDB allows you to delete data by age, by dropping chunks from a
hypertable. You can do so either manually or by data retention policy.
To learn more, see the [data retention section][data-retention].
===== PAGE: https://docs.tigerdata.com/use-timescale/write-data/update/ =====
# Update data
Update data in a hypertable with a standard [`UPDATE`][postgres-update] SQL
command.
## Update a single row
Update a single row with the syntax `UPDATE ... SET ... WHERE`. For example, to
update a row in the `conditions` hypertable with new `temperature` and
`humidity` values, run the following. The `WHERE` clause specifies the row to be
updated.
sql UPDATE conditions SET temperature = 70.2, humidity = 50.0 WHERE time = '2017-07-28 11:42:42.846621+00'
AND location = 'office';
## Update multiple rows at once
You can also update multiple rows at once, by using a `WHERE` clause that
filters for more than one row. For example, run the following to update
all `temperature` values within the given 10-minute span:
sql UPDATE conditions SET temperature = temperature + 0.1 WHERE time >= '2017-07-28 11:40'
AND time < '2017-07-28 11:50';
===== PAGE: https://docs.tigerdata.com/use-timescale/hypertables/hypertables-and-unique-indexes/ =====
# Enforce constraints with unique indexes
You use unique indexes on a hypertable to enforce [constraints][constraints]. If you have a primary key,
you have a unique index. In Postgres, a primary key is a unique index with a `NOT NULL` constraint.
You do not need to have a unique index on your hypertables. When you create a unique index,
it must contain all the partitioning columns of the hypertable.
## Create a hypertable and add unique indexes
To create a unique index on a hypertable:
1. **Determine the partitioning columns**
Before you create a unique index, you need to determine which unique indexes are
allowed on your hypertable. Begin by identifying your partitioning columns.
TimescaleDB traditionally uses the following columns to partition hypertables:
* The `time` column used to create the hypertable. Every TimescaleDB hypertable
is partitioned by time.
* Any space-partitioning columns. Space partitions are optional and not
included in every hypertable.
1. **Create a hypertable**
Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data. For example:
```sql
CREATE TABLE hypertable_example(
time TIMESTAMPTZ,
user_id BIGINT,
device_id BIGINT,
value FLOAT
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby = 'device_id',
tsdb.orderby = 'time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. **Create a unique index on the hypertable**
When you create a unique index on a hypertable, it must contain all the partitioning columns. It may contain
other columns as well, and they may be arranged in any order. You cannot create a unique index without `time`,
because `time` is a partitioning column.
For example:
- Create a unique index on `time` and `device_id` with a call to `CREATE UNIQUE INDEX`:
```sql
CREATE UNIQUE INDEX idx_deviceid_time
ON hypertable_example(device_id, time);
```
- Create a unique index on `time`, `user_id`, and `device_id`.
`device_id` is not a partitioning column, but this still works:
```sql
CREATE UNIQUE INDEX idx_userid_deviceid_time
ON hypertable_example(user_id, device_id, time);
```
This restriction is necessary to guarantee global uniqueness in the index.
## Create a hypertable from an existing table with unique indexes
If you create a unique index on a table before turning it into a hypertable, the
same restrictions apply in reverse. You can only partition the table by columns
in your unique index.
1. **Create a relational table**
```sql
CREATE TABLE another_hypertable_example(
time TIMESTAMPTZ,
user_id BIGINT,
device_id BIGINT,
value FLOAT
);
```
1. **Create a unique index on the table**
For example, on `device_id` and `time`:
```sql
CREATE UNIQUE INDEX idx_deviceid_time
ON another_hypertable_example(device_id, time);
```
1. **Turn the table into a partitioned hypertable**
- On `time` alone:
```sql
SELECT * from create_hypertable('another_hypertable_example', by_range('time'));
```
- On `time` and `device_id`:
```sql
SELECT * FROM create_hypertable('another_hypertable_example', by_range('time'));
SELECT * FROM add_dimension('another_hypertable_example', by_hash('device_id', 4));
```
You get an error if you try to turn the relational table into a hypertable partitioned by `time` and `user_id`.
This is because `user_id` is not part of the `UNIQUE INDEX`. To fix the error, add `user_id` to your unique index.
===== PAGE: https://docs.tigerdata.com/use-timescale/hypertables/hypertable-crud/ =====
# Optimize time-series data in hypertables
Hypertables are designed for real-time analytics, they are Postgres tables that automatically partition your data by
time. Typically, you partition hypertables on columns that hold time values.
[Best practice is to use `timestamptz`][timestamps-best-practice] column type. However, you can also partition on
`date`, `integer`, `timestamp` and [UUIDv7][uuidv7_functions] types.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Create a hypertable
Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will use
most often to filter your data:
sql CREATE TABLE conditions ( time TIMESTAMPTZ NOT NULL, location TEXT NOT NULL, device TEXT NOT NULL, temperature DOUBLE PRECISION NULL, humidity DOUBLE PRECISION NULL ) WITH ( tsdb.hypertable, tsdb.partition_column='time', tsdb.segmentby = 'device', tsdb.orderby = 'time DESC' );
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
To convert an existing table with data in it, call `create_hypertable` on that table with
[`migrate_data` to `true`][api-create-hypertable-arguments]. However, if you have a lot of data, this may take a long time.
## Speed up data ingestion
When you set `timescaledb.enable_direct_compress_copy` your data gets compressed in memory during ingestion with `COPY` statements.
By writing the compressed batches immediately in the columnstore, the IO footprint is significantly lower.
Also, the [columnstore policy][add_columnstore_policy] you set is less important, `INSERT` already produces compressed chunks.
Please note that this feature is a **tech preview** and not production-ready.
Using this feature could lead to regressed query performance and/or storage ratio, if the ingested batches are not
correctly ordered or are of too high cardinality.
To enable in-memory data compression during ingestion:
sql SET timescaledb.enable_direct_compress_copy=on;
**Important facts**
- High cardinality use cases do not produce good batches and lead to degreaded query performance.
- The columnstore is optimized to store 1000 records per batch, which is the optimal format for ingestion per segment by.
- WAL records are written for the compressed batches rather than the individual tuples.
- Currently only `COPY` is support, `INSERT` will eventually follow.
- Best results are achieved for batch ingestion with 1000 records or more, upper boundary is 10.000 records.
- Continous Aggregates are **not** supported at the moment.
## Optimize cooling data in the columnstore
As the data cools and becomes more suited for analytics, [add a columnstore policy][add_columnstore_policy] so your data
is automatically converted to the columnstore after a specific time interval. This columnar format enables fast
scanning and aggregation, optimizing performance for analytical workloads while also saving significant storage space.
In the columnstore conversion, hypertable chunks are compressed by up to 98%, and organized for efficient,
large-scale queries. This columnar format enables fast scanning and aggregation, optimizing performance for analytical
workloads.
To optimize your data, add a columnstore policy:
sql CALL add_columnstore_policy('conditions', after => INTERVAL '1d');
You can also manually [convert chunks][convert_to_columnstore] in a hypertable to the columnstore.
## Alter a hypertable
You can alter a hypertable, for example to add a column, by using the Postgres
[`ALTER TABLE`][postgres-altertable] command. This works for both regular and
distributed hypertables.
### Add a column to a hypertable
You add a column to a hypertable using the `ALTER TABLE` command. In this
example, the hypertable is named `conditions` and the new column is named
`humidity`:
sql ALTER TABLE conditions ADD COLUMN humidity DOUBLE PRECISION NULL;
If the column you are adding has the default value set to `NULL`, or has no
default value, then adding a column is relatively fast. If you set the default
to a non-null value, it takes longer, because it needs to fill in this value for
all existing rows of all existing chunks.
### Rename a hypertable
You can change the name of a hypertable using the `ALTER TABLE` command. In this
example, the hypertable is called `conditions`, and is being changed to the new
name, `weather`:
sql ALTER TABLE conditions RENAME TO weather;
## Drop a hypertable
Drop a hypertable using a standard Postgres [`DROP TABLE`][postgres-droptable]
command:
sql DROP TABLE weather;
All data chunks belonging to the hypertable are deleted.
===== PAGE: https://docs.tigerdata.com/use-timescale/hypertables/improve-query-performance/ =====
# Improve hypertable and query performance
Hypertables are Postgres tables that help you improve insert and query performance by automatically partitioning
your data by time. Each hypertable is made up of child tables called chunks. Each chunk is assigned a range of time,
and only contains data from that range. When you run a query, TimescaleDB identifies the correct chunk and runs
the query on it, instead of going through the entire table. This page shows you how to tune hypertables to increase
performance even more.
* [Optimize hypertable chunk intervals][chunk-intervals]: choose the optimum chunk size for your data
* [Enable chunk skipping][chunk-skipping]: skip chunks on non-partitioning columns in hypertables when you query your data
* [Analyze your hypertables][analyze-hypertables]: use Postgres `ANALYZE` to create the best query plan
## Optimize hypertable chunk intervals
Adjusting your hypertable chunk interval can improve performance in your database.
1. **Choose an optimum chunk interval**
Postgres builds the index on the fly during ingestion. That means that to build a new entry on the index,
a significant portion of the index needs to be traversed during every row insertion. When the index does not fit
into memory, it is constantly flushed to disk and read back. This wastes IO resources which would otherwise
be used for writing the heap/WAL data to disk.
The default chunk interval is 7 days. However, best practice is to set `chunk_interval` so that prior to processing,
the indexes for chunks currently being ingested into fit within 25% of main memory. For example, on a system with 64
GB of memory, if index growth is approximately 2 GB per day, a 1-week chunk interval is appropriate. If index growth is
around 10 GB per day, use a 1-day interval.
You set `chunk_interval` when you [create a hypertable][hypertable-create-table], or by calling
[`set_chunk_time_interval`][chunk_interval] on an existing hypertable.
In the following example you create a table called `conditions` that stores time values in the
`time` column and has chunks that store data for a `chunk_interval` of one day:
sql CREATE TABLE conditions (
time TIMESTAMPTZ NOT NULL,
location TEXT NOT NULL,
device TEXT NOT NULL,
temperature DOUBLE PRECISION NULL,
humidity DOUBLE PRECISION NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.chunk_interval='1 day'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. **Check current setting for chunk intervals**
Query the TimescaleDB catalog for a hypertable. For example:
sql SELECT *
FROM timescaledb_information.dimensions
WHERE hypertable_name = 'conditions';
The result looks like:
sql hypertable_schema | hypertable_name | dimension_number | column_name | column_type | dimension_type | time_interval | integer_interval | integer_now_func | num_partitions -------------------+-----------------+------------------+-------------+--------------------------+----------------+---------------+------------------+------------------+----------------
public | metrics | 1 | recorded | timestamp with time zone | Time | 1 day | | |
Time-based interval lengths are reported in microseconds.
1. **Change the chunk interval length on an existing hypertable**
To change the chunk interval on an already existing hypertable, call `set_chunk_time_interval`.
sql SELECT set_chunk_time_interval('conditions', INTERVAL '24 hours');
The updated chunk interval only applies to new chunks. This means setting an overly long
interval might take a long time to correct. For example, if you set
`chunk_interval` to 1 year and start inserting data, you can no longer
shorten the chunk for that year. If you need to correct this situation, create a
new hypertable and migrate your data.
While chunk turnover does not degrade performance, chunk creation
does take longer lock time than a normal `INSERT` operation into a chunk that has
already been created. This means that if multiple chunks are being created at
the same time, the transactions block each other until the first transaction is
completed.
If you use expensive index types, such as some PostGIS geospatial indexes, take
care to check the total size of the chunk and its index using
[`chunks_detailed_size`][chunks_detailed_size].
## Enable chunk skipping
Early access: TimescaleDB v2.17.1
One of the key purposes of hypertables is to make your analytical queries run with the lowest latency possible.
When you execute a query on a hypertable, you do not parse the whole table; you only access the chunks necessary
to satisfy the query. This works well when the `WHERE` clause of a query uses the column by which a hypertable is
partitioned. For example, in a hypertable where every day of the year is a separate chunk, a query for September 1
accesses only the chunk for that day.
However, many queries use columns other than the partitioning one. For example, a satellite company might have a
table with two columns: one for when data was gathered by a satellite and one for when it was added to the database.
If you partition by the date of gathering, a query by the date of adding accesses all chunks in the hypertable and
slows the performance.
To improve query performance, TimescaleDB enables you to skip chunks on non-partitioning columns in hypertables.
Chunk skipping only works on chunks converted to the columnstore **after** you `enable_chunk_skipping`.
### How chunk skipping works
You enable chunk skipping on a column in a hypertable. TimescaleDB tracks the minimum and maximum values for that
column in each chunk. These ranges are stored in the start (inclusive) and end (exclusive) format in the `chunk_column_stats`
catalog table. TimescaleDB uses these ranges for dynamic chunk exclusion when the `WHERE` clause of an SQL query
specifies ranges on the column.

You can enable chunk skipping on hypertables compressed into the columnstore for `smallint`, `int`, `bigint`, `serial`,
`bigserial`, `date`, `timestamp`, or `timestamptz` type columns.
### When to enable chunk skipping
You can enable chunk skipping on as many columns as you need. However, best practice is to enable it on columns that
are both:
- Correlated, that is, related to the partitioning column in some way.
- Referenced in the `WHERE` clauses of the queries.
In the satellite example, the time of adding data to a database inevitably follows the time of gathering.
Sequential IDs and the creation timestamp for both entities also increase synchronously. This means those two
columns are correlated.
For a more in-depth look on chunk skipping, see [our blog post](https://www.timescale.com/blog/boost-postgres-performance-by-7x-with-chunk-skipping-indexes).
### Enable chunk skipping
To enable chunk skipping on a column, call `enable_chunk_skipping` on a `hypertable` for a `column_name`. For example,
the following query enables chunk skipping on the `order_id` column in the `orders` table:
sql SELECT enable_chunk_skipping('orders', 'order_id');
For more details on how to implement chunk skipping, see the [API Reference][api-reference].
## Analyze your hypertables
You can use the Postgres `ANALYZE` command to query all chunks in your
hypertable. The statistics collected by the `ANALYZE` command are used by the
Postgres planner to create the best query plan. For more information about the
`ANALYZE` command, see the [Postgres documentation][pg-analyze].
===== PAGE: https://docs.tigerdata.com/use-timescale/extensions/pgvector/ =====
# Create a chatbot using pgvector
The `pgvector` Postgres extension helps you to store and search over machine
learning-generated embeddings. It provides different capabilities that allows
you to identify both exact and approximate nearest neighbors. It is designed to
work seamlessly with other Postgres features, including indexing and querying.
For more information about these functions and the options available, see the
[pgvector][pgvector-repo] repository.
## Use the `pgvector` extension to create a `chatbot`
The `pgvector` Postgres extension allows you to create, store, and query
OpenAI [vector embeddings][vector-embeddings] in a Postgres database instance. This page shows you how to
use [retrieval augmented generation (RAG)][rag-docs] to create a chatbot that combines
your data with ChatGPT using OpenAI and `pgvector`. RAG provides a solution to the
problem that a foundational model such as GPT-3 or GPT-4 could be missing some
information needed to give a good answer, because that information was not in the
dataset used to train the model. This can happen if the information is stored in
private documents or only became available recently.
In this example, you create embeddings, insert the embeddings into a Tiger Cloud service and
query the embeddings using `pgvector`. The content for the
embeddings is from the Tiger Data blog, specifically from the
[Developer Q&A][developer-qa] section, which features posts by Tiger Data users talking
about their real-world use cases.
### Prerequisites
Before you begin, make sure you have:
* Installed Python.
* Created a [Tiger Cloud service][cloud-login].
* Downloaded the cheatsheet when you created the service. This sheet contains
the connection details for the database you want to use as a vector database.
* Cloned the [pgvector repository][timescale-pgvector].
* Signed up for an [OpenAI developer account][openai-signup].
* Created an API key and made a note of your OpenAI [API key][api-key].
If you are on a free plan there may be rate limiting for
your API requests.
### Using the `pgvector` extension to create a chatbot
<!-- Vale has a lot of trouble detecting the code blocks -->
<!-- vale off -->
1. Create and activate a Python virtual environment:
```bash
virtualenv pgvectorenv
source pgvectorenv/bin/activate
```
1. Set the environment variables for `OPENAI_API_KEY` and
`TIMESCALE_CONNECTION_STRING`. In this example, to set the environment
variables in macOS, open the `zshrc` profile. Replace
`<OPENAI_API>`, and `<SERVICE_URL>` with your OpenAI API key and the URL of your Tiger Cloud service:
```bash
nano ~/.zshrc
export OPENAI_API_KEY='<OPENAI_API>'
export TIMESCALE_CONNECTION_STRING='<SERVICE_URL>'
Update the shell with the new variables using `source ~/.zshrc`
1. Confirm that you have set the environment variables using:
```bash
echo $OPENAI_API_KEY
echo $TIMESCALE_CONNECTION_STRING
```
1. Install the required modules and packages using the `requirements.txt`. This
file is located in the `vector-cookbook\openai_pgvector_helloworld`
directory:
```bash
pip install -r requirements.txt
```
1. To create embeddings for your data using the OpenAI API, open an editor of
your choice and create the `create_embeddings.py` file.
```python
###############################################################################
###############################################################################
import openai
import os
import pandas as pd
import numpy as np
import json
import tiktoken
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY']
df = pd.read_csv('blog_posts_data.csv')
df.head()
###############################################################################
###############################################################################
def num_tokens_from_string(string: str, encoding_name = "cl100k_base") -> int:
if not string:
return 0
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def get_embedding_cost(num_tokens):
return num_tokens/1000*0.0001
def get_total_embeddings_cost():
total_tokens = 0
for i in range(len(df.index)):
text = df['content'][i]
token_len = num_tokens_from_string(text)
total_tokens = total_tokens + token_len
total_cost = get_embedding_cost(total_tokens)
return total_cost
###############################################################################
total_cost = get_total_embeddings_cost()
print("Estimated price to embed this content = $" + str(total_cost))
###############################################################################
###############################################################################
new_list = []
for i in range(len(df.index)):
text = df['content'][i]
token_len = num_tokens_from_string(text)
if token_len <= 512:
new_list.append([df['title'][i], df['content'][i], df['url'][i], token_len])
else:
start = 0
ideal_token_size = 512
ideal_size = int(ideal_token_size // (4/3))
end = ideal_size
#split text by spaces into words
words = text.split()
#remove empty spaces
words = [x for x in words if x != ' ']
total_words = len(words)
#calculate iterations
chunks = total_words // ideal_size
if total_words % ideal_size != 0:
chunks += 1
new_content = []
for j in range(chunks):
if end > total_words:
end = total_words
new_content = words[start:end]
new_content_string = ' '.join(new_content)
new_content_token_len = num_tokens_from_string(new_content_string)
if new_content_token_len > 0:
new_list.append([df['title'][i], new_content_string, df['url'][i], new_content_token_len])
start += ideal_size
end += ideal_size
def get_embeddings(text):
response = openai.Embedding.create(
model="text-embedding-ada-002",
input = text.replace("\n"," ")
)
embedding = response['data'][0]['embedding']
return embedding
for i in range(len(new_list)):
text = new_list[i][1]
embedding = get_embeddings(text)
new_list[i].append(embedding)
df_new = pd.DataFrame(new_list, columns=['title', 'content', 'url', 'tokens', 'embeddings'])
df_new.head()
df_new.to_csv('blog_data_and_embeddings.csv', index=False)
print("Done! Check the file blog_data_and_embeddings.csv for your results.")
```
1. Run the script using the `python create_embeddings.py` command.
You should see an output that looks a bit like this:
```bash
Estimated price to embed this content = $0.0060178
Done! Check the file blog_data_and_embeddings.csv for your results.
```
1. To insert these embeddings into your Tiger Cloud service using the `pgvector` extension,
open an editor of your choice and create the `insert_embeddings.py` file.
```python
###############################################################################
###############################################################################
import openai
import os
import pandas as pd
import numpy as np
import psycopg2
import ast
import pgvector
import math
from psycopg2.extras import execute_values
from pgvector.psycopg2 import register_vector
###############################################################################
###############################################################################
connection_string = os.environ['TIMESCALE_CONNECTION_STRING']
conn = psycopg2.connect(connection_string)
cur = conn.cursor()
#install pgvector in your database
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;");
conn.commit()
register_vector(conn)
table_create_command = """
CREATE TABLE embeddings (
id bigserial primary key,
title text,
url text,
content text,
tokens integer,
embedding vector(1536)
);
"""
cur.execute(table_create_command)
cur.close()
conn.commit()
###############################################################################
df = pd.read_csv('blog_data_and_embeddings.csv')
titles = df['title']
urls = df['url']
contents = df['content']
tokens = df['tokens']
embeds = [list(map(float, ast.literal_eval(embed_str))) for embed_str in df['embeddings']]
df_new = pd.DataFrame({
'title': titles,
'url': urls,
'content': contents,
'tokens': tokens,
'embeddings': embeds
})
print(df_new.head())
###############################################################################
###############################################################################
register_vector(conn)
cur = conn.cursor()
data_list = [(row['title'], row['url'], row['content'], int(row['tokens']), np.array(row['embeddings'])) for index, row in df_new.iterrows()]
execute_values(cur, "INSERT INTO embeddings (title, url, content, tokens, embedding) VALUES %s", data_list)
conn.commit()
cur.execute("SELECT COUNT(*) as cnt FROM embeddings;")
num_records = cur.fetchone()[0]
print("Number of vector records in table: ", num_records,"\n")
cur.execute("SELECT * FROM embeddings LIMIT 1;")
records = cur.fetchall()
print("First record in table: ", records)
#calculate the index parameters according to best practices
num_lists = num_records / 1000
if num_lists < 10:
num_lists = 10
if num_records > 1000000:
num_lists = math.sqrt(num_records)
#use the cosine distance measure, which is what we'll later use for querying
cur.execute(f'CREATE INDEX ON embeddings USING ivfflat (embedding vector_cosine_ops) WITH (lists = {num_lists});')
conn.commit()
print("Index created on embeddings table")
```
1. Run the script using the `python insert_embeddings.py` command.
You should see an output that looks a bit like this:
```bash
0 How to Build a Weather Station With Elixir, Ne... ... [0.021399984136223793, 0.021850213408470154, -...
1 How to Build a Weather Station With Elixir, Ne... ... [0.01620873250067234, 0.011362895369529724, 0....
2 How to Build a Weather Station With Elixir, Ne... ... [0.022517921403050423, -0.0019158280920237303,...
3 CloudQuery on Using Postgres for Cloud Asset... ... [0.008915113285183907, -0.004873732570558786, ...
4 CloudQuery on Using PostgreSQL for Cloud Asset... ... [0.0204352755099535, 0.010087345726788044, 0.0...
[5 rows x 5 columns]
Number of vector records in table: 129
First record in table: [(1, 'How to Build a Weather Station With Elixir, Nerves, and TimescaleDB', 'https://www.timescale.com/blog/how-to-build-a-weather-station-with-elixir-nerves-and-timescaledb/', 'This is an installment of our “Community Member Spotlight” series, where we invite our customers to share their work, shining a light on their success and inspiring others with new ways to use technology to solve problems.In this edition,Alexander Koutmos, author of the Build a Weather Station with Elixir and Nerves book, joins us to share how he uses Grafana and TimescaleDB to store and visualize weather data collected from IoT sensors.About the teamThe bookBuild a Weather Station with Elixir and Nerveswas a joint effort between Bruce Tate, Frank Hunleth, and me.I have been writing software professionally for almost a decade and have been working primarily with Elixir since 2016. I currently maintain a few Elixir libraries onHexand also runStagira, a software consultancy company.Bruce Tateis a kayaker, programmer, and father of two from Chattanooga, Tennessee. He is the author of more than ten books and has been around Elixir from the beginning. He is the founder ofGroxio, a company that trains Elixir developers.Frank Hunlethis an embedded systems programmer, OSS maintainer, and Nerves core team member. When not in front of a computer, he loves running and spending time with his family.About the projectIn the Pragmatic Bookshelf book,Build a Weather Station with Elixir and Nerves, we take a project-based approach and guide the reader to create a Nerves-powered IoT weather station.For those unfamiliar with the Elixir ecosystem,Nervesis an IoT framework that allows you to build and deploy IoT applications on a wide array of embedded devices. At a high level, Nerves allows you to focus on building your project and takes care of a lot of the boilerplate associated with running Elixir on embedded devices.The goal of the book is to guide the reader through the process of building an end-to-end IoT solution for capturing, persisting, and visualizing weather data.Assembled weather station hooked up to development machine.One of the motivating factors for this book was to create a real-world project where readers could get hands-on experience with hardware without worrying too much about the nitty-gritty of soldering components together. Experimenting with hardware can often feel intimidating and confusing, but with Elixir and Nerves, we feel confident that even beginners get comfortable and productive quickly. As a result, in the book, we leverage a Raspberry Pi Zero W along with a few I2C enabled sensors to', 501, array([ 0.02139998, 0.02185021, -0.00537814, ..., -0.01257126,
-0.02165324, -0.03714396], dtype=float32))]
Index created on embeddings table
```
1. To query the embeddings that you inserted in to your Tiger Cloud service, open an editor of
your choice and create the `query_embeddings.py` file. Here, the query is
`How does Density use TimescaleDB?`.
```python
###############################################################################
###############################################################################
import openai
import os
import pandas as pd
import numpy as np
import json
import tiktoken
import psycopg2
import ast
import pgvector
import math
from psycopg2.extras import execute_values
from pgvector.psycopg2 import register_vector
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY']
connection_string = os.environ['TIMESCALE_CONNECTION_STRING']
conn = psycopg2.connect(connection_string)
###############################################################################
###############################################################################
def get_top3_similar_docs(query_embedding, conn):
embedding_array = np.array(query_embedding)
register_vector(conn)
cur = conn.cursor()
cur.execute("SELECT content FROM embeddings ORDER BY embedding <=> %s LIMIT 3", (embedding_array,))
top3_docs = cur.fetchall()
return top3_docs
def get_completion_from_messages(messages, model="gpt-3.5-turbo-0613", temperature=0, max_tokens=1000):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
)
return response.choices[0].message["content"]
def get_embeddings(text):
response = openai.Embedding.create(
model="text-embedding-ada-002",
input = text.replace("\n"," ")
)
embedding = response['data'][0]['embedding']
return embedding
###############################################################################
###############################################################################
###############################################################################
def process_input_with_retrieval(user_input):
delimiter = "```"
#Step 1: Get documents related to the user input from database
related_docs = get_top3_similar_docs(get_embeddings(user_input), conn)
system_message = f"""
You are a friendly chatbot. \
You can answer questions about timescaledb, its features and its use cases. \
You respond in a concise, technically credible tone. \
"""
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": f"{delimiter}{user_input}{delimiter}"},
{"role": "assistant", "content": f"Relevant Tiger Data case studies information: \n {related_docs[0] [0]} \n {related_docs[1][0]} {related_docs[2][0]}"}
]
final_response = get_completion_from_messages(messages)
return final_response
###############################################################################
input = "How does Density use TimescaleDB?"
response = process_input_with_retrieval(input)
print(input)
print(response)
```
1. Run the script using the `python query_embeddings.py` command.
You should see an output that looks a bit like this:
```bash
How does Density use TimescaleDB?
Density uses TimescaleDB as the main database in their smart city system.
They store counts of people in spaces over time and derive metrics such as dwell time and space usage.
TimescaleDB's flexibility and ability to handle time-series data efficiently allows Density to slice, dice, and compose queries in various ways.
They also leverage TimescaleDB's continuous aggregates feature to roll up high-resolution data to lower resolutions, improving query performance.
Additionally, TimescaleDB's support for percentile calculations has helped Density deliver accurate percentile values for their data.
Overall, TimescaleDB has significantly improved the performance and scalability of Density's analytics workload.
```
<!-- markdown-link-check-disable -->
<!-- markdown-link-check-enable-->
===== PAGE: https://docs.tigerdata.com/use-timescale/extensions/pgcrypto/ =====
# Encrypt data using pgcrypto
The `pgcrypto` Postgres extension provides cryptographic functions such as:
* General hashing
* Password hashing
* PGP encryption
* Raw encryption
* Random-data
For more information about these functions and the options available, see the
[pgcrypto documentation][pgcrypto-docs].
## Use the `pgcrypto` extension to encrypt inserted data
The `pgcrypto` extension allows you to encrypt, decrypt, hash,
and create digital signatures within your database. Tiger Data understands how
precious your data is and safeguards sensitive information.
### Using the `pgcrypto` extension to encrypt inserted data
1. Install the `pgcrypto` extension:
```sql
CREATE EXTENSION IF NOT EXISTS pgcrypto;
```
1. You can confirm if the extension is installed using the `\dx` command.
The installed extensions are listed:
```sql
List of installed extensions
Name | Version | Schema | Description
---------------------+---------+------------+---------------------------------------------------------------------------------------
pg_stat_statements | 1.10 | public | track planning and execution statistics of all SQL statements executed
pgcrypto | 1.3 | public | cryptographic functions
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.11.0 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
timescaledb_toolkit | 1.16.0 | public | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities
```
1. Create a table named `user_passwords`:
```sql
CREATE TABLE user_passwords (username varchar(100) PRIMARY KEY, crypttext text);
```
1. Insert the values in the `user_passwords` table and replace `<Password_Key>`
with a password key of your choice:
```sql
INSERT INTO tbl_sym_crypt (username, crypttext)
VALUES ('user1', pgp_sym_encrypt('user1_password','<Password_Key>')),
('user2', pgp_sym_encrypt('user2_password','<Password_Key>'));
```
1. You can confirm that the password is encrypted using the command:
```sql
SELECT * FROM user_passwords;
```
The encrypted passwords are listed:
```sql
username | crypttext
----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------
user1 | \xc30d040703025caa37f9d1c731d169d240018529d6f0002b2948905a87e4787efaa0046e58fd3f04ee95594bea1803807063321f62c9651cbf0422b04508093df9644a76684b504b317cf633552fcf164f
user2 | \xc30d0407030279bbcf760b81d3de73d23c01c04142632fc8527c0c1b17cc954c77f16df46022acddc565fd18f0f0f761ddb2f31b21c4ebe47a48039d685287d64506029e027cf29b5493b574df
(2 rows)
```
1. To view the decrypted passwords, replace `<Password_Key>` with
the password key that you created:
```sql
SELECT username, pgp_sym_decrypt(crypttext::bytea, '<Password_Key>')
FROM user_passwords;
```
The decrypted passwords are listed:
```sql
username | pgp_sym_decrypt
----------+-----------------
user1 | user1_password
user2 | user2_password
(2 rows)
```
===== PAGE: https://docs.tigerdata.com/use-timescale/extensions/postgis/ =====
# Analyse geospatial data with postgis
The `postgis` Postgres extension provides storing, indexing, and querying
geographic data. It helps in spatial data analysis, the study of patterns,
anomalies, and theories within spatial or geographical data.
For more information about these functions and the options available, see the
[PostGIS documentation] [postgis-docs].
## Use the `postgis` extension to analyze geospatial data
The `postgis` Postgres extension allows you to conduct complex analyses of
your geospatial time-series data. Tiger Data understands that you have a
multitude of data challenges and helps you discover when things happened, and
where they occurred. In this example you can query when the `covid` cases were
reported, where they were reported, and how many were reported around a
particular location.
### Using the `postgis` extension to analyze geospatial data
1. Install the `postgis` extension:
```sql
CREATE EXTENSION postgis;
```
1. You can confirm if the extension is installed using the `\dx` command.
The extensions that are installed are listed:
```sql
List of installed extensions
Name | Version | Schema | Description
---------------------+---------+------------+---------------------------------------------------------------------------------------
pg_stat_statements | 1.10 | public | track planning and execution statistics of all SQL statements executed
pgcrypto | 1.3 | public | cryptographic functions
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
postgis | 3.3.3 | public | PostGIS geometry and geography spatial types and functions
timescaledb | 2.11.0 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
timescaledb_toolkit | 1.16.0 | public | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities
(6 rows)
```
1. Create a hypertable named `covid_location`, where, `location` is a `GEOGRAPHY`
type column that stores GPS coordinates using the 4326/WGS84 coordinate
system, and `time` records the time the GPS coordinate was logged for a
specific `state_id`. This hypertable is partitioned on the `time` column:
```sql
CREATE TABLE covid_location (
time TIMESTAMPTZ NOT NULL,
state_id INT NOT NULL,
location GEOGRAPHY(POINT, 4326),
cases INT NOT NULL,
deaths INT NOT NULL
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. To support efficient queries, create an index on the `state_id` column:
```sql
CREATE INDEX ON covid_location (state_id, time DESC);
```
1. Insert some randomly generated values in the `covid_location` table. The
longitude and latitude coordinates of New Jersey are (-73.935242 40.730610),
and New York are (-74.871826 39.833851):
```sql
INSERT INTO covid_location VALUES
('2023-06-28 20:00:00',34,'POINT(-74.871826 39.833851)',5,2),
('2023-06-28 20:00:00',36,'POINT(-73.935242 40.730610)',7,1),
('2023-06-29 20:00:00',34,'POINT(-74.871826 39.833851)',14,0),
('2023-06-29 20:00:00',36,'POINT(-73.935242 40.730610)',12,1),
('2023-06-30 20:00:00',34,'POINT(-74.871826 39.833851)',10,4);
```
1. To fetch all cases of a specific state during a specific period, use:
```sql
SELECT * FROM covid_location
WHERE state_id = 34 AND time BETWEEN '2023-06-28 00:00:00' AND '2023-06-30 23:59:59';
```
The data you get back looks a bit like this:
```sql
time | state_id | location | cases | deaths
------------------------+----------+----------------------------------------------------+-------+--------
2023-06-28 20:00:00+00 | 34 | 0101000020E61000005C7347FFCBB752C0535E2BA1BBEA4340 | 5 | 2
2023-06-29 20:00:00+00 | 34 | 0101000020E61000005C7347FFCBB752C0535E2BA1BBEA4340 | 14 | 0
2023-06-30 20:00:00+00 | 34 | 0101000020E61000005C7347FFCBB752C0535E2BA1BBEA4340 | 10 | 4
(3 rows)
```
1. To fetch the latest logged cases of all states using the [Tiger Data SkipScan][skip-scan] feature, replace `<Interval_Time>` with the number of
days between the day you are running the query and the day the last report
was logged in the table, in this case 30, June, 2023:
```sql
SELECT DISTINCT ON (state_id) state_id, ST_AsText(location) AS location
FROM covid_location
WHERE time > now() - INTERVAL '<Interval_Time>'
ORDER BY state_id,
time DESC;
```
The `ST_AsText(location)` function converts the binary geospatial data into
human-readable format. The data you get back looks a bit like this:
```sql
state_id | location
----------+-----------------------------
34 | POINT(-74.871826 39.833851)
(1 row)
```
1. To fetch all cases and states that were within 10000 meters of Manhattan at
any time:
```sql
SELECT DISTINCT cases, state_id
FROM covid_location
WHERE ST_DWithin(
location,
ST_GeogFromText('POINT(-73.9851 40.7589)'),
10000
);
```
The data you get back looks a bit like this:
```sql
cases | state_id
-------+----------
7 | 36
12 | 36
(2 rows)
```
===== PAGE: https://docs.tigerdata.com/use-timescale/extensions/pg-textsearch/ =====
# Optimize full text search with BM25
Postgres full-text search at scale consistently hits a wall where performance degrades catastrophically.
Tiger Data's [pg_textsearch][pg_textsearch-repo] brings modern [BM25][bm25-wiki]-based full-text search directly into Postgres,
with a memtable architecture for efficient indexing and ranking. `pg_textsearch` integrates seamlessly with SQL and
provides better search quality and performance than the Postgres built-in full-text search.
BM25 scores in `pg_textsearch` are returned as negative values, where lower (more negative) numbers indicate better
matches. `pg_textsearch` implements the following:
* **Corpus-aware ranking**: BM25 uses inverse document frequency to weight rare terms higher
* **Term frequency saturation**: prevents documents with excessive term repetition from dominating results
* **Length normalization**: adjusts scores based on document length relative to corpus average
* **Relative ranking**: focuses on rank order rather than absolute score values
This page shows you how to install `pg_textsearch`, configure BM25 indexes, and optimize your search capabilities using
the following best practice:
* **Memory planning**: size your `index_memory_limit` based on corpus vocabulary and document count
* **Language configuration**: choose appropriate text search configurations for your data language
* **Hybrid search**: combine with pgvector or pgvectorscale for applications requiring both semantic and keyword search
* **Query optimization**: use score thresholds to filter low-relevance results
* **Index monitoring**: regularly check index usage and memory consumption
Early access: October 2025 this preview release is designed for development and staging environments. It is not recommended for use with hypertables.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with the Real-time analytics capability.
You need [your connection details][connection-info]. This procedure also
works for [self-hosted TimescaleDB][enable-timescaledb].
## Install pg_textsearch
To install this Postgres extension:
1. **Connect to your Tiger Cloud service**
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. You can also connect to your service using [psql][connect-using-psql].
1. **Enable the extension on your Tiger Cloud service**
- For new services, simply enable the extension:
```sql
CREATE EXTENSION pg_textsearch;
```
- For existing services, update your instance, then enable the extension:
The extension may not be available until after your next scheduled maintenance window. To pick up the update
immediately, manually pause and restart your service.
1. **Verify the installation**
sql SELECT * FROM pg_extension WHERE extname = 'pg_textsearch';
You have installed `pg_textsearch` on Tiger Cloud.
## Create BM25 indexes on your data
BM25 indexes provide modern relevance ranking that outperforms Postgres's built-in ts_rank functions by using corpus
statistics and better algorithmic design.
To create a BM25 index with pg_textsearch:
1. **Create a table with text content**
sql CREATE TABLE products (
id serial PRIMARY KEY,
name text,
description text,
category text,
price numeric
);
1. **Insert sample data**
sql INSERT INTO products (name, description, category, price) VALUES ('Mechanical Keyboard', 'Durable mechanical switches with RGB backlighting for gaming and productivity', 'Electronics', 149.99), ('Ergonomic Mouse', 'Wireless mouse with ergonomic design to reduce wrist strain during long work sessions', 'Electronics', 79.99), ('Standing Desk', 'Adjustable height desk for better posture and productivity throughout the workday', 'Furniture', 599.99);
1. **Create a BM25 index**
sql CREATE INDEX products_search_idx ON products USING bm25(description) WITH (text_config='english');
BM25 supports single-column indexes only.
You have created a BM25 index for full-text search.
## Optimize search queries for performance
Use efficient query patterns to leverage BM25 ranking and optimize search performance.
1. **Perform ranked searches using the distance operator**
sql SELECT name, description,
description <@> to_bm25query('ergonomic work', 'products_search_idx') as score
FROM products ORDER BY description <@> to_bm25query('ergonomic work', 'products_search_idx') LIMIT 3;
1. **Filter results by score threshold**
sql SELECT name,
description <@> to_bm25query('wireless', 'products_search_idx') as score
FROM products WHERE description <@> to_bm25query('wireless', 'products_search_idx') < -2.0;
1. **Combine with standard SQL operations**
sql SELECT category, name,
description <@> to_bm25query('ergonomic', 'products_search_idx') as score
FROM products WHERE price < 500
AND description <@> to_bm25query('ergonomic', 'products_search_idx') < -1.0
ORDER BY description <@> to_bm25query('ergonomic', 'products_search_idx') LIMIT 5;
1. **Verify index usage with EXPLAIN**
sql EXPLAIN SELECT * FROM products ORDER BY description <@> to_bm25query('wireless keyboard', 'products_search_idx') LIMIT 5;
You have optimized your search queries for BM25 ranking.
## Build hybrid search with semantic and keyword search
Combine `pg_textsearch` with `pgvector` or `pgvectorscale` to build powerful hybrid search systems that use both semantic vector search and keyword BM25 search.
1. **Enable the [vectorscale][pg-vectorscale] extension on your Tiger Cloud service**
sql
CREATE EXTENSION IF NOT EXISTS vectorscale CASCADE;
```
Create a table with both text content and vector embeddings
CREATE TABLE articles (
id serial PRIMARY KEY,
title text,
content text,
embedding vector(1536) -- OpenAI ada-002 embedding dimension
);
Create indexes for both search types
-- Vector index for semantic search
CREATE INDEX articles_embedding_idx ON articles
USING hnsw (embedding vector_cosine_ops);
-- Keyword index for BM25 search
CREATE INDEX articles_content_idx ON articles
USING bm25(content)
WITH (text_config='english');
Perform hybrid search using reciprocal rank fusion
WITH vector_search AS (
SELECT id,
ROW_NUMBER() OVER (ORDER BY embedding <=> '[0.1, 0.2, 0.3]'::vector) AS rank
FROM articles
ORDER BY embedding <=> '[0.1, 0.2, 0.3]'::vector
LIMIT 20
),
keyword_search AS (
SELECT id,
ROW_NUMBER() OVER (ORDER BY content <@> to_bm25query('query performance', 'articles_content_idx')) AS rank
FROM articles
ORDER BY content <@> to_bm25query('query performance', 'articles_content_idx')
LIMIT 20
)
SELECT a.id,
a.title,
COALESCE(1.0 / (60 + v.rank), 0.0) + COALESCE(1.0 / (60 + k.rank), 0.0) AS combined_score
FROM articles a
LEFT JOIN vector_search v ON a.id = v.id
LEFT JOIN keyword_search k ON a.id = k.id
WHERE v.id IS NOT NULL OR k.id IS NOT NULL
ORDER BY combined_score DESC
LIMIT 10;
Adjust relative weights for different search types
WITH vector_search AS (
SELECT id,
ROW_NUMBER() OVER (ORDER BY embedding <=> '[0.1, 0.2, 0.3]'::vector) AS rank
FROM articles
ORDER BY embedding <=> '[0.1, 0.2, 0.3]'::vector
LIMIT 20
),
keyword_search AS (
SELECT id,
ROW_NUMBER() OVER (ORDER BY content <@> to_bm25query('query performance', 'articles_content_idx')) AS rank
FROM articles
ORDER BY content <@> to_bm25query('query performance', 'articles_content_idx')
LIMIT 20
)
SELECT
a.id,
a.title,
0.7 * COALESCE(1.0 / (60 + v.rank), 0.0) + -- 70% weight to vectors
0.3 * COALESCE(1.0 / (60 + k.rank), 0.0) -- 30% weight to keywords
AS combined_score
FROM articles a
LEFT JOIN vector_search v ON a.id = v.id
LEFT JOIN keyword_search k ON a.id = k.id
WHERE v.id IS NOT NULL OR k.id IS NOT NULL
ORDER BY combined_score DESC
LIMIT 10;
You have implemented hybrid search combining semantic and keyword search.
Customize pg_textsearch behavior for your specific use case and data characteristics.
The size of the memtable depends primarily on the number of distinct terms in your corpus. A corpus with longer documents or more varied vocabulary requires more memory per document.
-- Set memory limit per index (default 64MB)
SET pg_textsearch.index_memory_limit = '128MB';
Configure language-specific text processing
-- French language configuration
CREATE INDEX products_fr_idx ON products_fr
USING pg_textsearch(description)
WITH (text_config='french');
-- Simple tokenization without stemming
CREATE INDEX products_simple_idx ON products
USING pg_textsearch(description)
WITH (text_config='simple');
Tune BM25 parameters
-- Adjust term frequency saturation (k1) and length normalization (b)
CREATE INDEX products_custom_idx ON products
USING bm25(description)
WITH (text_config='english', k1=1.5, b=0.8);
Monitor index usage and memory consumption
Check index usage statistics
SELECT schemaname, relname, indexrelname, idx_scan, idx_tup_read
FROM pg_stat_user_indexes
WHERE indexrelid::regclass::text ~ 'bm25';
View detailed index information
SELECT bm25_debug_dump_index('products_search_idx');
You have configured pg_textsearch for optimal performance. For production applications, consider implementing result
caching and pagination to improve user experience with large result sets.
This preview release focuses on core BM25 functionality. It has the following limitations:
pg_textsearch.index_memory_limit (default 64MB)These limitations will be addressed in upcoming releases with disk-based segments and expanded query capabilities.
===== PAGE: https://docs.tigerdata.com/use-timescale/metrics-logging/datadog/ =====
You can export telemetry data from your Tiger Cloud services with the time-series and analytics capability enabled to Datadog. The available metrics include CPU usage, RAM usage, and storage. This integration is available for Scale or Enterprise pricing plans.
This page shows you how to create a Datadog exporter in Tiger Cloud Console, and manage the lifecycle of data exporters.
To follow the steps on this page:
Tiger Cloud data exporters send telemetry data from a Tiger Cloud service to third-party monitoring tools. You create an exporter on the project level, in the same AWS region as your service:
New exporterSelect Metrics for Data type and Datadog for provider
Choose your AWS region and provide the API key
The AWS region must be the same for your Tiger Cloud exporter and the Datadog provider.
Set Site to your Datadog region, then click Create exporter
This section shows you how to attach, monitor, edit, and delete a data exporter.
To send telemetry data to an external monitoring tool, you attach a data exporter to your Tiger Cloud service. You can attach only one exporter to a service.
To attach an exporter:
Operations > ExportersAttach exporterLogs data type exporter, restart the serviceYou can now monitor your service metrics. Use the following metrics to check the service is running correctly:
timescale.cloud.system.cpu.usage.millicorestimescale.cloud.system.cpu.total.millicorestimescale.cloud.system.memory.usage.bytestimescale.cloud.system.memory.total.bytestimescale.cloud.system.disk.usage.bytestimescale.cloud.system.disk.total.bytesAdditionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|host|us-east-1.timescale.cloud| |
|project-id|| |
|service-id|| |
|region|us-east-1| AWS region |
|role|replica or primary| For service with replicas |
|node-id|| For multi-node services |
To update a data exporter:
EditYou cannot change fields such as the provider or the AWS region.
To remove a data exporter that you no longer need:
Disconnect the data exporter from your Tiger Cloud services
Operations > Exporters.The data exporter is now unattached from all services. However, it still exists in your project.
Delete the exporter on the project level
DeleteWhen you create the IAM OIDC provider, the URL must match the region you create the exporter in. It must be one of the following:
| Region | Zone | Location | URL |
|---|---|---|---|
ap-southeast-1 |
Asia Pacific | Singapore | irsa-oidc-discovery-prod-ap-southeast-1.s3.ap-southeast-1.amazonaws.com |
ap-southeast-2 |
Asia Pacific | Sydney | irsa-oidc-discovery-prod-ap-southeast-2.s3.ap-southeast-2.amazonaws.com |
ap-northeast-1 |
Asia Pacific | Tokyo | irsa-oidc-discovery-prod-ap-northeast-1.s3.ap-northeast-1.amazonaws.com |
ca-central-1 |
Canada | Central | irsa-oidc-discovery-prod-ca-central-1.s3.ca-central-1.amazonaws.com |
eu-central-1 |
Europe | Frankfurt | irsa-oidc-discovery-prod-eu-central-1.s3.eu-central-1.amazonaws.com |
eu-west-1 |
Europe | Ireland | irsa-oidc-discovery-prod-eu-west-1.s3.eu-west-1.amazonaws.com |
eu-west-2 |
Europe | London | irsa-oidc-discovery-prod-eu-west-2.s3.eu-west-2.amazonaws.com |
sa-east-1 |
South America | São Paulo | irsa-oidc-discovery-prod-sa-east-1.s3.sa-east-1.amazonaws.com |
us-east-1 |
United States | North Virginia | irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com |
us-east-2 |
United States | Ohio | irsa-oidc-discovery-prod-us-east-2.s3.us-east-2.amazonaws.com |
us-west-2 |
United States | Oregon | irsa-oidc-discovery-prod-us-west-2.s3.us-west-2.amazonaws.com |
===== PAGE: https://docs.tigerdata.com/use-timescale/metrics-logging/metrics-to-prometheus/ =====
Prometheus is an open-source monitoring system with a dimensional data model, flexible query language, and a modern alerting approach.
This page shows you how to export your service telemetry to Prometheus:
To follow the steps on this page:
Create a target Tiger Cloud service with the time-series and analytics capability enabled.
To export your data, do the following:
To export metrics from a Tiger Cloud service, you create a dedicated Prometheus exporter in Tiger Cloud Console, attach it to your service, then configure Prometheus to scrape metrics using the exposed URL. The Prometheus exporter exposes the metrics related to the Tiger Cloud service like CPU, memory, and storage. To scrape other metrics, use Postgres Exporter as described for self-hosted TimescaleDB. The Prometheus exporter is available for Scale and Enterprise pricing plans.
Create a Prometheus exporter
In Tiger Cloud Console, click Exporters > + New exporter.
Select Metrics for data type and Prometheus for provider.
Choose the region for the exporter. Only services in the same project and region can be attached to this exporter.
Name your exporter.
Change the auto-generated Prometheus credentials, if needed. See official documentation on basic authentication in Prometheus.
Attach the exporter to a service
Select a service, then click Operations > Exporters.
Select the exporter in the drop-down, then click Attach exporter.
The exporter is now attached to your service. To unattach it, click the trash icon in the exporter list.

Configure the Prometheus scrape target
Operations > Exporters and click the information icon next to the exporter. You see the exporter details.Copy the exporter URL.
In your Prometheus installation, update prometheus.yml to point to the exporter URL as a scrape target:
scrape_configs:
- job_name: "timescaledb-exporter"
scheme: https
static_configs:
- targets: ["my-exporter-url"]
basic_auth:
username: "user"
password: "pass"
See the Prometheus documentation for details on configuring scrape targets.
You can now monitor your service metrics. Use the following metrics to check the service is running correctly:
timescale.cloud.system.cpu.usage.millicorestimescale.cloud.system.cpu.total.millicorestimescale.cloud.system.memory.usage.bytestimescale.cloud.system.memory.total.bytestimescale.cloud.system.disk.usage.bytestimescale.cloud.system.disk.total.bytesAdditionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|host|us-east-1.timescale.cloud| |
|project-id|| |
|service-id|| |
|region|us-east-1| AWS region |
|role|replica or primary| For service with replicas |
To export metrics from self-hosted TimescaleDB, you import telemetry data about your database to Postgres Exporter, then configure Prometheus to scrape metrics from it. Postgres Exporter exposes metrics that you define, excluding the system metrics.
Create a user to access telemetry data about your database
Connect to your database in psql using your connection details.
Create a user named monitoring with a secure password:
CREATE USER monitoring WITH PASSWORD '<password>';
Grant the pg_read_all_stats permission to the monitoring user:
GRANT pg_read_all_stats to monitoring;
Import telemetry data about your database to Postgres Exporter
Use your connection details to import telemetry data about your database. You connect as
the monitoring user:
- Local installation:
```shell
export DATA_SOURCE_NAME="postgres://<user>:<password>@<host>:<port>/<database>?sslmode=<sslmode>"
./postgres_exporter
```
- Docker:
```shell
docker run -d \
-e DATA_SOURCE_NAME="postgres://<user>:<password>@<host>:<port>/<database>?sslmode=<sslmode>" \
-p 9187:9187 \
prometheuscommunity/postgres-exporter
```
Check the metrics for your database in the Prometheus format:
Navigate to http://<exporter-host>:9187/metrics.
Command line:
curl http://<exporter-host>:9187/metrics
Configure Prometheus to scrape metrics
In your Prometheus installation, update prometheus.yml to point to your Postgres Exporter instance as a scrape
target. In the following example, you replace <exporter-host> with the hostname or IP address of the PostgreSQL
Exporter.
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'postgresql'
static_configs:
- targets: ['<exporter-host>:9187']
If prometheus.yml has not been created during installation, create it manually. If you are using Docker, you can
find the IPAddress in Inspect > Networks for the container running Postgres Exporter.
Restart Prometheus.
Check the Prometheus UI at http://<prometheus-host>:9090/targets and http://<prometheus-host>:9090/tsdb-status.
You see the Postgres Exporter target and the metrics scraped from it.
You can further visualize your data with Grafana. Use the Grafana Postgres dashboard or create a custom dashboard that suits your needs.
===== PAGE: https://docs.tigerdata.com/use-timescale/metrics-logging/monitoring/ =====
Get complete visibility into your service performance with Tiger Cloud's powerful monitoring suite. Whether you're optimizing for peak efficiency or troubleshooting unexpected behavior, Tiger Cloud gives you the tools to quickly identify and resolve issues.
When something doesn't look right, Tiger Cloud provides a complete investigation workflow:
Want to save some time? Check out Recommendations for alerts that may have already flagged the problem!
This pages explains what specific data you get at each point.
Tiger Cloud shows you CPU, memory, and storage metrics for up to 30 previous days and with down to 10-second granularity.
To access metrics, select your service in Tiger Cloud Console, then click Monitoring > Metrics:
The following metrics are represented by graphs:
The Free pricing plan only includes storage metrics.
When you hit the limits:
Operations > Compute and storage.Hover over the graph to view metrics for a specific time point. Select an area in the graph to zoom into a specific period.
Gray bars indicate that metrics have not been collected for the period shown:
It is normal to observe high overall memory usage for your Tiger Cloud services, especially for workloads with active read and write. Tiger Cloud service run on Linux, and high memory usage is a particularity of the Linux page cache. The Linux kernel stores file-backed data in memory to speed up read operations. Postgres, and by extension, Tiger Cloud services rely heavily on disk I/O to access tables, WALs, and indexes. When your service reads these files, the kernel caches them in memory to improve performance for future access.
Page cache entries are not locked memory: they are evictable and are automatically reclaimed by the kernel when actual memory pressure arises. Therefore, high memory usage shown in the monitoring dashboards is often not due to service memory allocation, but the beneficial caching behavior in the Linux kernel. The trick is to distinguish between normal memory utilization and memory pressure.
High memory usage does not necessarily mean a problem, especially on read replicas or after periods of activity. For a more accurate view of database memory consumption, look at Postgres-specific metrics, such as shared_buffers or memory context breakdowns. Only take action if you see signs of real memory pressure—such as OOM (Out Of Memory) events or degraded performance.
Tiger Cloud Console gives you a visual representation of the state of your service. The following states are represented with the following colors:
| State | Color |
|---|---|
| Configuring | Yellow |
| Deleted | Yellow |
| Deleting | Yellow |
| Optimizing | Green |
| Paused | Grey |
| Pausing | Grey |
| Queued | Yellow |
| Ready | Green |
| Resuming | Yellow |
| Unstable | Yellow |
| Upgrading | Yellow |
| Read-only | Red |
Tiger Cloud shows you detailed logs for your service, which you can filter by type, date, and time.
To access logs, select your service in Tiger Cloud Console, then click Monitoring > Logs:
Insights help you get a comprehensive understanding of how your queries perform over time, and make the most efficient use of your resources.
To view insights, select your service, then click Monitoring > Insights. Search or filter queries by type, maximum execution time, and time frame.
Insights include Metrics, Current lock contention, and Queries.
Metrics provides a visual representation of CPU, memory, and storage input/output usage over time. It also overlays the execution times of the top three queries matching your search. This helps correlate query executions with resource utilization. Select an area of the graph to zoom into a specific time frame.
Current lock contention shows how many queries or transactions are currently waiting for locks held by other queries or transactions.
Queries displays the top 50 queries matching your search. This includes executions, total rows, total time, median time, P95 time, related hypertables, tables in the columnstore, and user name.
| Column | Description |
|---|---|
Executions |
The number of times the query ran during the selected period. |
Total rows |
The total number of rows scanned, inserted, or updated by the query during the selected period. |
Total time |
The total time of query execution. |
Median time |
The median (P50) time of query execution. |
P95 time |
The ninety-fifth percentile, or the maximum time of query execution. |
Hypertables |
If the query ran on a hypertable. |
Columnar tables |
If the query drew results from a chunk in the columnstore. |
User name |
The user name of the user running the query. |
These metrics calculations are based on the entire period you've selected. For example, if you've selected six hours, all the metrics represent an aggregation of the previous six hours of executions.
If you have just completed a query, it can take some minutes for it to show in the table. Wait a little, then refresh the page to see your query. Check out the last update value at the top of the query table to identify the timestamp from the last processed query stat.
Click a query in the list to see the drill-down view. This view not only helps you identify spikes and unexpected behaviors, but also offers information to optimize your query.
This view includes the following graphs:
Execution time: the median and P95 query execution times over the selected period. This is useful to understand the consistency and efficiency of your query's execution over time.EXPLAIN plan: for queries that take more than 10 seconds to execute, there is an EXPLAIN plan collected automatically.Rows: the impact of your query on rows over time. If it's a SELECT statement, it shows the number of rows retrieved, while for an INSERT/UPDATE statement, it reflects the rows inserted.Plans and executions: the number of query plans and executions over time. You can use this to optimize query performance, helping you assess if you can benefit from prepared statements to reduce planning overhead.Shared buffers hit and miss: shared buffers play a critical role in Postgres's performance by caching data in memory. A shared buffer hit occurs when the required data block is found in the shared buffer memory, while a miss indicates that Postgres couldn't locate the block in memory. A miss doesn't necessarily mean a disk read, because Postgres may retrieve the data from the operating system's disk pages cache. If you observe a high number of shared buffer misses, your current shared buffers setting might be insufficient. Increasing the shared buffer size can improve cache hit rates and query speed.Cache hit ratio: measures how much of your query's data is read from shared buffers. A 100% value indicates that all the data required by the query was found in the shared buffer, while a 0% value means none of the necessary data blocks were in the shared buffers. This metric provides a clear understanding of how efficiently your query leverages shared buffers, helping you optimize data access and database performance.Tiger Cloud summarizes all jobs set up for your service along with their details like type, target object, and status. This includes native Tiger Cloud jobs as well as custom jobs you configure based on your specific needs.
Monitoring > Jobs:Tiger Cloud lists current and past connections to your service. This includes details like the corresponding query, connecting application, username, connection status, start time, and duration.
To view connections, select your service in Tiger Cloud Console, then click Monitoring > Connections. Expand the query underneath each connection to see the full SQL.
Click the trash icon next to a connection in the list to terminate it. A lock icon means that a connection cannot be terminated; hover over the icon to see the reason.
Tiger Cloud offers specific tips on configuring your service. This includes a wide range of actions—from finishing account setup to tuning your service for the best performance. For example, Tiger Cloud may recommend a more suitable chunk interval or draw your attention to consistently failing jobs.
To view recommendations, select your service in Tiger Cloud Console, then click Monitoring > Recommendations:
pg_stat_statementsYou can also get query-level statistics for your services with the pg_stat_statements extension. This includes the time spent planning and executing each query; the number of blocks hit, read, and written; and more. pg_stat_statements comes pre-installed with Tiger Cloud.
For more information about pg_stat_statements, see the Postgres documentation.
Query the pg_stat_statements view as you would any Postgres view.
The full view includes superuser queries used by Tiger Cloud to manage your service in the background. To view only your
queries, filter by the current user.
Connect to your service and run the following command:
SELECT * FROM pg_stat_statements WHERE pg_get_userbyid(userid) = current_user;
For example, to identify the top five longest-running queries by their mean execution time:
SELECT calls,
mean_exec_time,
query
FROM pg_stat_statements
WHERE pg_get_userbyid(userid) = current_user
ORDER BY mean_exec_time DESC
LIMIT 5;
Or the top five queries with the highest relative variability in the execution time, expressed as a percentage:
SELECT calls,
stddev_exec_time/mean_exec_time*100 AS rel_std_dev,
query
FROM pg_stat_statements
WHERE pg_get_userbyid(userid) = current_user
ORDER BY rel_std_dev DESC
LIMIT 5;
For more examples and detailed explanations, see the blog post on identifying performance bottlenecks with pg_stat_statements.
===== PAGE: https://docs.tigerdata.com/use-timescale/metrics-logging/aws-cloudwatch/ =====
You can export telemetry data from your Tiger Cloud services with the time-series and analytics capability enabled to Amazon CloudWatch. Available metrics include CPU usage, RAM usage, and storage. This integration is available for Scale or Enterprise pricing plans.
This page shows you how to create an Amazon CloudWatch exporter in Tiger Cloud Console, and manage the lifecycle of data exporters.
To follow the steps on this page:
Tiger Cloud data exporters send telemetry data from a Tiger Cloud service to a third-party monitoring tools. You create an exporter on the project level, in the same AWS region as your service:
New exporterSelect the data type and specify AWS CloudWatch for provider
Provide your AWS CloudWatch configuration
Choose the authentication method to use for the exporter
In AWS, navigate to IAM > Identity providers, then click Add provider.
Update the new identity provider with your details:
Set Provider URL to the region where you are creating your exporter.
Click Add provider.
In AWS, navigate to IAM > Roles, then click Create role.
Add your identity provider as a Web identity role and click Next.
Set the following permission and trust policies:
Permission policy:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:PutLogEvents",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:DescribeLogGroups",
"logs:PutRetentionPolicy",
"xray:PutTraceSegments",
"xray:PutTelemetryRecords",
"xray:GetSamplingRules",
"xray:GetSamplingTargets",
"xray:GetSamplingStatisticSummaries",
"ssm:GetParameters"
],
"Resource": "*"
}
]
}
Role with a Trust Policy:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Federated": "arn:aws:iam::12345678910:oidc-provider/irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com"
},
"Action": "sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringEquals": {
"irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com:aud": "sts.amazonaws.com"
}
}
},
{
"Sid": "Statement1",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::12345678910:role/my-exporter-role"
},
"Action": "sts:AssumeRole"
}
]
}
Add role.When you use CloudWatch credentials, you link an Identity and Access Management (IAM) user with access to CloudWatch only with your Tiger Cloud service:
If you do not have an AWS user with access restricted to CloudWatch only, create one. For more information, see Creating IAM users (console).
AWS keys give access to your AWS services. To keep your AWS account secure, restrict users to the minimum required permissions. Always store your keys in a safe location. To avoid this issue, use the IAM role authentication method.
Select the AWS Region your CloudWatch services run in, then click Create exporter.
This section shows you how to attach, monitor, edit, and delete a data exporter.
To send telemetry data to an external monitoring tool, you attach a data exporter to your Tiger Cloud service. You can attach only one exporter to a service.
To attach an exporter:
Operations > ExportersAttach exporterLogs data type exporter, restart the serviceYou can now monitor your service metrics. Use the following metrics to check the service is running correctly:
timescale.cloud.system.cpu.usage.millicorestimescale.cloud.system.cpu.total.millicorestimescale.cloud.system.memory.usage.bytestimescale.cloud.system.memory.total.bytestimescale.cloud.system.disk.usage.bytestimescale.cloud.system.disk.total.bytesAdditionally, use the following tags to filter your results.
|Tag|Example variable| Description |
|-|-|----------------------------|
|host|us-east-1.timescale.cloud| |
|project-id|| |
|service-id|| |
|region|us-east-1| AWS region |
|role|replica or primary| For service with replicas |
|node-id|| For multi-node services |
To update a data exporter:
EditYou cannot change fields such as the provider or the AWS region.
To remove a data exporter that you no longer need:
Disconnect the data exporter from your Tiger Cloud services
Operations > Exporters.The data exporter is now unattached from all services. However, it still exists in your project.
Delete the exporter on the project level
DeleteWhen you create the IAM OIDC provider, the URL must match the region you create the exporter in. It must be one of the following:
| Region | Zone | Location | URL |
|---|---|---|---|
ap-southeast-1 |
Asia Pacific | Singapore | irsa-oidc-discovery-prod-ap-southeast-1.s3.ap-southeast-1.amazonaws.com |
ap-southeast-2 |
Asia Pacific | Sydney | irsa-oidc-discovery-prod-ap-southeast-2.s3.ap-southeast-2.amazonaws.com |
ap-northeast-1 |
Asia Pacific | Tokyo | irsa-oidc-discovery-prod-ap-northeast-1.s3.ap-northeast-1.amazonaws.com |
ca-central-1 |
Canada | Central | irsa-oidc-discovery-prod-ca-central-1.s3.ca-central-1.amazonaws.com |
eu-central-1 |
Europe | Frankfurt | irsa-oidc-discovery-prod-eu-central-1.s3.eu-central-1.amazonaws.com |
eu-west-1 |
Europe | Ireland | irsa-oidc-discovery-prod-eu-west-1.s3.eu-west-1.amazonaws.com |
eu-west-2 |
Europe | London | irsa-oidc-discovery-prod-eu-west-2.s3.eu-west-2.amazonaws.com |
sa-east-1 |
South America | São Paulo | irsa-oidc-discovery-prod-sa-east-1.s3.sa-east-1.amazonaws.com |
us-east-1 |
United States | North Virginia | irsa-oidc-discovery-prod.s3.us-east-1.amazonaws.com |
us-east-2 |
United States | Ohio | irsa-oidc-discovery-prod-us-east-2.s3.us-east-2.amazonaws.com |
us-west-2 |
United States | Oregon | irsa-oidc-discovery-prod-us-west-2.s3.us-west-2.amazonaws.com |
===== PAGE: https://docs.tigerdata.com/use-timescale/data-retention/create-a-retention-policy/ =====
Automatically drop data once its time value ages past a certain interval. When you create a data retention policy, TimescaleDB automatically schedules a background job to drop old chunks.
Add a data retention policy by using the
add_retention_policy function.
conditions retains the data for 24 hours.Call add_retention_policy:
SELECT add_retention_policy('conditions', INTERVAL '24 hours');
A data retention policy only allows you to drop chunks based on how far they are in the past. To drop chunks based on how far they are in the future, manually drop chunks.
Remove an existing data retention policy by using the
remove_retention_policy function. Pass it the name
of the hypertable to remove the policy from.
SELECT remove_retention_policy('conditions');
To see your scheduled data retention jobs and their job statistics, query the
timescaledb_information.jobs and
timescaledb_information.job_stats tables.
For example:
SELECT j.hypertable_name,
j.job_id,
config,
schedule_interval,
job_status,
last_run_status,
last_run_started_at,
js.next_start,
total_runs,
total_successes,
total_failures
FROM timescaledb_information.jobs j
JOIN timescaledb_information.job_stats js
ON j.job_id = js.job_id
WHERE j.proc_name = 'policy_retention';
The results look like this:
-[ RECORD 1 ]-------+-----------------------------------------------
hypertable_name | conditions
job_id | 1000
config | {"drop_after": "5 years", "hypertable_id": 14}
schedule_interval | 1 day
job_status | Scheduled
last_run_status | Success
last_run_started_at | 2022-05-19 16:15:11.200109+00
next_start | 2022-05-20 16:15:11.243531+00
total_runs | 1
total_successes | 1
total_failures | 0
===== PAGE: https://docs.tigerdata.com/use-timescale/data-retention/manually-drop-chunks/ =====
Drop chunks manually by time value. For example, drop chunks containing data older than 30 days.
Dropping chunks manually is a one-time operation. To automatically drop chunks as they age, set up a data retention policy.
To drop chunks older than a certain date, use the drop_chunks
function. Provide the name of the hypertable to drop chunks from, and a time
interval beyond which to drop chunks.
For example, to drop chunks with data older than 24 hours:
SELECT drop_chunks('conditions', INTERVAL '24 hours');
You can also drop chunks between 2 dates. For example, drop chunks with data between 3 and 4 months old.
Supply a second INTERVAL argument for the newer_than cutoff:
SELECT drop_chunks(
'conditions',
older_than => INTERVAL '3 months',
newer_than => INTERVAL '4 months'
)
You can also drop chunks in the future, for example, to correct data with the
wrong timestamp. To drop all chunks that are more than 3 months in the
future, from a hypertable called conditions:
SELECT drop_chunks(
'conditions',
newer_than => now() + INTERVAL '3 months'
);
===== PAGE: https://docs.tigerdata.com/use-timescale/data-retention/data-retention-with-continuous-aggregates/ =====
You can downsample your data by combining a data retention policy with continuous aggregates. If you set your refresh policies correctly, you can delete old data from a hypertable without deleting it from any continuous aggregates. This lets you save on raw data storage while keeping summarized data for historical analysis.
To keep your aggregates while dropping raw data, you must be careful about refreshing your aggregates. You can delete raw data from the underlying table without deleting data from continuous aggregates, so long as you don't refresh the aggregate over the deleted data. When you refresh a continuous aggregate, TimescaleDB updates the aggregate based on changes in the raw data for the refresh window. If it sees that the raw data was deleted, it also deletes the aggregate data. To prevent this, make sure that the aggregate's refresh window doesn't overlap with any deleted data. For more information, see the following example.
As an example, say that you add a continuous aggregate to a conditions
hypertable that stores device temperatures:
CREATE MATERIALIZED VIEW conditions_summary_daily (day, device, temp)
WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time), device, avg(temperature)
FROM conditions
GROUP BY (1, 2);
SELECT add_continuous_aggregate_policy('conditions_summary_daily', '7 days', '1 day', '1 day');
This creates a conditions_summary_daily aggregate which stores the daily
temperature per device. The aggregate refreshes every day. Every time it
refreshes, it updates with any data changes from 7 days ago to 1 day ago.
You should not set a 24-hour retention policy on the conditions
hypertable. If you do, chunks older than 1 day are dropped. Then the aggregate
refreshes based on data changes. Since the data change was to delete data older
than 1 day, the aggregate also deletes the data. You end up with no data in the
conditions_summary_daily table.
To fix this, set a longer retention policy, for example 30 days:
SELECT add_retention_policy('conditions', INTERVAL '30 days');
Now, chunks older than 30 days are dropped. But when the aggregate refreshes, it doesn't look for changes older than 30 days. It only looks for changes between 7 days and 1 day ago. The raw hypertable still contains data for that time period. So your aggregate retains the data.
You can also apply data retention on a continuous aggregate itself. For example, you can keep raw data for 30 days, as mentioned earlier. Meanwhile, you can keep daily data for 600 days, and no data beyond that.
===== PAGE: https://docs.tigerdata.com/use-timescale/data-retention/about-data-retention/ =====
In modern applications, data grows exponentially. As data gets older, it often becomes less useful in day-to-day operations. However, you still need it for analysis. TimescaleDB elegantly solves this problem with automated data retention policies.
Data retention policies delete raw old data for you on a schedule that you define. By combining retention policies with continuous aggregates, you can downsample your data and keep useful summaries of it instead. This lets you analyze historical data - while also saving on storage.
TimescaleDB data retention works on chunks, not on rows. Deleting data
row-by-row, for example, with the Postgres DELETE command, can be slow. But
dropping data by the chunk is faster, because it deletes an entire file from
disk. It doesn't need garbage collection and defragmentation.
Whether you use a policy or manually drop chunks, TimescaleDB drops data by the chunk. It only drops chunks where all the data is within the specified time range.
For example, consider the setup where you have 3 chunks containing data:
You manually drop chunks older than 24 hours. Only the oldest chunk is deleted. The middle chunk is retained, because it contains some data newer than 24 hours. No individual rows are deleted from that chunk.
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/refresh-policies/ =====
Continuous aggregates can have a range of different refresh policies. In addition to refreshing the continuous aggregate automatically using a policy, you can also refresh it manually.
To follow the procedure on this page you need to:
This procedure also works for self-hosted TimescaleDB.
Continuous aggregates require a policy for automatic refreshing. You can adjust this to suit different use cases. For example, you can have the continuous aggregate and the hypertable stay in sync, even when data is removed from the hypertable. Alternatively, you could keep source data in the continuous aggregate even after it is removed from the hypertable.
You can change the way your continuous aggregate is refreshed by calling
add_continuous_aggregate_policy.
Among others, add_continuous_aggregate_policy takes the following arguments:
start_offset: the start of the refresh window relative to when the policy
runsend_offset: the end of the refresh window relative to when the policy runsschedule_interval: the refresh interval in minutes or hours. Defaults to
24 hours.Note the following:
start_offset or end_offset to NULL, the range is open-ended and extends to the beginning or end of time.If you set end_offset within the current time bucket, this bucket is excluded from materialization. This is done for the following reasons:
To include the latest raw data in queries, enable real-time aggregation.
See the API reference for the full list of required and optional arguments and use examples.
The policy in the following example ensures that all data in the continuous aggregate is up to date with the hypertable, except for data written within the last hour of wall-clock time. The policy also does not refresh the last time bucket of the continuous aggregate.
Since the policy in this example runs once every hour (schedule_interval) while also excluding data within the most recent hour (end_offset), it takes up to 2 hours for data written to the hypertable to be reflected in the continuous aggregate. Backfills, which are usually outside the most recent hour of data, will be visible after up to 1 hour depending on when the policy last ran when the data was written.
Because it has an open-ended start_offset parameter, any data that is removed
from the table, for example with a DELETE or with drop_chunks, is also removed
from the continuous aggregate view. This means that the continuous aggregate
always reflects the data in the underlying hypertable.
To changing a refresh policy to use a NULL start_offset:
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a new policy on conditions_summary_hourly that keeps the continuous aggregate up to date, and runs every hour:
SELECT add_continuous_aggregate_policy('conditions_summary_hourly',
start_offset => NULL,
end_offset => INTERVAL '1 h',
schedule_interval => INTERVAL '1 h');
If you want to keep data in the continuous aggregate even if it is removed from
the underlying hypertable, you can set the start_offset to match the
data retention policy on the source hypertable. For example,
if you have a retention policy that removes data older than one month, set
start_offset to one month or less. This sets your policy so that it does not
refresh the dropped data.
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a new policy on conditions_summary_hourly
that keeps data removed from the hypertable in the continuous aggregate, and
runs every hour:
SELECT add_continuous_aggregate_policy('conditions_summary_hourly',
start_offset => INTERVAL '1 month',
end_offset => INTERVAL '1 h',
schedule_interval => INTERVAL '1 h');
It is important to consider your data retention policies when you're setting up continuous aggregate policies. If the continuous aggregate policy window covers data that is removed by the data retention policy, the data will be removed when the aggregates for those buckets are refreshed. For example, if you have a data retention policy that removes all data older than two weeks, the continuous aggregate policy will only have data for the last two weeks.
You can add concurrent refresh policies on each continuous aggregate, as long as their start and end offsets don't overlap. For example, to backfill data into older chunks you set up one policy that refreshes recent data, and another that refreshes backfilled data.
The first policy in this example is keeps the continuous aggregate up to date with data that was inserted in the past day. Any data that was inserted or updated for previous days is refreshed by the second policy.
In Tiger Cloud Console open an SQL editor. You can also connect to your service using psql.
Create a new policy on conditions_summary_daily
to refresh the continuous aggregate with recently inserted data which runs
hourly:
SELECT add_continuous_aggregate_policy('conditions_summary_daily',
start_offset => INTERVAL '1 day',
end_offset => INTERVAL '1 h',
schedule_interval => INTERVAL '1 h');
At the psql prompt, create a concurrent policy on
conditions_summary_daily to refresh the continuous aggregate with
backfilled data:
SELECT add_continuous_aggregate_policy('conditions_summary_daily',
start_offset => NULL
end_offset => INTERVAL '1 day',
schedule_interval => INTERVAL '1 hour');
If you need to manually refresh a continuous aggregate, you can use the
refresh command. This recomputes the data within the window that has changed
in the underlying hypertable since the last refresh. Therefore, if only a few
buckets need updating, the refresh runs quickly.
If you have recently dropped data from a hypertable with a continuous aggregate,
calling refresh_continuous_aggregate on a region containing dropped chunks
recalculates the aggregate without the dropped data. See
drop data for more information.
The refresh command takes three arguments:
Only buckets that are wholly within the specified range are refreshed. For
example, if you specify 2021-05-01', '2021-06-01 the only buckets that are
refreshed are those up to but not including 2021-06-01. It is possible to
specify NULL in a manual refresh to get an open-ended range, but we do not
recommend using it, because you could inadvertently materialize a large amount
of data, slow down your performance, and have unintended consequences on other
policies like data retention.
To manually refresh a continuous aggregate, use the refresh command:
CALL refresh_continuous_aggregate('example', '2021-05-01', '2021-06-01');
Follow the logic used by automated refresh policies and avoid refreshing time buckets that are likely to have a lot of writes. This means that you should generally not refresh the latest incomplete time bucket. To include the latest raw data in your queries, use real-time aggregation instead.
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/drop-data/ =====
When you are working with continuous aggregates, you can drop a view, or you can drop raw data from the underlying hypertable or from the continuous aggregate itself. A combination of refresh and data retention policies can help you downsample your data. This lets you keep historical data at a lower granularity than recent data.
However, you should be aware if a retention policy is likely to drop raw data from your hypertable that you need in your continuous aggregate.
To simplify the process of setting up downsampling, you can use the visualizer and code generator.
You can drop a continuous aggregate view using the DROP MATERIALIZED VIEW
command. This command also removes refresh policies defined on the continuous
aggregate. It does not drop the data from the underlying hypertable.
From the psqlprompt, drop the view:
DROP MATERIALIZED VIEW view_name;
If you drop data from a hypertable used in a continuous aggregate it can lead to problems with your continuous aggregate view. In many cases, dropping underlying data replaces the aggregate with NULL values, which can lead to unexpected results in your view.
You can drop data from a hypertable using drop_chunks in the usual way, but
before you do so, always check that the chunk is not within the refresh window
of a continuous aggregate that still needs the data. This is also important if
you are manually refreshing a continuous aggregate. Calling
refresh_continuous_aggregate on a region containing dropped chunks
recalculates the aggregate without the dropped data.
If a continuous aggregate is refreshing when data is dropped because of a
retention policy, the aggregate is updated to reflect the loss of data. If you
need to retain the continuous aggregate after dropping the underlying data, set
the start_offset value of the aggregate policy to a smaller interval than the
drop_after parameter of the retention policy.
For more information, see the [data retention documentation][data-retention-with-continuous-aggregates].
Refer to the installation documentation for detailed setup instructions.
[data-retention-with-continuous-aggregates]:
/use-timescale/:currentVersion:/data-retention/data-retention-with-continuous-aggregates
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/migrate/ =====
In TimescaleDB v2.7 and later, continuous aggregates use a new format that
improves performance and makes them compatible with more SQL queries. Continuous
aggregates created in older versions of TimescaleDB, or created in a new version
with the option timescaledb.finalized set to false, use the old format.
To migrate a continuous aggregate from the old format to the new format, you can use this procedure. It automatically copies over your data and policies. You can continue to use the continuous aggregate while the migration is happening.
Connect to your database and run:
CALL cagg_migrate('<CONTINUOUS_AGGREGATE_NAME>');
There are known issues with cagg_migrate() in version 2.8.0.
Upgrade to version 2.8.1 or later before using it.
The migration procedure provides two boolean configuration parameters,
override and drop_old. By default, the name of your new continuous
aggregate is the name of your old continuous aggregate, with the suffix _new.
Set override to true to rename your new continuous aggregate with the
original name. The old continuous aggregate is renamed with the suffix _old.
To both rename and drop the old continuous aggregate entirely, set both
parameters to true. Note that drop_old must be used together with
override.
To check the progress of the continuous aggregate migration, query the migration planning table:
SELECT * FROM _timescaledb_catalog.continuous_agg_migrate_plan_step;
You might get a permissions error when migrating a continuous aggregate from old
to new format using cagg_migrate. The user performing the migration must have
the following permissions:
_timescale_catalog.continuous_agg_migrate_plan and
_timescale_catalog.continuous_agg_migrate_plan_step_timescaledb_catalog.continuous_agg_migrate_plan_step_step_id_seqTo solve the problem, change to a user capable of granting permissions, and grant the following permissions to the user performing the migration:
GRANT SELECT, INSERT, UPDATE ON TABLE _timescaledb_catalog.continuous_agg_migrate_plan TO <USER>;
GRANT SELECT, INSERT, UPDATE ON TABLE _timescaledb_catalog.continuous_agg_migrate_plan_step TO <USER>;
GRANT USAGE ON SEQUENCE _timescaledb_catalog.continuous_agg_migrate_plan_step_step_id_seq TO <USER>;
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/compression-on-continuous-aggregates/ =====
To save on storage costs, you use hypercore to downsample historical data stored in continuous aggregates. After you
enable columnstore on a MATERIALIZED VIEW, you set a
columnstore policy. This policy defines the intervals when chunks in a continuous aggregate
are compressed as they are converted from the rowstore to the columnstore.
Columnstore works in the same way on hypertables and continuous aggregates. When you enable
columnstore with no other options, your data is segmented by the groupby columns
in the continuous aggregate, and ordered by the time column. Real-time aggregation
is disabled by default.
Since TimescaleDB v2.20.0 For the old API, see Compress continuous aggregates.
For an existing continuous aggregate:
To enable the columnstore compression on a continuous aggregate, set timescaledb.enable_columnstore = true when you alter the view:
ALTER MATERIALIZED VIEW <cagg_name> set (timescaledb.enable_columnstore = true);
To disable the columnstore compression, set timescaledb.enable_columnstore = false:
Before you set up a columnstore policy on a continuous aggregate, you first set the refresh policy. To prevent refresh policies from failing, you set the columnstore policy interval so that actively refreshed regions are not compressed. For example:
Set the refresh policy
SELECT add_continuous_aggregate_policy('<cagg_name>',
start_offset => INTERVAL '30 days',
end_offset => INTERVAL '1 day',
schedule_interval => INTERVAL '1 hour');
Set the columnstore policy
For this refresh policy, the after parameter must be greater than the value of
start_offset in the refresh policy:
CALL add_columnstore_policy('<cagg_name>', after => INTERVAL '45 days');
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/create-index/ =====
By default, some indexes are automatically created when you create a continuous aggregate. You can change this behavior. You can also manually create and drop indexes.
When you create a continuous aggregate, an index is automatically created for
each GROUP BY column. The index is a composite index, combining the GROUP BY
column with the time_bucket column.
For example, if you define a continuous aggregate view with GROUP BY device,
location, bucket, two composite indexes are created: one on {device, bucket}
and one on {location, bucket}.
To turn off automatic index creation, set timescaledb.create_group_indexes to
false when you create the continuous aggregate.
For example:
CREATE MATERIALIZED VIEW conditions_daily
WITH (timescaledb.continuous, timescaledb.create_group_indexes=false)
AS
...
You can use a regular Postgres statement to create or drop an index on a continuous aggregate.
For example, to create an index on avg_temp for a materialized hypertable
named weather_daily:
CREATE INDEX avg_temp_idx ON weather_daily (avg_temp);
Indexes are created under the _timescaledb_internal schema, where the
continuous aggregate data is stored. To drop the index, specify the schema. For
example, to drop the index avg_temp_idx, run:
DROP INDEX _timescaledb_internal.avg_temp_idx
In TimescaleDB v2.7 and later, you can create an index on any column in the materialized view. This includes aggregated columns, such as those storing sums and averages. In earlier versions of TimescaleDB, you can't create an index on an aggregated column.
You can't create unique indexes on a continuous aggregate, in any of the TimescaleDB versions.
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/about-continuous-aggregates/ =====
In modern applications, data usually grows very quickly. This means that aggregating it into useful summaries can become very slow. If you are collecting data very frequently, you might want to aggregate your data into minutes or hours instead. For example, if an IoT device takes temperature readings every second, you might want to find the average temperature for each hour. Every time you run this query, the database needs to scan the entire table and recalculate the average. TimescaleDB makes aggregating data lightning fast, accurate, and easy with continuous aggregates.
Continuous aggregates in TimescaleDB are a kind of hypertable that is refreshed automatically in the background as new data is added, or old data is modified. Changes to your dataset are tracked, and the hypertable behind the continuous aggregate is automatically updated in the background.
Continuous aggregates have a much lower maintenance burden than regular Postgres materialized views, because the whole view is not created from scratch on each refresh. This means that you can get on with working your data instead of maintaining your database.
Because continuous aggregates are based on hypertables, you can query them in exactly the same way as your other tables. This includes continuous aggregates in the rowstore, compressed into the columnstore, or tiered to object storage. You can even create continuous aggregates on top of your continuous aggregates, for an even more fine-tuned aggregation.
Real-time aggregation enables you to combine pre-aggregated data from the materialized view with the most recent raw data. This gives you up-to-date results on every query. In TimescaleDB v2.13 and later, real-time aggregates are DISABLED by default. In earlier versions, real-time aggregates are ENABLED by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
There are three main ways to make aggregation easier: materialized views, continuous aggregates, and real-time aggregates.
Materialized views are a standard Postgres function. They are used to cache the result of a complex query so that you can reuse it later on. Materialized views do not update regularly, although you can manually refresh them as required.
Continuous aggregates are a TimescaleDB-only feature. They work in a similar way to a materialized view, but they are updated automatically in the background, as new data is added to your database. Continuous aggregates are updated continuously and incrementally, which means they are less resource intensive to maintain than materialized views. Continuous aggregates are based on hypertables, and you can query them in the same way as you do your other tables.
Real-time aggregates are a TimescaleDB-only feature. They are the same as continuous aggregates, but they add the most recent raw data to the previously aggregated data to provide accurate and up-to-date results, without needing to aggregate data as it is being written.
You can create a continuous aggregate on top of another continuous aggregate. This allows you to summarize data at different granularity. For example, you might have a raw hypertable that contains second-by-second data. Create a continuous aggregate on the hypertable to calculate hourly data. To calculate daily data, create a continuous aggregate on top of your hourly continuous aggregate.
For more information, see the documentation about continuous aggregates on continuous aggregates.
JOIN clauseContinuous aggregates support the following JOIN features:
| Feature | TimescaleDB < 2.10.x | TimescaleDB <= 2.15.x | TimescaleDB >= 2.16.x|
|-|-|-|-|
|INNER JOIN|❌|✅|✅|
|LEFT JOIN|❌|❌|✅|
|LATERAL JOIN|❌|❌|✅|
|Joins between ONE hypertable and ONE standard Postgres table|❌|✅|✅|
|Joins between ONE hypertable and MANY standard Postgres tables|❌|❌|✅|
|Join conditions must be equality conditions, and there can only be ONE JOIN condition|❌|✅|✅|
|Any join conditions|❌|❌|✅|
JOINS in TimescaleDB must meet the following conditions:
INNER, LEFT, and LATERAL joins; no other join type is supported.JOIN clause, but cannot themselves have a JOIN clause.Given the following schema:
CREATE TABLE locations (
id TEXT PRIMARY KEY,
name TEXT
);
CREATE TABLE devices (
id SERIAL PRIMARY KEY,
location_id TEXT,
name TEXT
);
CREATE TABLE conditions (
"time" TIMESTAMPTZ,
device_id INTEGER,
temperature FLOAT8
) WITH (
tsdb.hypertable,
tsdb.partition_column='time'
);
See the following JOIN examples on continuous aggregates:
INNER JOIN on a single equality condition, using the ON clause:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions
JOIN devices ON devices.id = conditions.device_id
GROUP BY bucket, devices.name
WITH NO DATA;
INNER JOIN on a single equality condition, using the ON clause, with a further condition added in the WHERE clause:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions
JOIN devices ON devices.id = conditions.device_id
WHERE devices.location_id = 'location123'
GROUP BY bucket, devices.name
WITH NO DATA;
INNER JOIN on a single equality condition specified in WHERE clause:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions, devices
WHERE devices.id = conditions.device_id
GROUP BY bucket, devices.name
WITH NO DATA;
INNER JOIN on multiple equality conditions:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions
JOIN devices ON devices.id = conditions.device_id AND devices.location_id = 'location123'
GROUP BY bucket, devices.name
WITH NO DATA;
TimescaleDB v2.16.x and higher.
INNER JOIN with a single equality condition specified in WHERE clause can be combined with further conditions in the WHERE clause:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions, devices
WHERE devices.id = conditions.device_id
AND devices.location_id = 'location123'
GROUP BY bucket, devices.name
WITH NO DATA;
TimescaleDB v2.16.x and higher.
INNER JOIN between a hypertable and multiple Postgres tables:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name AS device, locations.name AS location, MIN(temperature), MAX(temperature)
FROM conditions
JOIN devices ON devices.id = conditions.device_id
JOIN locations ON locations.id = devices.location_id
GROUP BY bucket, devices.name, locations.name
WITH NO DATA;
TimescaleDB v2.16.x and higher.
LEFT JOIN between a hypertable and a Postgres table:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions
LEFT JOIN devices ON devices.id = conditions.device_id
GROUP BY bucket, devices.name
WITH NO DATA;
TimescaleDB v2.16.x and higher.
LATERAL JOIN between a hypertable and a subquery:
CREATE MATERIALIZED VIEW conditions_by_day WITH (timescaledb.continuous) AS
SELECT time_bucket('1 day', time) AS bucket, devices.name, MIN(temperature), MAX(temperature)
FROM conditions,
LATERAL (SELECT * FROM devices WHERE devices.id = conditions.device_id) AS devices
GROUP BY bucket, devices.name
WITH NO DATA;
TimescaleDB v2.16.x and higher.
In TimescaleDB v2.7 and later, continuous aggregates support all Postgres
aggregate functions. This includes both parallelizable aggregates, such as SUM
and AVG, and non-parallelizable aggregates, such as RANK.
In TimescaleDB v2.10.0 and later, the FROM clause supports JOINS, with
some restrictions. For more information, see the JOIN support section.
In older versions of TimescaleDB, continuous aggregates only support aggregate functions that can be parallelized by Postgres. You can work around this by aggregating the other parts of your query in the continuous aggregate, then using the window function to query the aggregate.
The following table summarizes the aggregate functions supported in continuous aggregates:
| Function, clause, or feature |TimescaleDB 2.6 and earlier|TimescaleDB 2.7, 2.8, and 2.9|TimescaleDB 2.10 and later|
|------------------------------------------------------------|-|-|-|
| Parallelizable aggregate functions |✅|✅|✅|
| Non-parallelizable SQL aggregates |❌|✅|✅|
| ORDER BY |❌|✅|✅|
| Ordered-set aggregates |❌|✅|✅|
| Hypothetical-set aggregates |❌|✅|✅|
| DISTINCT in aggregate functions |❌|✅|✅|
| FILTER in aggregate functions |❌|✅|✅|
| FROM clause supports JOINS |❌|❌|✅|
DISTINCT works in aggregate functions, not in the query definition. For example, for the table:
CREATE TABLE public.candle(
symbol_id uuid NOT NULL,
symbol text NOT NULL,
"time" timestamp with time zone NOT NULL,
open double precision NOT NULL,
high double precision NOT NULL,
low double precision NOT NULL,
close double precision NOT NULL,
volume double precision NOT NULL
);
The following works:
CREATE MATERIALIZED VIEW candles_start_end
WITH (timescaledb.continuous) AS
SELECT time_bucket('1 hour', "time"), COUNT(DISTINCT symbol), first(time, time) as first_candle, last(time, time) as last_candle
FROM candle
GROUP BY 1;
This does not:
CREATE MATERIALIZED VIEW candles_start_end
WITH (timescaledb.continuous) AS
SELECT DISTINCT ON (symbol)
symbol,symbol_id, first(time, time) as first_candle, last(time, time) as last_candle
FROM candle
GROUP BY symbol_id;
If you want the old behavior in later versions of TimescaleDB, set the
timescaledb.finalized parameter to false when you create your continuous
aggregate.
Continuous aggregates consist of:
Continuous aggregates take raw data from the original hypertable, aggregate it, and store the aggregated data in a materialization hypertable. When you query the continuous aggregate view, the aggregated data is returned to you as needed.
Using the same temperature example, the materialization table looks like this:
|day|location|chunk|avg temperature| |-|-|-|-| |2021/01/01|New York|1|73| |2021/01/01|Stockholm|1|70| |2021/01/02|New York|2|| |2021/01/02|Stockholm|2|69|
The materialization table is stored as a TimescaleDB hypertable, to take
advantage of the scaling and query optimizations that hypertables offer.
Materialization tables contain a column for each group-by clause in the query,
and an aggregate column for each aggregate in the query.
For more information, see materialization hypertables.
The materialization engine performs two transactions. The first transaction blocks all INSERTs, UPDATEs, and DELETEs, determines the time range to materialize, and updates the invalidation threshold. The second transaction unblocks other transactions, and materializes the aggregates. The first transaction is very quick, and most of the work happens during the second transaction, to ensure that the work does not interfere with other operations.
Any change to the data in a hypertable could potentially invalidate some materialized rows. The invalidation engine checks to ensure that the system does not become swamped with invalidations.
Fortunately, time-series data means that nearly all INSERTs and UPDATEs have a recent timestamp, so the invalidation engine does not materialize all the data, but to a set point in time called the materialization threshold. This threshold is set so that the vast majority of INSERTs contain more recent timestamps. These data points have never been materialized by the continuous aggregate, so there is no additional work needed to notify the continuous aggregate that they have been added. When the materializer next runs, it is responsible for determining how much new data can be materialized without invalidating the continuous aggregate. It then materializes the more recent data and moves the materialization threshold forward in time. This ensures that the threshold lags behind the point-in-time where data changes are common, and that most INSERTs do not require any extra writes.
When data older than the invalidation threshold is changed, the maximum and minimum timestamps of the changed rows is logged, and the values are used to determine which rows in the aggregation table need to be recalculated. This logging does cause some write load, but because the threshold lags behind the area of data that is currently changing, the writes are small and rare.
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/time/ =====
Functions that depend on a local timezone setting inside a continuous aggregate are not supported. You cannot adjust to a local time because the timezone setting changes from user to user.
To manage this, you can use explicit timezones in the view definition. Alternatively, you can create your own custom aggregation scheme for tables that use an integer time column.
The most common method of working with timezones is to declare an explicit timezone in the view query.
At the psqlprompt, create the view and declare the timezone:
CREATE MATERIALIZED VIEW device_summary
WITH (timescaledb.continuous)
AS
SELECT
time_bucket('1 hour', observation_time) AS bucket,
min(observation_time AT TIME ZONE 'EST') AS min_time,
device_id,
avg(metric) AS metric_avg,
max(metric) - min(metric) AS metric_spread
FROM
device_readings
GROUP BY bucket, device_id;
Alternatively, you can cast to a timestamp after the view using SELECT:
SELECT min_time::timestamp FROM device_summary;
Date and time is usually expressed as year-month-day and hours:minutes:seconds. Most TimescaleDB databases use a date/time-type column to express the date and time. However, in some cases, you might need to convert these common time and date formats to a format that uses an integer. The most common integer time is Unix epoch time, which is the number of seconds since the Unix epoch of 1970-01-01, but other types of integer-based time formats are possible.
These examples use a hypertable called devices that contains CPU and disk
usage information. The devices measure time using the Unix epoch.
To create a hypertable that uses an integer-based column as time, you need to provide the chunk time interval. In this case, each chunk is 10 minutes.
At the psql prompt, create a hypertable and define the integer-based time column and chunk time interval:
CREATE TABLE devices(
time BIGINT, -- Time in minutes since epoch
cpu_usage INTEGER, -- Total CPU usage
disk_usage INTEGER, -- Total disk usage
PRIMARY KEY (time)
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.chunk_interval='10'
);
If you are self-hosting TimescaleDB v2.19.3 and below, create a Postgres relational table, then convert it using create_hypertable. You then enable hypercore with a call to ALTER TABLE.
To define a continuous aggregate on a hypertable that uses integer-based time,
you need to have a function to get the current time in the correct format, and
set it for the hypertable. You can do this with the
set_integer_now_func
function. It can be defined as a regular Postgres function, but needs to be
STABLE,
take no arguments, and return an integer value of the same type as the time
column in the table. When you have set up the time-handling, you can create the
continuous aggregate.
At the psql prompt, set up a function to convert the time to the Unix epoch:
CREATE FUNCTION current_epoch() RETURNS BIGINT
LANGUAGE SQL STABLE AS $$
SELECT EXTRACT(EPOCH FROM CURRENT_TIMESTAMP)::bigint;$$;
SELECT set_integer_now_func('devices', 'current_epoch');
Create the continuous aggregate for the devices table:
CREATE MATERIALIZED VIEW devices_summary
WITH (timescaledb.continuous) AS
SELECT time_bucket('500', time) AS bucket,
avg(cpu_usage) AS avg_cpu,
avg(disk_usage) AS avg_disk
FROM devices
GROUP BY bucket;
Insert some rows into the table:
CREATE EXTENSION tablefunc;
INSERT INTO devices(time, cpu_usage, disk_usage)
SELECT time,
normal_rand(1,70,10) AS cpu_usage,
normal_rand(1,2,1) * (row_number() over()) AS disk_usage
FROM generate_series(1,10000) AS time;
This command uses the tablefunc extension to generate a normal
distribution, and uses the row_number function to turn it into a
cumulative sequence.
Check that the view contains the correct data:
postgres=# SELECT * FROM devices_summary ORDER BY bucket LIMIT 10;
bucket | avg_cpu | avg_disk
--------+---------------------+----------------------
0 | 63.0000000000000000 | 6.0000000000000000
5 | 69.8000000000000000 | 9.6000000000000000
10 | 70.8000000000000000 | 24.0000000000000000
15 | 75.8000000000000000 | 37.6000000000000000
20 | 71.6000000000000000 | 26.8000000000000000
25 | 67.6000000000000000 | 56.0000000000000000
30 | 68.8000000000000000 | 90.2000000000000000
35 | 71.6000000000000000 | 88.8000000000000000
40 | 66.4000000000000000 | 81.2000000000000000
45 | 68.2000000000000000 | 106.0000000000000000
(10 rows)
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/materialized-hypertables/ =====
Continuous aggregates take raw data from the original hypertable, aggregate it, and store the aggregated data in a materialization hypertable. You can modify this materialized hypertable in the same way as any other hypertable.
To change a materialized hypertable, you need to use its fully qualified name. To find the correct name, use the timescaledb_information.continuous_aggregates view). You can then use the name to modify it in the same way as any other hypertable.
At the psqlprompt, query timescaledb_information.continuous_aggregates:
SELECT view_name, format('%I.%I', materialization_hypertable_schema,
materialization_hypertable_name) AS materialization_hypertable
FROM timescaledb_information.continuous_aggregates;
Locate the name of the hypertable you want to adjust in the results of the query. The results look like this:
view_name | materialization_hypertable
---------------------------+---------------------------------------------------
conditions_summary_hourly | _timescaledb_internal._materialized_hypertable_30
conditions_summary_daily | _timescaledb_internal._materialized_hypertable_31
(2 rows)
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/real-time-aggregates/ =====
Rapidly growing data means you need more control over what to aggregate and how to aggregate it. With this in mind, Tiger Data equips you with tools for more fine-tuned data analysis.
By default, continuous aggregates do not include the most recent data chunk from the underlying hypertable. Real-time aggregates, however, use the aggregated data and add the most recent raw data to it. This provides accurate and up-to-date results, without needing to aggregate data as it is being written.
In TimescaleDB v2.13 and later, real-time aggregates are DISABLED by default. In earlier versions, real-time aggregates are ENABLED by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
For more detail on the comparison between continuous and real-time aggregates, see our real-time aggregate blog post.
You can enable and disable real-time aggregation by setting the
materialized_only parameter when you create or alter the view.
Enable real-time aggregation for an existing continuous aggregate:
ALTER MATERIALIZED VIEW table_name set (timescaledb.materialized_only = false);
Disable real-time aggregation:
ALTER MATERIALIZED VIEW table_name set (timescaledb.materialized_only = true);
Real-time aggregates automatically add the most recent data when you query your continuous aggregate. In other words, they include data more recent than your last materialized bucket.
If you add new historical data to an already-materialized bucket, it won't be
reflected in a real-time aggregate. You should wait for the next scheduled
refresh, or manually refresh by calling refresh_continuous_aggregate. You can
think of real-time aggregates as being eventually consistent for historical
data.
For more information, see the troubleshooting section.
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/create-a-continuous-aggregate/ =====
Creating a continuous aggregate is a two-step process. You need to create the view first, then enable a policy to keep the view refreshed. You can create the view on a hypertable, or on top of another continuous aggregate. You can have more than one continuous aggregate on each source table or view.
Continuous aggregates require a time_bucket on the time partitioning column of
the hypertable.
By default, views are automatically refreshed. You can adjust this by setting the WITH NO DATA option. Additionally, the view can not be a security barrier view.
Continuous aggregates use hypertables in the background, which means that they also use chunk time intervals. By default, the continuous aggregate's chunk time interval is 10 times what the original hypertable's chunk time interval is. For example, if the original hypertable's chunk time interval is 7 days, the continuous aggregates that are on top of it have a 70 day chunk time interval.
In this example, we are using a hypertable called conditions, and creating a
continuous aggregate view for daily weather data. The GROUP BY clause must
include a time_bucket expression which uses time dimension column of the
hypertable. Additionally, all functions and their arguments included in
SELECT, GROUP BY, and HAVING clauses must be
immutable.
At the psqlprompt, create the materialized view:
CREATE MATERIALIZED VIEW conditions_summary_daily
WITH (timescaledb.continuous) AS
SELECT device,
time_bucket(INTERVAL '1 day', time) AS bucket,
AVG(temperature),
MAX(temperature),
MIN(temperature)
FROM conditions
GROUP BY device, bucket;
To create a continuous aggregate within a transaction block, use the WITH NO DATA option.
To improve continuous aggregate performance, set timescaledb.invalidate_using = 'wal' Since TimescaleDB v2.22.0.
Create a policy to refresh the view every hour:
SELECT add_continuous_aggregate_policy('conditions_summary_daily',
start_offset => INTERVAL '1 month',
end_offset => INTERVAL '1 day',
schedule_interval => INTERVAL '1 hour');
You can use most Postgres aggregate functions in continuous aggregations. To see what Postgres features are supported, check the function support table.
Continuous aggregates require a time_bucket on the time partitioning column of
the hypertable. The time bucket allows you to define a time interval, instead of
having to use specific timestamps. For example, you can define a time bucket as
five minutes, or one day.
You can't use time_bucket_gapfill directly in a
continuous aggregate. This is because you need access to previous data to
determine the gapfill content, which isn't yet available when you create the
continuous aggregate. You can work around this by creating the continuous
aggregate using time_bucket, then querying the continuous
aggregate using time_bucket_gapfill.
By default, when you create a view for the first time, it is populated with
data. This is so that the aggregates can be computed across the entire
hypertable. If you don't want this to happen, for example if the table is very
large, or if new data is being continuously added, you can control the order in
which the data is refreshed. You can do this by adding a manual refresh with
your continuous aggregate policy using the WITH NO DATA option.
The WITH NO DATA option allows the continuous aggregate to be created
instantly, so you don't have to wait for the data to be aggregated. Data begins
to populate only when the policy begins to run. This means that only data newer
than the start_offset time begins to populate the continuous aggregate. If you
have historical data that is older than the start_offset interval, you need to
manually refresh the history up to the current start_offset to allow real-time
queries to run efficiently.
At the psql prompt, create the view:
CREATE MATERIALIZED VIEW cagg_rides_view
WITH (timescaledb.continuous) AS
SELECT vendor_id,
time_bucket('1h', pickup_datetime) AS hour,
count(*) total_rides,
avg(fare_amount) avg_fare,
max(trip_distance) as max_trip_distance,
min(trip_distance) as min_trip_distance
FROM rides
GROUP BY vendor_id, time_bucket('1h', pickup_datetime)
WITH NO DATA;
Manually refresh the view:
CALL refresh_continuous_aggregate('cagg_rides_view', NULL, localtimestamp - INTERVAL '1 week');
Add the policy:
SELECT add_continuous_aggregate_policy('cagg_rides_view',
start_offset => INTERVAL '1 week',
end_offset => INTERVAL '1 hour',
schedule_interval => INTERVAL '30 minutes');
In TimescaleDB V2.10 and later, with Postgres v12 or later, you can
create a continuous aggregate with a query that also includes a JOIN. For
example:
CREATE MATERIALIZED VIEW conditions_summary_daily_3
WITH (timescaledb.continuous) AS
SELECT time_bucket(INTERVAL '1 day', day) AS bucket,
AVG(temperature),
MAX(temperature),
MIN(temperature),
name
FROM devices JOIN conditions USING (device_id)
GROUP BY name, bucket;
For more information about creating a continuous aggregate with a JOIN,
including some additional restrictions, see the
about continuous aggregates section.
When you have created a continuous aggregate and set a refresh policy, you can
query the view with a SELECT query. You can only specify a single hypertable
in the FROM clause. Including more hypertables, tables, views, or subqueries
in your SELECT query is not supported. Additionally, make sure that the
hypertable you are querying does not have
row-level-security policies
enabled.
At the psql prompt, query the continuous aggregate view called
conditions_summary_hourly for the average, minimum, and maximum
temperatures for the first quarter of 2021 recorded by device 5:
SELECT *
FROM conditions_summary_hourly
WHERE device = 5
AND bucket >= '2020-01-01'
AND bucket < '2020-04-01';
Alternatively, query the continuous aggregate view called
conditions_summary_hourly for the top 20 largest metric spreads in that
quarter:
SELECT *
FROM conditions_summary_hourly
WHERE max - min > 1800
AND bucket >= '2020-01-01' AND bucket < '2020-04-01'
ORDER BY bucket DESC, device DESC LIMIT 20;
Mutable functions have experimental supported in the continuous aggregate query definition. Mutable functions are enabled by default. However, if you use them in a materialized query a warning is returned.
When using non-immutable functions you have to ensure these functions produce consistent results across continuous aggregate refresh runs. For example, if a function depends on the current time zone you have to ensure all your continuous aggregate refreshes run with a consistent setting for this.
Window functions have experimental supported in the continuous aggregate query definition. Window functions are disabled
by default. To enable them, set timescaledb.enable_cagg_window_functions to true.
Support is experimental, there is a risk of data inconsistency. For example, in backfill scenarios, buckets could be missed.
To use a window function in a continuous aggregate:
Create a simple table with to store a value at a specific time:
CREATE TABLE example (
time TIMESTAMPZ NOT NULL,
value TEXT NOT NULL,
);
Enable window functions.
As window functions are experimental, in order to create continuous aggregates with window functions.
you have to enable_cagg_window_functions.
SET timescaledb.enable_cagg_window_functions TO TRUE;
```
1. Bucket your data by `time` and calculate the delta between time buckets using the `lag` window function:
Window functions must stay within the time bucket. Any query that tries to look beyond the current
time bucket will produce incorrect results around the refresh boundaries.
sql CREATE MATERIALIZED VIEW example_aggregate
WITH (timescaledb.continuous) AS
SELECT
time_bucket('1d', time),
customer_id,
sum(amount) AS amount,
sum(amount) - LAG(sum(amount),1,NULL) OVER (PARTITION BY time_bucket('1d', time) ORDER BY sum(amount) DESC) AS amount_diff,
ROW_NUMBER() OVER (PARTITION BY time_bucket('1d', time) ORDER BY sum(amount) DESC)
FROM sales GROUP BY 1,2;
Window functions that partition by time_bucket should be safe even with LAG()/LEAD()
### Window function workaround for older versions of TimescaleDB
For TimescaleDB v2.19.3 and below, continuous aggregates do not support window functions. To work around this:
1. Create a simple table with to store a value at a specific time:
```sql
CREATE TABLE example (
time TIMESTAMPZ NOT NULL,
value TEXT NOT NULL,
);
```
1. Create a continuous aggregate that does not use a window function:
sql CREATE MATERIALIZED VIEW example_aggregate
WITH (timescaledb.continuous) AS
SELECT
time_bucket('10 minutes', time) AS bucket,
first(value, time) AS value
FROM example GROUP BY bucket;
1. Use the `lag` window function on your continuous aggregate at query time:
This speeds up your query by calculating the aggregation ahead of time. The
delta is calculated at query time.
```sql
SELECT
bucket,
value - lag(value, 1) OVER (ORDER BY bucket) AS delta
FROM example_aggregate;
```
===== PAGE: https://docs.tigerdata.com/use-timescale/continuous-aggregates/hierarchical-continuous-aggregates/ =====
# Continuous aggregates on continuous aggregates
The more data you have, the more likely you are to run a more sophisticated analysis on it. When a simple one-level aggregation is not enough, TimescaleDB lets you create continuous aggregates on top of other continuous aggregates. This way, you summarize data at different levels of granularity, while still saving resources with precomputing.
For example, you might have an hourly continuous aggregate that summarizes minute-by-minute
data. To get a daily summary, you can create a new continuous aggregate on top
of your hourly aggregate. This is more efficient than creating the daily
aggregate on top of the original hypertable, because you can reuse the
calculations from the hourly aggregate.
This feature is available in TimescaleDB v2.9 and later.
## Create a continuous aggregate on top of another continuous aggregate
Creating a continuous aggregate on top of another continuous aggregate works the
same way as creating it on top of a hypertable. In your query, select from a
continuous aggregate rather than from the hypertable, and use the time-bucketed
column from the existing continuous aggregate as your time column.
For more information, see the instructions for
[creating a continuous aggregate][create-cagg].
## Use real-time aggregation with hierarchical continuous aggregates
In TimescaleDB v2.13 and later, real-time aggregates are **DISABLED** by default. In earlier versions, real-time aggregates are **ENABLED** by default; when you create a continuous aggregate, queries to that view include the results from the most recent raw data.
Real-time aggregates always return up-to-date data in response to queries. They accomplish this by
joining the materialized data in the continuous aggregate with unmaterialized
raw data from the source table or view.
When continuous aggregates are stacked, each continuous aggregate is only aware
of the layer immediately below. The joining of unmaterialized data happens
recursively until it reaches the bottom layer, giving you access to recent data
down to that layer.
If you keep all continuous aggregates in the stack as real-time aggregates, the
bottom layer is the source hypertable. That means every continuous aggregate in
the stack has access to all recent data.
If there is a non-real-time continuous aggregate somewhere in the stack, the
recursive joining stops at that non-real-time continuous aggregate. Higher-level
continuous aggregates don't receive any unmaterialized data from lower levels.
For example, say you have the following continuous aggregates:
* A real-time hourly continuous aggregate on the source hypertable
* A real-time daily continuous aggregate on the hourly continuous aggregate
* A non-real-time, or materialized-only, monthly continuous aggregate on the
daily continuous aggregate
* A real-time yearly continuous aggregate on the monthly continuous aggregate
Queries on the hourly and daily continuous aggregates include real-time,
non-materialized data from the source hypertable. Queries on the monthly
continuous aggregate only return already-materialized data. Queries on the
yearly continuous aggregate return materialized data from the yearly continuous
aggregate itself, plus more recent data from the monthly continuous aggregate.
However, the data is limited to what is already materialized in the monthly
continuous aggregate, and doesn't get even more recent data from the source
hypertable. This happens because the materialized-only continuous aggregate
provides a stopping point, and the yearly continuous aggregate is unaware of any
layers beyond that stopping point. This is similar to
[how stacked views work in Postgres][postgresql-views].
To make queries on the yearly continuous aggregate access all recent data, you
can either:
* Make the monthly continuous aggregate real-time, or
* Redefine the yearly continuous aggregate on top of the daily continuous
aggregate.
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/cagg_hierarchy.webp"
alt="Example of hierarchical continuous aggregates in a finance application"/>
## Roll up calculations
When summarizing already-summarized data, be aware of how stacked calculations
work. Not all calculations return the correct result if you stack them.
For example, if you take the maximum of several subsets, then take the maximum
of the maximums, you get the maximum of the entire set. But if you take the
average of several subsets, then take the average of the averages, that can
result in a different figure than the average of all the data.
To simplify such calculations when using continuous aggregates on top of
continuous aggregates, you can use the [hyperfunctions][hyperfunctions] from
TimescaleDB Toolkit, such as the [statistical aggregates][stats-aggs]. These
hyperfunctions are designed with a two-step aggregation pattern that allows you
to roll them up into larger buckets. The first step creates a summary aggregate
that can be rolled up, just as a maximum can be rolled up. You can store this
aggregate in your continuous aggregate. Then, you can call an accessor function
as a second step when you query from your continuous aggregate. This accessor
takes the stored data from the summary aggregate and returns the final result.
For example, you can create an hourly continuous aggregate using `percentile_agg`
over a hypertable, like this:
sql CREATE MATERIALIZED VIEW response_times_hourly WITH (timescaledb.continuous) AS SELECT
time_bucket('1 h'::interval, ts) as bucket,
api_id,
avg(response_time_ms),
percentile_agg(response_time_ms) as percentile_hourly
FROM response_times GROUP BY 1, 2;
To then stack another daily continuous aggregate over it, you can use a `rollup`
function, like this:
sql CREATE MATERIALIZED VIEW response_times_daily WITH (timescaledb.continuous) AS SELECT
time_bucket('1 d'::interval, bucket) as bucket_daily,
api_id,
mean(rollup(percentile_hourly)) as mean,
rollup(percentile_hourly) as percentile_daily
FROM response_times_hourly GROUP BY 1, 2;
The `mean` function of the TimescaleDB Toolkit is used to calculate the concrete
mean value of the rolled up values. The additional `percentile_daily` attribute
contains the raw rolled up values, which can be used in an additional continuous
aggregate on top of this continuous aggregate (for example a continuous
aggregate for the daily values).
For more information and examples about using `rollup` functions to stack
calculations, see the [percentile approximation API documentation][percentile_agg_api].
## Restrictions
There are some restrictions when creating a continuous aggregate on top of
another continuous aggregate. In most cases, these restrictions are in place to
ensure valid time-bucketing:
* You can only create a continuous aggregate on top of a finalized continuous
aggregate. This new finalized format is the default for all continuous
aggregates created since TimescaleDB 2.7. If you need to create a continuous
aggregate on top of a continuous aggregate in the old format, you need to
[migrate your continuous aggregate][migrate-cagg] to the new format first.
* The time bucket of a continuous aggregate should be greater than or equal to
the time bucket of the underlying continuous aggregate. It also needs to be
a multiple of the underlying time bucket. For example, you can rebucket an
hourly continuous aggregate into a new continuous aggregate with time
buckets of 6 hours. You can't rebucket the hourly continuous aggregate into
a new continuous aggregate with time buckets of 90 minutes, because 90
minutes is not a multiple of 1 hour.
* A continuous aggregate with a fixed-width time bucket can't be created on
top of a continuous aggregate with a variable-width time bucket. Fixed-width
time buckets are time buckets defined in seconds, minutes, hours, and days,
because those time intervals are always the same length. Variable-width time
buckets are time buckets defined in months or years, because those time
intervals vary by the month or on leap years. This limitation prevents a
case such as trying to rebucket monthly buckets into `61 day` buckets, where
there is no good mapping between time buckets for month combinations such as
July/August (62 days).
Note that even though weeks are fixed-width intervals, you can't use monthly
or yearly time buckets on top of weekly time buckets for the same reason.
The number of weeks in a month or year is usually not an integer.
However, you can stack a variable-width time bucket on top of a fixed-width
time bucket. For example, creating a monthly continuous aggregate on top of
a daily continuous aggregate works, and is the one of the main use cases for
this feature.
===== PAGE: https://docs.tigerdata.com/use-timescale/hypercore/secondary-indexes/ =====
# Improve query and upsert performance
Real-time analytics applications require more than fast inserts and analytical queries. They also need high performance
when retrieving individual records, enforcing constraints, or performing upserts, something that OLAP/columnar databases
lack. This pages explains how to improve performance by segmenting and ordering data.
To improve query performance using indexes, see [About indexes][about-index] and [Indexing data][create-index].
## Segmenting and ordering data
To optimize query performance, TimescaleDB enables you to explicitly control the way your data is physically organized
in the columnstore. By structuring data effectively, queries can minimize disk reads and execute more efficiently, using
vectorized execution for parallel batch processing where possible.
<center>
<img
class="main-content__illustration"
width="80%"
src="https://assets.timescale.com/docs/images/columnstore-segmentby.png"
alt=""
/>
</center>
* **Group related data together to improve scan efficiency**: organizing rows into logical segments ensures that queries
filtering by a specific value only scan relevant data sections. For example, in the above, querying for a specific ID
is particularly fast.
* **Sort data within segments to accelerate range queries**: defining a consistent order reduces the need for post-query
sorting, making time-based queries and range scans more efficient.
* **Reduce disk reads and maximize vectorized execution**: a well-structured storage layout enables efficient batch
processing (Single Instruction, Multiple Data, or SIMD vectorization) and parallel execution, optimizing query performance.
By combining segmentation and ordering, TimescaleDB ensures that columnar queries are not only fast but also
resource-efficient, enabling high-performance real-time analytics.
### Improve performance in the columnstore by segmenting and ordering data
Ordering data in the columnstore has a large impact on the compression ratio and performance of your queries.
Rows that change over a dimension should be close to each other. As hypertables contain time-series data,
they are partitioned by time. This makes the time column a perfect candidate for ordering your data since the
measurements evolve as time goes on.
If you use `orderby` as your only columnstore setting, you get a good enough compression ratio to save a lot of
storage and your queries are faster. However, if you only use `orderby`, you always have to access your data using the
time dimension, then filter the rows returned on other criteria.
Accessing the data effectively depends on your use case and your queries. You segment data in the columnstore
to match the way you want to access it. That is, in a way that makes it easier for your queries to fetch the right data
at the right time. When you segment your data to access specific columns, your queries are optimized and yield even better performance.
For example, to access information about a single device with a specific `device_id`, you segment on the `device_id` column.
This enables you to run analytical queries on compressed data in the columnstore much faster.
For example for the following hypertable:
sql CREATE TABLE metrics ( time TIMESTAMPTZ, user_id INT, device_id INT, data JSONB ) WITH ( tsdb.hypertable, tsdb.partition_column='time' );
1. **Execute a query on a regular hypertable**
1. Query your data
```sql
SELECT device_id, AVG(cpu) AS avg_cpu, AVG(disk_io) AS avg_disk_io
FROM metrics
WHERE device_id = 5
GROUP BY device_id;
```
Gives the following result:
```sql
device_id | avg_cpu | avg_disk_io
-----------+--------------------+---------------------
5 | 0.4972598866221261 | 0.49820356730280524
(1 row)
Time: 177,399 ms
```
1. **Execute a query on the same data segmented and ordered in the columnstore**
1. Control the way your data is ordered in the columnstore:
```sql
ALTER TABLE metrics SET (
timescaledb.enable_columnstore = true,
timescaledb.orderby = 'time',
timescaledb.segmentby = 'device_id'
);
```
1. Query your data
```sql
select avg(cpu) from metrics where time >= '2024-03-01 00:00:00+01' and time < '2024-03-02 00:00:00+01';
```
Gives the following result:
```sql
device_id | avg_cpu | avg_disk_io
-----------+-------------------+---------------------
5 | 0.497259886622126 | 0.49820356730280535
(1 row)
Time: 42,139 ms
```
As you see, using `orderby` and `segmentby` not only reduces the amount of space taken by your data, but also
vastly improves query speed.
The number of rows that are compressed together in a single batch (like the ones we see above) is 1000.
If your chunk does not contain enough data to create big enough batches, your compression ratio will be reduced.
This needs to be taken into account when you define your columnstore settings.
===== PAGE: https://docs.tigerdata.com/use-timescale/hypercore/modify-data-in-hypercore/ =====
# Modify data in hypercore
Old API since [TimescaleDB v2.20.0](https://github.com/timescale/timescaledb/releases/tag/2.20.0) TimescaleDB is optimized for fast updates on compressed data in the columnstore. To modify data in the
columnstore, use standard SQL.
You [set up hypercore][setup-hypercore] to automatically convert data between the rowstore and columnstore
when it reaches a certain age. After you have optimized data in the columnstore, you may need to modify it.
For example, to make small changes, or backfill large amounts of data. You may even have to update the schema to
accommodate these changes to the data.
This page shows you how to update small and large amounts of new data, and update the schema in the columnstore.
## Prerequisites
To follow the procedure on this page you need to:
* Create a [target Tiger Cloud service][create-service].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
- [Optimize your data][setup-hypercore] for real-time analytics.
## Modify small amounts of data
You can [`INSERT`, `UPDATE`, and `DELETE`][write] data in the columnstore, even if the data you are
inserting has unique constraints. When you insert data into a chunk in the columnstore, a small amount
of data is decompressed to allow a speculative insertion, and block any inserts that could violate the
constraints.
When you `DELETE` whole segments of data, filter your deletes using the column you `segment_by`
instead of separate deletes. This considerably increases performance.
## Modify large amounts of data
If you need to modify or add a lot of data to a chunk in the columnstore, best practice is to stop
any [jobs][job] moving chunks to the columnstore, convert the chunk back to the rowstore, then modify the
data. After the update, [convert the chunk to the columnstore][convert_to_columnstore] and restart the jobs.
This workflow is especially useful if you need to backfill old data.
1. **Stop the jobs that are automatically adding chunks to the columnstore**
Retrieve the list of jobs from the [timescaledb_information.jobs][informational-views] view
to find the job you need to [alter_job][alter_job].
sql SELECT alter_job(JOB_ID, scheduled => false);
1. **Convert a chunk to update back to the rowstore**
``` sql
CALL convert_to_rowstore('_timescaledb_internal._hyper_2_2_chunk');
```
1. **Update the data in the chunk you added to the rowstore**
Best practice is to structure your [INSERT][insert] statement to include appropriate
partition key values, such as the timestamp. TimescaleDB adds the data to the correct chunk:
sql INSERT INTO metrics (time, value) VALUES ('2025-01-01T00:00:00', 42);
1. **Convert the updated chunks back to the columnstore**
sql CALL convert_to_columnstore('_timescaledb_internal._hyper_1_2_chunk');
1. **Restart the jobs that are automatically converting chunks to the columnstore**
sql SELECT alter_job(JOB_ID, scheduled => true);
## Modify a table schema for data in the columnstore
You can modify the schema of a table in the columnstore. To do this, you need to:
1. **Stop the jobs that are automatically adding chunks to the columnstore**
Retrieve the list of jobs from the [timescaledb_information.jobs][informational-views] view
to find the job you need to [alter_job][alter_job].
sql SELECT alter_job(JOB_ID, scheduled => false);
1. **Convert a chunk to update back to the rowstore**
``` sql
CALL convert_to_rowstore('_timescaledb_internal._hyper_2_2_chunk');
```
2. **Modify the schema**:
Possible modifications are:
- Add a nullable column:
`ALTER TABLE <hypertable> ADD COLUMN <column_name> <datatype>;`
- Add a column with a default value and a `NOT NULL` constraint:
`ALTER TABLE <hypertable> ADD COLUMN <column_name> <datatype> NOT NULL DEFAULT <default_value>;`
- Rename a column:
`ALTER TABLE <hypertable> RENAME <column_name> TO <new_name>;`
- Drop a column:
`ALTER TABLE <hypertable> DROP COLUMN <column_name>;`
You cannot change the data type of an existing column.
1. **Convert the updated chunks back to the columnstore**
sql CALL convert_to_columnstore('_timescaledb_internal._hyper_1_2_chunk');
1. **Restart the jobs that are automatically converting chunks to the columnstore**
sql SELECT alter_job(JOB_ID, scheduled => true);
===== PAGE: https://docs.tigerdata.com/use-timescale/hypercore/real-time-analytics-in-hypercore/ =====
# Optimize your data for real-time analytics
[Hypercore][hypercore] is the hybrid row-columnar storage engine in TimescaleDB used by hypertables. Traditional
databases force a trade-off between fast inserts (row-based storage) and efficient analytics
(columnar storage). Hypercore eliminates this trade-off, allowing real-time analytics without sacrificing
transactional capabilities.
Hypercore dynamically stores data in the most efficient format for its lifecycle:
* **Row-based storage for recent data**: the most recent chunk (and possibly more) is always stored in the rowstore,
ensuring fast inserts, updates, and low-latency single record queries. Additionally, row-based storage is used as a
writethrough for inserts and updates to columnar storage.
* **Columnar storage for analytical performance**: chunks are automatically compressed into the columnstore, optimizing
storage efficiency and accelerating analytical queries.
Unlike traditional columnar databases, hypercore allows data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads and real-time analytics—within a single database.
When you convert chunks from the rowstore to the columnstore, multiple records are grouped into a single row.
The columns of this row hold an array-like structure that stores all the data. For example, data in the following
rowstore chunk:
| Timestamp | Device ID | Device Type | CPU |Disk IO|
|---|---|---|---|---|
|12:00:01|A|SSD|70.11|13.4|
|12:00:01|B|HDD|69.70|20.5|
|12:00:02|A|SSD|70.12|13.2|
|12:00:02|B|HDD|69.69|23.4|
|12:00:03|A|SSD|70.14|13.0|
|12:00:03|B|HDD|69.70|25.2|
Is converted and compressed into arrays in a row in the columnstore:
|Timestamp|Device ID|Device Type|CPU|Disk IO|
|-|-|-|-|-|
|[12:00:01, 12:00:01, 12:00:02, 12:00:02, 12:00:03, 12:00:03]|[A, B, A, B, A, B]|[SSD, HDD, SSD, HDD, SSD, HDD]|[70.11, 69.70, 70.12, 69.69, 70.14, 69.70]|[13.4, 20.5, 13.2, 23.4, 13.0, 25.2]|
Because a single row takes up less disk space, you can reduce your chunk size by up to 98%, and can also
speed up your queries. This saves on storage costs, and keeps your queries operating at lightning speed.
For an in-depth explanation of how hypertables and hypercore work, see the [Data model][data-model].
This page shows you how to get the best results when you set a policy to automatically convert chunks in a hypertable
from the rowstore to the columnstore.
## Prerequisites
To follow the steps on this page:
* Create a target [Tiger Cloud service][create-service] with real-time analytics enabled.
You need your [connection details][connection-info].
The code samples in this page use the [crypto_sample.zip](https://assets.timescale.com/docs/downloads/candlestick/crypto_sample.zip) data from [this key features tutorial][ingest-data].
## Optimize your data with columnstore policies
The compression ratio and query performance of data in the columnstore is dependent on the order and structure of your
data. Rows that change over a dimension should be close to each other. With time-series data, you `orderby` the time
dimension. For example, `Timestamp`:
| Timestamp | Device ID | Device Type | CPU |Disk IO|
|---|---|---|---|---|
|12:00:01|A|SSD|70.11|13.4|
This ensures that records are compressed and accessed in the same order. However, you would always have to
access the data using the time dimension, then filter all the rows using other criteria. To make your queries more
efficient, you segment your data based on the following:
- The way you want to access it. For example, to rapidly access data about a
single device, you `segmentby` the `Device ID` column. This enables you to run much faster analytical queries on
data in the columnstore.
- The compression rate you want to achieve. The [lower the cardinality][cardinality-blog] of the `segmentby` column, the better compression results you get.
When TimescaleDB converts a chunk to the columnstore, it automatically creates a different schema for your
data. It also creates and uses custom indexes to incorporate the `segmentby` and `orderby` parameters when
you write to and read from the columnstore.
To set up your hypercore automation:
1. **Connect to your Tiger Cloud service**
In [Tiger Cloud Console][services-portal] open an [SQL editor][in-console-editors]. You can also connect to your service using [psql][connect-using-psql].
1. **Enable columnstore on a hypertable**
Create a [hypertable][hypertables-section] for your time-series data using [CREATE TABLE][hypertable-create-table].
For [efficient queries][secondary-indexes] on data in the columnstore, remember to `segmentby` the column you will
use most often to filter your data. For example:
* [Use `CREATE TABLE` for a hypertable][hypertable-create-table]
```sql
CREATE TABLE crypto_ticks (
"time" TIMESTAMPTZ,
symbol TEXT,
price DOUBLE PRECISION,
day_volume NUMERIC
) WITH (
tsdb.hypertable,
tsdb.partition_column='time',
tsdb.segmentby='symbol',
tsdb.orderby='time DESC'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
* [Use `ALTER MATERIALIZED VIEW` for a continuous aggregate][compression_continuous-aggregate]
```sql
ALTER MATERIALIZED VIEW assets_candlestick_daily set (
timescaledb.enable_columnstore = true,
timescaledb.segmentby = 'symbol' );
```
Before you say `huh`, a continuous aggregate is a specialized hypertable.
1. **Add a policy to convert chunks to the columnstore at a specific time interval**
Create a [columnstore_policy][add_columnstore_policy] that automatically converts chunks in a hypertable to the columnstore at a specific time interval. For example, convert yesterday's crypto trading data to the columnstore:
sql CALL add_columnstore_policy('crypto_ticks', after => INTERVAL '1d');
TimescaleDB is optimized for fast updates on compressed data in the columnstore. To modify data in the
columnstore, use standard SQL.
1. **Check the columnstore policy**
1. View your data space saving:
When you convert data to the columnstore, as well as being optimized for analytics, it is compressed by more than
90%. This helps you save on storage costs and keeps your queries operating at lightning speed. To see the amount of space
saved:
``` sql
SELECT
pg_size_pretty(before_compression_total_bytes) as before,
pg_size_pretty(after_compression_total_bytes) as after
FROM hypertable_columnstore_stats('crypto_ticks');
```
You see something like:
| before | after |
|---------|--------|
| 194 MB | 24 MB |
1. View the policies that you set or the policies that already exist:
``` sql
SELECT * FROM timescaledb_information.jobs
WHERE proc_name='policy_compression';
```
See [timescaledb_information.jobs][informational-views].
1. **Pause a columnstore policy**
sql SELECT * FROM timescaledb_information.jobs where
proc_name = 'policy_compression' AND relname = 'crypto_ticks'
-- Select the JOB_ID from the results
SELECT alter_job(JOB_ID, scheduled => false);
See [alter_job][alter_job].
1. **Restart a columnstore policy**
sql SELECT alter_job(JOB_ID, scheduled => true);
See [alter_job][alter_job].
1. **Remove a columnstore policy**
sql CALL remove_columnstore_policy('crypto_ticks');
See [remove_columnstore_policy][remove_columnstore_policy].
1. **Disable columnstore**
If your table has chunks in the columnstore, you have to
[convert the chunks back to the rowstore][convert_to_rowstore] before you disable the columnstore.
sql ALTER TABLE crypto_ticks SET (timescaledb.enable_columnstore = false);
See [alter_table_hypercore][alter_table_hypercore].
## Reference
For integers, timestamps, and other integer-like types, data is compressed using [delta encoding][delta],
[delta-of-delta][delta-delta], [simple-8b][simple-8b], and [run-length encoding][run-length]. For columns with few
repeated values, [XOR-based][xor] and [dictionary compression][dictionary] is used. For all other types,
[dictionary compression][dictionary] is used.
===== PAGE: https://docs.tigerdata.com/use-timescale/hypercore/compression-methods/ =====
# About compression methods
Depending on the data type that is compressed when your data is converted from the rowstore to the
columnstore, TimescaleDB uses the following compression algorithms:
- **Integers, timestamps, boolean and other integer-like types**: a combination of the following compression
methods is used: [delta encoding][delta], [delta-of-delta][delta-delta], [simple-8b][simple-8b], and
[run-length encoding][run-length].
- **Columns that do not have a high amount of repeated values**: [XOR-based][xor] compression with
some [dictionary compression][dictionary].
- **All other types**: [dictionary compression][dictionary].
This page gives an in-depth explanation of the compression methods used in hypercore.
## Integer compression
For integers, timestamps, and other integer-like types TimescaleDB uses a
combination of delta encoding, delta-of-delta, simple 8-b, and run-length
encoding.
The simple-8b compression method has been extended so that data can be
decompressed in reverse order. Backward scanning queries are common in
time-series workloads. This means that these types of queries run much faster.
### Delta encoding
Delta encoding reduces the amount of information required to represent a data
object by only storing the difference, sometimes referred to as the delta,
between that object and one or more reference objects. These algorithms work
best where there is a lot of redundant information, and it is often used in
workloads like versioned file systems. For example, this is how Dropbox keeps
your files synchronized. Applying delta-encoding to time-series data means that
you can use fewer bytes to represent a data point, because you only need to
store the delta from the previous data point.
For example, imagine you had a dataset that collected CPU, free memory,
temperature, and humidity over time. If you time column was stored as an integer
value, like seconds since UNIX epoch, your raw data would look a little like
this:
|time|cpu|mem_free_bytes|temperature|humidity|
|-|-|-|-|-|
|2023-04-01 10:00:00|82|1,073,741,824|80|25|
|2023-04-01 10:00:05|98|858,993,459|81|25|
|2023-04-01 10:00:10|98|858,904,583|81|25|
With delta encoding, you only need to store how much each value changed from the
previous data point, resulting in smaller values to store. So after the first
row, you can represent subsequent rows with less information, like this:
|time|cpu|mem_free_bytes|temperature|humidity|
|-|-|-|-|-|
|2023-04-01 10:00:00|82|1,073,741,824|80|25|
|5 seconds|16|-214,748,365|1|0|
|5 seconds|0|-88,876|0|0|
Applying delta encoding to time-series data takes advantage of the fact that
most time-series datasets are not random, but instead represent something that
is slowly changing over time. The storage savings over millions of rows can be
substantial, especially if the value changes very little, or doesn't change at
all.
### Delta-of-delta encoding
Delta-of-delta encoding takes delta encoding one step further and applies
delta-encoding over data that has previously been delta-encoded. With
time-series datasets where data collection happens at regular intervals, you can
apply delta-of-delta encoding to the time column, which results in only needing to
store a series of zeroes.
In other words, delta encoding stores the first derivative of the dataset, while
delta-of-delta encoding stores the second derivative of the dataset.
Applied to the example dataset from earlier, delta-of-delta encoding results in this:
|time|cpu|mem_free_bytes|temperature|humidity|
|-|-|-|-|-|
|2020-04-01 10:00:00|82|1,073,741,824|80|25|
|5 seconds|16|-214,748,365|1|0|
|0 seconds|0|-88,876|0|0|
In this example, delta-of-delta further compresses 5 seconds in the time column
down to 0 for every entry in the time column after the second row, because the
five second gap remains constant for each entry. Note that you see two entries
in the table before the delta-delta 0 values, because you need two deltas to
compare.
This compresses a full timestamp of 8 bytes, or 64 bits, down to just a single
bit, resulting in 64x compression.
### Simple-8b
With delta and delta-of-delta encoding, you can significantly reduce the number
of digits you need to store. But you still need an efficient way to store the
smaller integers. The previous examples used a standard integer datatype for the
time column, which needs 64 bits to represent the value of 0 when delta-delta
encoded. This means that even though you are only storing the integer 0, you are
still consuming 64 bits to store it, so you haven't actually saved anything.
Simple-8b is one of the simplest and smallest methods of storing variable-length
integers. In this method, integers are stored as a series of fixed-size blocks.
For each block, every integer within the block is represented by the minimal
bit-length needed to represent the largest integer in that block. The first bits
of each block denotes the minimum bit-length for the block.
This technique has the advantage of only needing to store the length once for a
given block, instead of once for each integer. Because the blocks are of a fixed
size, you can infer the number of integers in each block from the size of the
integers being stored.
For example, if you wanted to store a temperature that changed over time, and
you applied delta encoding, you might end up needing to store this set of
integers:
|temperature (deltas)|
|-|
|1|
|10|
|11|
|13|
|9|
|100|
|22|
|11|
With a block size of 10 digits, you could store this set of integers as two
blocks: one block storing 5 2-digit numbers, and a second block storing 3
3-digit numbers, like this:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
{2: [01, 10, 11, 13, 09]} {3: [100, 022, 011]}
`} />
In this example, both blocks store about 10 digits worth of data, even though
some of the numbers have to be padded with a leading 0. You might also notice
that the second block only stores 9 digits, because 10 is not evenly divisible
by 3.
Simple-8b works in this way, except it uses binary numbers instead of decimal,
and it usually uses 64-bit blocks. In general, the longer the integer, the fewer
number of integers that can be stored in each block.
### Run-length encoding
Simple-8b compresses integers very well, however, if you have a large number of
repeats of the same value, you can get even better compression with run-length
encoding. This method works well for values that don't change very often, or if
an earlier transformation removes the changes.
Run-length encoding is one of the classic compression algorithms. For
time-series data with billions of contiguous zeroes, or even a document with a
million identically repeated strings, run-length encoding works incredibly well.
For example, if you wanted to store a temperature that changed minimally over
time, and you applied delta encoding, you might end up needing to store this set
of integers:
|temperature (deltas)|
|-|
|11|
|12|
|12|
|12|
|12|
|12|
|12|
|1|
|12|
|12|
|12|
|12|
For values like these, you do not need to store each instance of the value, but
rather how long the run, or number of repeats, is. You can store this set of
numbers as `{run; value}` pairs like this:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
{1; 11}, {6; 12}, {1; 1}, {4; 12}
`} />
This technique uses 11 digits of storage (1, 1, 1, 6, 1, 2, 1, 1, 4, 1, 2),
rather than 23 digits that an optimal series of variable-length integers
requires (11, 12, 12, 12, 12, 12, 12, 1, 12, 12, 12, 12).
Run-length encoding is also used as a building block for many more advanced
algorithms, such as Simple-8b RLE, which is an algorithm that combines
run-length and Simple-8b techniques. TimescaleDB implements a variant of
Simple-8b RLE. This variant uses different sizes to standard Simple-8b, in order
to handle 64-bit values, and RLE.
## Floating point compression
For columns that do not have a high amount of repeated values, TimescaleDB uses
XOR-based compression.
The standard XOR-based compression method has been extended so that data can be
decompressed in reverse order. Backward scanning queries are common in
time-series workloads. This means that queries that use backwards scans run much
faster.
### XOR-based compression
Floating point numbers are usually more difficult to compress than integers.
Fixed-length integers often have leading zeroes, but floating point numbers usually
use all of their available bits, especially if they are converted from decimal
numbers, which can't be represented precisely in binary.
Techniques like delta-encoding don't work well for floats, because they do not
reduce the number of bits sufficiently. This means that most floating-point
compression algorithms tend to be either complex and slow, or truncate
significant digits. One of the few simple and fast lossless floating-point
compression algorithms is XOR-based compression, built on top of Facebook's
Gorilla compression.
XOR is the binary function `exclusive or`. In this algorithm, successive
floating point numbers are compared with XOR, and a difference results in a bit
being stored. The first data point is stored without compression, and subsequent
data points are represented using their XOR'd values.
## Data-agnostic compression
For values that are not integers or floating point, TimescaleDB uses dictionary
compression.
### Dictionary compression
One of the earliest lossless compression algorithms, dictionary compression is
the basis of many popular compression methods. Dictionary compression can also
be found in areas outside of computer science, such as medical coding.
Instead of storing values directly, dictionary compression works by making a
list of the possible values that can appear, and then storing an index into a
dictionary containing the unique values. This technique is quite versatile, can
be used regardless of data type, and works especially well when you have a
limited set of values that repeat frequently.
For example, if you had the list of temperatures shown earlier, but you wanted
an additional column storing a city location for each measurement, you might
have a set of values like this:
|City|
|-|
|New York|
|San Francisco|
|San Francisco|
|Los Angeles|
Instead of storing all the city names directly, you can instead store a
dictionary, like this:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
{0: "New York", 1: "San Francisco", 2: "Los Angeles",}
`} />
You can then store just the indices in your column, like this:
|City|
|-|
|0|
|1|
|1|
|2|
For a dataset with a lot of repetition, this can offer significant compression.
In the example, each city name is on average 11 bytes in length, while the
indices are never going to be more than 4 bytes long, reducing space usage
nearly 3 times. In TimescaleDB, the list of indices is compressed even further
with the Simple-8b+RLE method, making the storage cost even smaller.
Dictionary compression doesn't always result in savings. If your dataset doesn't
have a lot of repeated values, then the dictionary is the same size as the
original data. TimescaleDB automatically detects this case, and falls back to
not using a dictionary in that scenario.
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/modify-a-schema/ =====
# Schema modifications
You can modify the schema of compressed hypertables in recent versions of
TimescaleDB.
|Schema modification|Before TimescaleDB 2.1|TimescaleDB 2.1 to 2.5|TimescaleDB 2.6 and above|
|-|-|-|-|
|Add a nullable column|❌|✅|✅|
|Add a column with a default value and a `NOT NULL` constraint|❌|❌|✅|
|Rename a column|❌|✅|✅|
|Drop a column|❌|❌|✅|
|Change the data type of a column|❌|❌|❌|
To perform operations that aren't supported on compressed hypertables, first
[decompress][decompression] the table.
## Add a nullable column
To add a nullable column:
sql ALTER TABLE ADD COLUMN ;
For example:
sql ALTER TABLE conditions ADD COLUMN device_id integer;
Note that adding constraints to the new column is not supported before
TimescaleDB v2.6.
## Add a column with a default value and a NOT NULL constraint
To add a column with a default value and a not-null constraint:
sql ALTER TABLE ADD COLUMN
NOT NULL DEFAULT <default_value>;
For example:
sql ALTER TABLE conditions ADD COLUMN device_id integer
NOT NULL DEFAULT 1;
## Rename a column
To rename a column:
sql ALTER TABLE RENAME TO ;
For example:
sql ALTER TABLE conditions RENAME device_id TO devid;
## Drop a column
You can drop a column from a compressed hypertable, if the column is not an
`orderby` or `segmentby` column. To drop a column:
sql ALTER TABLE DROP COLUMN ;
For example:
sql ALTER TABLE conditions DROP COLUMN temperature;
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/decompress-chunks/ =====
# Decompression
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/api/latest/hypercore/convert_to_rowstore/">`convert_to_rowstore`</a>.
When compressing your data, you can reduce the amount of storage space used. But you should always leave some additional storage
capacity. This gives you the flexibility to decompress chunks when necessary,
for actions such as bulk inserts.
This section describes commands to use for decompressing chunks. You can filter
by time to select the chunks you want to decompress.
## Decompress chunks manually
Before decompressing chunks, stop any compression policy on the hypertable you are decompressing.
The database automatically recompresses your chunks in the next scheduled job.
If you accumulate a large amount of chunks that need to be compressed, the [troubleshooting guide][troubleshooting-oom-chunks] shows how to compress a backlog of chunks.
For more information on how to stop and run compression policies using `alter_job()`, see the [API reference][api-reference-alter-job].
There are several methods for selecting chunks and decompressing them.
### Decompress individual chunks
To decompress a single chunk by name, run this command:
sql SELECT decompress_chunk('_timescaledb_internal.');
where, `<chunk_name>` is the name of the chunk you want to decompress.
### Decompress chunks by time
To decompress a set of chunks based on a time range, you can use the output of
`show_chunks` to decompress each one:
sql SELECT decompress_chunk(c, true)
FROM show_chunks('table_name', older_than, newer_than) c;
For more information about the `decompress_chunk` function, see the `decompress_chunk`
[API reference][api-reference-decompress].
### Decompress chunks on more precise constraints
If you want to use more precise matching constraints, for example space
partitioning, you can construct a command like this:
sql SELECT tableoid::regclass FROM metrics WHERE time = '2000-01-01' AND device_id = 1 GROUP BY tableoid;
tableoid
_timescaledb_internal._hyper_72_37_chunk
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/compression-on-continuous-aggregates/ =====
# Convert continuous aggregates to the columnstore
Continuous aggregates are often used to downsample historical data. If the data is only used for analytical queries
and never modified, you can compress the aggregate to save on storage.
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/use-timescale/latest/continuous-aggregates/compression-on-continuous-aggregates/">Convert continuous aggregates to the columnstore</a>.
Before version
[2.18.1](https://github.com/timescale/timescaledb/releases/tag/2.18.1), you can't
refresh the compressed regions of a continuous aggregate. To avoid conflicts
between compression and refresh, make sure you set `compress_after` to a larger
interval than the `start_offset` of your [refresh
policy](https://docs.tigerdata.com/api/latest/continuous-aggregates/add_continuous_aggregate_policy).
Compression on continuous aggregates works similarly to [compression on
hypertables][compression]. When compression is enabled and no other options are
provided, the `segment_by` value will be automatically set to the group by
columns of the continuous aggregate and the `time_bucket` column will be used as
the `order_by` column in the compression configuration.
## Enable compression on continuous aggregates
You can enable and disable compression on continuous aggregates by setting the
`compress` parameter when you alter the view.
### Enabling and disabling compression on continuous aggregates
1. For an existing continuous aggregate, at the `psql` prompt, enable
compression:
```sql
ALTER MATERIALIZED VIEW cagg_name set (timescaledb.compress = true);
```
1. Disable compression:
```sql
ALTER MATERIALIZED VIEW cagg_name set (timescaledb.compress = false);
```
Disabling compression on a continuous aggregate fails if there are compressed
chunks associated with the continuous aggregate. In this case, you need to
decompress the chunks, and then drop any compression policy on the continuous
aggregate, before you disable compression. For more detailed information, see
the [decompress chunks][decompress-chunks] section:
sql SELECT decompress_chunk(c, true) FROM show_chunks('cagg_name') c;
## Compression policies on continuous aggregates
Before setting up a compression policy on a continuous aggregate, you should set
up a [refresh policy][refresh-policy]. The compression policy interval should be
set so that actively refreshed regions are not compressed. This is to prevent
refresh policies from failing. For example, consider a refresh policy like this:
sql SELECT add_continuous_aggregate_policy('cagg_name', start_offset => INTERVAL '30 days', end_offset => INTERVAL '1 day', schedule_interval => INTERVAL '1 hour');
With this kind of refresh policy, the compression policy needs the
`compress_after` parameter greater than the `start_offset` parameter of the
continuous aggregate policy:
sql SELECT add_compression_policy('cagg_name', compress_after=>'45 days'::interval);
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/manual-compression/ =====
# Manual compression
In most cases, an [automated compression policy][add_compression_policy] is sufficient to automatically compress your
chunks. However, if you want more control, you can also use manual synchronous compression of specific chunks.
Before you start, you need a list of chunks to compress. In this example, you
use a hypertable called `example`, and compress chunks older than three days.
### Selecting chunks to compress
1. At the psql prompt, select all chunks in the table `example` that are older
than three days:
```sql
SELECT show_chunks('example', older_than => INTERVAL '3 days');
```
1. This returns a list of chunks. Take note of the chunks' names:
||show_chunks|
|---|---|
|1|_timescaledb_internal_hyper_1_2_chunk|
|2|_timescaledb_internal_hyper_1_3_chunk|
When you are happy with the list of chunks, you can use the chunk names to
manually compress each one.
### Compressing chunks manually
1. At the psql prompt, compress the chunk:
```sql
SELECT compress_chunk( '<chunk_name>');
```
1. Check the results of the compression with this command:
```sql
SELECT *
FROM chunk_compression_stats('example');
```
The results show the chunks for the given hypertable, their compression
status, and some other statistics:
|chunk_schema|chunk_name|compression_status|before_compression_table_bytes|before_compression_index_bytes|before_compression_toast_bytes|before_compression_total_bytes|after_compression_table_bytes|after_compression_index_bytes|after_compression_toast_bytes|after_compression_total_bytes|node_name|
|---|---|---|---|---|---|---|---|---|---|---|---|
|_timescaledb_internal|_hyper_1_1_chunk|Compressed|8192 bytes|16 kB|8192 bytes|32 kB|8192 bytes|16 kB|8192 bytes|32 kB||
|_timescaledb_internal|_hyper_1_20_chunk|Uncompressed||||||||||
1. Repeat for all chunks you want to compress.
## Manually compress chunks in a single command
Alternatively, you can select the chunks and compress them in a single command
by using the output of the `show_chunks` command to compress each one. For
example, use this command to compress chunks between one and three weeks old
if they are not already compressed:
sql SELECT compress_chunk(i, if_not_compressed => true)
FROM show_chunks(
'example',
now()::timestamp - INTERVAL '1 week',
now()::timestamp - INTERVAL '3 weeks'
) i;
## Roll up uncompressed chunks when compressing
In TimescaleDB v2.9 and later, you can roll up multiple uncompressed chunks into
a previously compressed chunk as part of your compression procedure. This allows
you to have much smaller uncompressed chunk intervals, which reduces the disk
space used for uncompressed data. For example, if you have multiple smaller
uncompressed chunks in your data, you can roll them up into a single compressed
chunk.
To roll up your uncompressed chunks into a compressed chunk, alter the compression
settings to set the compress chunk time interval and run compression operations
to roll up the chunks while compressing.
The default setting of `compress_orderby` is `'time DESC'` (the descending or DESC command is used to sort the data returned in ascending order), which causes chunks to be re-compressed
many times during the rollup, possibly leading to a steep performance penalty.
Set `timescaledb.compress_orderby = 'time ASC'` to avoid this penalty.
sql ALTER TABLE example SET (timescaledb.compress_chunk_time_interval = '',
timescaledb.compress_orderby = 'time ASC');
SELECT compress_chunk(c, if_not_compressed => true)
FROM show_chunks(
'example',
now()::timestamp - INTERVAL '1 week'
) c;
The time interval you choose must be a multiple of the uncompressed chunk
interval. For example, if your uncompressed chunk interval is one week, your
`<time_interval>` of the compressed chunk could be two weeks or six weeks, but
not one month.
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/about-compression/ =====
# About compression
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/use-timescale/latest/hypercore/">hypercore</a>.
Compressing your time-series data allows you to reduce your chunk size by more
than 90%. This saves on storage costs, and keeps your queries operating at
lightning speed.
When you enable compression, the data in your hypertable is compressed chunk by
chunk. When the chunk is compressed, multiple records are grouped into a single
row. The columns of this row hold an array-like structure that stores all the
data. This means that instead of using lots of rows to store the data, it stores
the same data in a single row. Because a single row takes up less disk space
than many rows, it decreases the amount of disk space required, and can also
speed up your queries.
For example, if you had a table with data that looked a bit like this:
|Timestamp|Device ID|Device Type|CPU|Disk IO|
|-|-|-|-|-|
|12:00:01|A|SSD|70.11|13.4|
|12:00:01|B|HDD|69.70|20.5|
|12:00:02|A|SSD|70.12|13.2|
|12:00:02|B|HDD|69.69|23.4|
|12:00:03|A|SSD|70.14|13.0|
|12:00:03|B|HDD|69.70|25.2|
You can convert this to a single row in array form, like this:
|Timestamp|Device ID|Device Type|CPU|Disk IO|
|-|-|-|-|-|
|[12:00:01, 12:00:01, 12:00:02, 12:00:02, 12:00:03, 12:00:03]|[A, B, A, B, A, B]|[SSD, HDD, SSD, HDD, SSD, HDD]|[70.11, 69.70, 70.12, 69.69, 70.14, 69.70]|[13.4, 20.5, 13.2, 23.4, 13.0, 25.2]|
This section explains how to enable native compression, and then goes into
detail on the most important settings for compression, to help you get the
best possible compression ratio.
## Key aspects of compression
Every table has a different schema but they do share some commonalities that you need to think about.
Consider the table `metrics` with the following attributes:
|Column|Type|Collation|Nullable|Default|
|-|-|-|-|-|
time|timestamp with time zone|| not null|
device_id| integer|| not null|
device_type| integer|| not null|
cpu| double precision|||
disk_io| double precision|||
All hypertables have a primary dimension which is used to partition the table into chunks. The primary dimension is given when [the hypertable is created][hypertable-create-table]. In the example below, you can see a classic time-series use case with a `time` column as the primary dimension. In addition, there are two columns `cpu` and `disk_io` containing the values that are captured over time, and a column `device_id` for the device that captured the values.
Columns can be used in a few different ways:
- You can use values in a column as a lookup key, in the example above `device_id` is a typical example of such a column.
- You can use a column for partitioning a table. This is typically a time column like `time` in the example above, but it is possible to partition the table using other types as well.
- You can use a column as a filter to narrow down on what data you select. The column `device_type` is an example of where you can decide to look at, for example, only solid state drives (SSDs).
The remaining columns are typically the values or metrics you are collecting. These are typically aggregated or presented in other ways. The columns `cpu` and `disk_io` are typical examples of such columns.
<CodeBlock canCopy={false} showLineNumbers={false} children={`
SELECT avg(cpu), sum(disk_io)
FROM metrics
WHERE device_type = ‘SSD’
AND time >= now() - ‘1 day’::interval;
`} />
When chunks are compressed in a hypertable, data stored in them is reorganized and stored in column-order rather than row-order. As a result, it is not possible to use the same uncompressed schema version of the chunk and a different schema must be created. This is automatically handled by TimescaleDB, but it has a few implications:
The compression ratio and query performance is very dependent on the order and structure of the compressed data, so some considerations are needed when setting up compression.
Indexes on the hypertable cannot always be used in the same manner for the compressed data.
Indexes set on the hypertable are used only on chunks containing uncompressed
data. TimescaleDB creates and uses custom indexes to incorporate the `segmentby`
and `orderby` parameters during compression which are used when reading compressed data.
More on this in the next section.
Based on the previous schema, filtering of data should happen over a certain time period and analytics are done on device granularity. This pattern of data access lends itself to organizing the data layout suitable for compression.
### Ordering and segmenting.
Ordering the data will have a great impact on the compression ratio and performance of your queries. Rows that change over a dimension should be close to each other. Since we are mostly dealing with time-series data, time dimension is a great candidate. Most of the time data changes in a predictable fashion, following a certain trend. We can exploit this fact to encode the data so it takes less space to store. For example, if you order the records over time, they will get compressed in that order and subsequently also accessed in the same order.
Using the following configuration setup on our example table:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
ALTER TABLE metrics
SET (timescaledb.compress, timescaledb.compress_orderby='time');
`} />
would produce the following data layout.
|Timestamp|Device ID|Device Type|CPU|Disk IO|
|-|-|-|-|
|[12:00:01, 12:00:01, 12:00:02, 12:00:02, 12:00:03, 12:00:03]|[A, B, A, B, A, B]|[SSD, HDD, SSD, HDD, SSD, HDD]|[70.11, 69.70, 70.12, 69.69, 70.14, 69.70]|[13.4, 20.5, 13.2, 23.4, 13.0, 25.2]|
`time` column is used for ordering data, which makes filtering it using `time` column much more efficient.
<CodeBlock canCopy={false} showLineNumbers={false} children={`
postgres=# select avg(cpu) from metrics where time >= '2024-03-01 00:00:00+01' and time < '2024-03-02 00:00:00+01';
avg
--------------------
0.4996848437842719
(1 row)
Time: 87,218 ms
postgres=# ALTER TABLE metrics
SET (
timescaledb.compress,
timescaledb.compress_segmentby = 'device_id',
timescaledb.compress_orderby='time'
);
ALTER TABLE
Time: 6,607 ms
postgres=# SELECT compress_chunk(c) FROM show_chunks('metrics') c;
compress_chunk
----------------------------------------
_timescaledb_internal._hyper_2_4_chunk
_timescaledb_internal._hyper_2_5_chunk
_timescaledb_internal._hyper_2_6_chunk
(3 rows)
Time: 3070,626 ms (00:03,071)
postgres=# select avg(cpu) from metrics where time >= '2024-03-01 00:00:00+01' and time < '2024-03-02 00:00:00+01';
avg
------------------
0.49968484378427
(1 row)
Time: 45,384 ms
`} />
This makes the time column a perfect candidate for ordering your data since the measurements evolve as time goes on. If you were to use that as your only compression setting, you would most likely get a good enough compression ratio to save a lot of storage. However, accessing the data effectively depends on your use case and your queries. With this setup, you would always have to access the data by using the time dimension and subsequently filter all the rows based on any other criteria.
Segmenting the compressed data should be based on the way you access the data. Basically, you want to segment your data in such a way that you can make it easier for your queries to fetch the right data at the right time. That is to say, your queries should dictate how you segment the data so they can be optimized and yield even better query performance.
For example, If you want to access a single device using a specific `device_id` value (either all records or maybe for a specific time range), you would need to filter all those records one by one during row access time. To get around this, you can use device_id column for segmenting. This would allow you to run analytical queries on compressed data much faster if you are looking for specific device IDs.
Consider the following query:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
SELECT device_id, AVG(cpu) AS avg_cpu, AVG(disk_io) AS avg_disk_io
FROM metrics
WHERE device_id = 5
GROUP BY device_id;
`} />
As you can see, the query does a lot of work based on the `device_id` identifier by grouping all its values together. We can use this fact to speed up these types of queries by setting
up compression to segment the data around the values in this column.
Using the following configuration setup on our example table:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
ALTER TABLE metrics
SET (
timescaledb.compress,
timescaledb.compress_segmentby='device_id',
timescaledb.compress_orderby='time'
);
`} />
would produce the following data layout.
|time|device_id|device_type|cpu|disk_io|energy_consumption|
|---|---|---|---|---|---|
|[12:00:02, 12:00:01]|1|[SSD,SSD]|[88.2, 88.6]|[20, 25]|[0.8, 0.85]|
|[12:00:02, 12:00:01]|2|[HDD,HDD]|[300.5, 299.1]|[30, 40]|[0.9, 0.95]|
|...|...|...|...|...|...|
Segmenting column `device_id` is used for grouping data points together based on the value of that column. This makes accessing a specific device much more efficient.
<CodeBlock canCopy={false} showLineNumbers={false} children={`
postgres=# \\timing
Timing is on.
postgres=# SELECT device_id, AVG(cpu) AS avg_cpu, AVG(disk_io) AS avg_disk_io
FROM metrics
WHERE device_id = 5
GROUP BY device_id;
device_id | avg_cpu | avg_disk_io
-----------+--------------------+---------------------
5 | 0.4972598866221261 | 0.49820356730280524
(1 row)
Time: 177,399 ms
postgres=# ALTER TABLE metrics
SET (
timescaledb.compress,
timescaledb.compress_segmentby = 'device_id',
timescaledb.compress_orderby='time'
);
ALTER TABLE
Time: 6,607 ms
postgres=# SELECT compress_chunk(c) FROM show_chunks('metrics') c;
compress_chunk
----------------------------------------
_timescaledb_internal._hyper_2_4_chunk
_timescaledb_internal._hyper_2_5_chunk
_timescaledb_internal._hyper_2_6_chunk
(3 rows)
Time: 3070,626 ms (00:03,071)
postgres=# SELECT device_id, AVG(cpu) AS avg_cpu, AVG(disk_io) AS avg_disk_io
FROM metrics
WHERE device_id = 5
GROUP BY device_id;
device_id | avg_cpu | avg_disk_io
-----------+-------------------+---------------------
5 | 0.497259886622126 | 0.49820356730280535
(1 row)
Time: 42,139 ms
`} />
Number of rows that are compressed together in a single batch (like the ones we see above) is 1000.
If your chunk does not contain enough data to create big enough batches, your compression ratio will be reduced.
This needs to be taken into account when defining your compression settings.
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/compression-design/ =====
# Designing your database for compression
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/use-timescale/latest/hypercore/">hypercore</a>.
Time-series data can be unique, in that it needs to handle both shallow and wide
queries, such as "What's happened across the deployment in the last 10 minutes,"
and deep and narrow, such as "What is the average CPU usage for this server
over the last 24 hours." Time-series data usually has a very high rate of
inserts as well; hundreds of thousands of writes per second can be very normal
for a time-series dataset. Additionally, time-series data is often very
granular, and data is collected at a higher resolution than many other
datasets. This can result in terabytes of data being collected over time.
All this means that if you need great compression rates, you probably need to
consider the design of your database, before you start ingesting data. This
section covers some of the things you need to take into consideration when
designing your database for maximum compression effectiveness.
## Compressing data
TimescaleDB is built on Postgres which is, by nature, a row-based database.
Because time-series data is accessed in order of time, when you enable
compression, TimescaleDB converts many wide rows of data into a single row of
data, called an array form. This means that each field of that new, wide row
stores an ordered set of data comprising the entire column.
For example, if you had a table with data that looked a bit like this:
|Timestamp|Device ID|Status Code|Temperature|
|-|-|-|-|
|12:00:01|A|0|70.11|
|12:00:01|B|0|69.70|
|12:00:02|A|0|70.12|
|12:00:02|B|0|69.69|
|12:00:03|A|0|70.14|
|12:00:03|B|4|69.70|
You can convert this to a single row in array form, like this:
|Timestamp|Device ID|Status Code|Temperature|
|-|-|-|-|
|[12:00:01, 12:00:01, 12:00:02, 12:00:02, 12:00:03, 12:00:03]|[A, B, A, B, A, B]|[0, 0, 0, 0, 0, 4]|[70.11, 69.70, 70.12, 69.69, 70.14, 69.70]|
Even before you compress any data, this format immediately saves storage by
reducing the per-row overhead. Postgres typically adds a small number of bytes
of overhead per row. So even without any compression, the schema in this example
is now smaller on disk than the previous format.
This format arranges the data so that similar data, such as timestamps, device
IDs, or temperature readings, is stored contiguously. This means that you can
then use type-specific compression algorithms to compress the data further, and
each array is separately compressed. For more information about the compression
methods used, see the [compression methods section][compression-methods].
When the data is in array format, you can perform queries that require a subset
of the columns very quickly. For example, if you have a query like this one, that
asks for the average temperature over the past day:
<CodeBlock canCopy={false} showLineNumbers={false} children={`
SELECT time_bucket(‘1 minute’, timestamp) as minute
AVG(temperature)
FROM table
WHERE timestamp > now() - interval ‘1 day’
ORDER BY minute DESC
GROUP BY minute;
`} />
The query engine can fetch and decompress only the timestamp and temperature
columns to efficiently compute and return these results.
Finally, TimescaleDB uses non-inline disk pages to store the compressed arrays.
This means that the in-row data points to a secondary disk page that stores the
compressed array, and the actual row in the main table becomes very small,
because it is now just pointers to the data. When data stored like this is
queried, only the compressed arrays for the required columns are read from disk,
further improving performance by reducing disk reads and writes.
## Querying compressed data
In the previous example, the database has no way of knowing which rows need to
be fetched and decompressed to resolve a query. For example, the database can't
easily determine which rows contain data from the past day, as the timestamp
itself is in a compressed column. You don't want to have to decompress all the
data in a chunk, or even an entire hypertable, to determine which rows are
required.
TimescaleDB automatically includes more information in the row and includes
additional groupings to improve query performance. When you compress a
hypertable, either manually or through a compression policy, it can help to specify
an `ORDER BY` column.
`ORDER BY` columns specify how the rows that are part of a compressed batch are
ordered. For most time-series workloads, this is by timestamp, so if you don't
specify an `ORDER BY` column, TimescaleDB defaults to using the time column. You
can also specify additional dimensions, such as location.
For each `ORDER BY` column, TimescaleDB automatically creates additional columns
that store the minimum and maximum value of that column. This way, the query
planner can look at the range of timestamps in the compressed column, without
having to do any decompression, and determine whether the row could possibly
match the query.
When you compress your hypertable, you can also choose to specify a `SEGMENT BY`
column. This allows you to segment compressed rows by a specific column, so that
each compressed row corresponds to a data about a single item such as, for
example, a specific device ID. This further allows the query planner to
determine if the row could possibly match the query without having to decompress
the column first. For example:
|Device ID|Timestamp|Status Code|Temperature|Min Timestamp|Max Timestamp|
|-|-|-|-|-|-|
|A|[12:00:01, 12:00:02, 12:00:03]|[0, 0, 0]|[70.11, 70.12, 70.14]|12:00:01|12:00:03|
|B|[12:00:01, 12:00:02, 12:00:03]|[0, 0, 4]|[69.70, 69.69, 69.70]|12:00:01|12:00:03|
With the data segmented in this way, a query for device A between a time
interval becomes quite fast. The query planner can use an index to find those
rows for device A that contain at least some timestamps corresponding to the
specified interval, and even a sequential scan is quite fast since evaluating
device IDs or timestamps does not require decompression. This means the
query executor only decompresses the timestamp and temperature columns
corresponding to those selected rows.
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/compression-policy/ =====
# Create a compression policy
Old API since [TimescaleDB v2.18.0](https://github.com/timescale/timescaledb/releases/tag/2.18.0) Replaced by <a href="https://docs.tigerdata.com/use-timescale/latest/hypercore/real-time-analytics-in-hypercore/">Optimize your data for real-time analytics</a>.
You can enable compression on individual hypertables, by declaring which column
you want to segment by.
## Enable a compression policy
This page uses an example table, called `example`, and segments it by the
`device_id` column. Every chunk that is more than seven days old is then marked
to be automatically compressed. The source data is organized like this:
|time|device_id|cpu|disk_io|energy_consumption|
|-|-|-|-|-|
|8/22/2019 0:00|1|88.2|20|0.8|
|8/22/2019 0:05|2|300.5|30|0.9|
### Enabling compression
1. At the `psql` prompt, alter the table:
```sql
ALTER TABLE example SET (
timescaledb.compress,
timescaledb.compress_segmentby = 'device_id'
);
```
1. Add a compression policy to compress chunks that are older than seven days:
```sql
SELECT add_compression_policy('example', INTERVAL '7 days');
```
For more information, see the API reference for
[`ALTER TABLE (compression)`][alter-table-compression] and
[`add_compression_policy`][add_compression_policy].
## View current compression policy
To view the compression policy that you've set:
sql SELECT * FROM timescaledb_information.jobs WHERE proc_name='policy_compression';
For more information, see the API reference for [`timescaledb_information.jobs`][timescaledb_information-jobs].
## Pause compression policy
To disable a compression policy temporarily, find the corresponding job ID and then call `alter_job` to pause it:
sql SELECT * FROM timescaledb_information.jobs where proc_name = 'policy_compression' AND relname = 'example'
sql SELECT alter_job(, scheduled => false);
To enable it again:
sql SELECT alter_job(, scheduled => true);
## Remove compression policy
To remove a compression policy, use `remove_compression_policy`:
sql SELECT remove_compression_policy('example');
For more information, see the API reference for
[`remove_compression_policy`][remove_compression_policy].
## Disable compression
You can disable compression entirely on individual hypertables. This command
works only if you don't currently have any compressed chunks:
sql ALTER TABLE SET (timescaledb.compress=false);
If your hypertable contains compressed chunks, you need to
[decompress each chunk][decompress-chunks] individually before you can turn off
compression.
===== PAGE: https://docs.tigerdata.com/use-timescale/compression/modify-compressed-data/ =====
# Inserting or modifying data in the columnstore
In TimescaleDB [v2.11.0][tsdb-release-2-11-0] and later, you can use the `UPDATE` and `DELETE`
commands to modify existing rows in compressed chunks. This works in a similar
way to `INSERT` operations. To reduce the amount of decompression, TimescaleDB only attempts to decompress data where it is necessary.
However, if there are no qualifiers, or if the qualifiers cannot be used as filters, calls to `UPDATE` and `DELETE` may convert large amounts of data to the rowstore and back to the columnstore.
To avoid large scale conversion, filter on the columns you use to `segementby` and `orderby`. This filters as much data as possible before any data is modified, and reduces the amount of data conversions.
DML operations on the columnstore work if the data you are inserting has
unique constraints. Constraints are preserved during the insert operation.
TimescaleDB uses a Postgres function that decompresses relevant data during the insert
to check if the new data breaks unique checks. This means that any time you insert data
into the columnstore, a small amount of data is decompressed to allow a
speculative insertion, and block any inserts which could violate constraints.
For TimescaleDB [v2.17.0][tsdb-release-2-17-0] and later, delete performance is improved on compressed
hypertables when a large amount of data is affected. When you delete whole segments of
data, filter your deletes by `segmentby` column(s) instead of separate deletes.
This considerably increases performance by skipping the decompression step.
Since TimescaleDB [v2.21.0][tsdb-release-2-21-0] and later, `DELETE` operations on the columnstore
are executed on the batch level, which allows more performant deletion of data of non-segmentby columns
and reduces IO usage.
## Earlier versions of TimescaleDB (before v2.11.0)
This feature requires Postgres 14 or later
From TimescaleDB v2.3.0, you can insert data into compressed chunks with some
limitations. The primary limitation is that you can't insert data with unique
constraints. Additionally, newly inserted data needs to be compressed at the
same time as the data in the chunk, either by a running recompression policy, or
by using `recompress_chunk` manually on the chunk.
In TimescaleDB v2.2.0 and earlier, you cannot insert data into compressed chunks.
===== PAGE: https://docs.tigerdata.com/use-timescale/jobs/create-and-manage-jobs/ =====
# Create and manage jobs
Jobs in TimescaleDB are custom functions or procedures that run on a schedule that you define. This page explains how to create, test, alter, and delete a job.
## Prerequisites
To follow the procedure on this page you need to:
* Create a [target Tiger Cloud service][create-service].
This procedure also works for [self-hosted TimescaleDB][enable-timescaledb].
## Create a job
To create a job, create a [function][postgres-createfunction] or [procedure][postgres-createprocedure] that you want your database to execute, then set it up to run on a schedule.
1. **Define a function or procedure in the language of your choice**
Wrap it in a `CREATE` statement:
```sql
CREATE FUNCTION <function_name> (job_id INT DEFAULT NULL, config JSONB DEFAULT NULL)
RETURNS VOID
DECLARE
<declaration>;
BEGIN
<function_body>;
END;
$<variable_name>$ LANGUAGE <language>;
```
For example, to create a function that reindexes a table within your database:
```sql
CREATE FUNCTION reindex_mytable(job_id INT DEFAULT NULL, config JSONB DEFAULT NULL)
RETURNS VOID
AS $$
BEGIN
REINDEX TABLE mytable;
END;
$$ LANGUAGE plpgsql;
```
`job_id` and `config` are required arguments in the function signature. This returns `CREATE FUNCTION` to indicate that the function has successfully been created.
1. **Call the function to validate**
For example:
```sql
select reindex_mytable();
```
The result looks like this:
```sql
reindex_mytable
-----------------
(1 row)
```
1. **Register your job with [`add_job`][api-add_job]**
Pass the name of your job, the schedule you want it to run on, and the content of your config. For the `config` value, if you don't need any special configuration parameters, set to `NULL`. For example, to run the `reindex_mytable` function every hour:
```sql
SELECT add_job('reindex_mytable', '1h', config => NULL);
```
The call returns a `job_id` and stores it along with `config` in the TimescaleDB catalog.
The job runs on the schedule you set. You can also run it manually with [`run_job`][api-run_job] passing `job_id`. When the job runs, `job_id` and `config` are passed as arguments.
1. **Validate the job**
List all currently registered jobs with [`timescaledb_information.jobs`][api-timescaledb_information-jobs]:
```sql
SELECT * FROM timescaledb_information.jobs;
```
The result looks like this:
```sql
job_id | application_name | schedule_interval | max_runtime | max_retries | retry_period | proc_schema | proc_name | owner | scheduled | config | next_start | hypertable_schema | hypertable_name
--------+----------------------------+-------------------+-------------+-------------+--------------+-----------------------+------------------+-----------+-----------+------------------------+-------------------------------+-------------------+-----------------
1 | Telemetry Reporter [1] | 24:00:00 | 00:01:40 | -1 | 01:00:00 | _timescaledb_internal | policy_telemetry | postgres | t | | 2022-08-18 06:26:39.524065+00 | |
1000 | User-Defined Action [1000] | 01:00:00 | 00:00:00 | -1 | 00:05:00 | public | reindex_mytable | tsdbadmin | t | | 2022-08-17 07:17:24.831698+00 | |
(2 rows)
```
## Test and debug a job
To debug a job, increase the log level and run the job manually with [`run_job`][api-run_job] in the foreground. Because `run_job` is a stored procedure and not a function, run it with [`CALL`][postgres-call] instead of `SELECT`.
1. **Set the minimum log level to `DEBUG1`**
```sql
SET client_min_messages TO DEBUG1;
```
1. **Run the job**
Replace `1000` with your `job_id`:
```sql
CALL run_job(1000);
```
## Alter and delete a job
Alter an existing job with [`alter_job`][api-alter_job]. You can change both the config and the schedule on which the job runs.
1. **Change a job's config**
To replace the entire JSON config for a job, call `alter_job` with a new `config` object. For example, replace the JSON config for a job with ID `1000`:
```sql
SELECT alter_job(1000, config => '{"hypertable":"metrics"}');
```
1. **Turn off job scheduling**
To turn off automatic scheduling of a job, call `alter_job` and set `scheduled`to `false`. You can still run the job manually with `run_job`. For example, turn off the scheduling for a job with ID `1000`:
```sql
SELECT alter_job(1000, scheduled => false);
```
1. **Re-enable automatic scheduling of a job**
To re-enable automatic scheduling of a job, call `alter_job` and set `scheduled` to `true`. For example, re-enable scheduling for a job with ID `1000`:
```sql
SELECT alter_job(1000, scheduled => true);
```
1. **Delete a job with [`delete_job`][api-delete_job]**
For example, to delete a job with ID `1000`:
```sql
SELECT delete_job(1000);
```
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/function-pipelines/ =====
# Function pipelines
Function pipelines are an experimental feature, designed to radically improve
how you write queries to analyze data in Postgres and SQL. They work by
applying principles from functional programming and popular tools like Python
Pandas, and PromQL.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
The `timevector()` function materializes all its data points in
memory. This means that if you use it on a very large dataset,
it runs out of memory. Do not use the `timevector` function
on a large dataset, or in production.
SQL is the best language for data analysis, but it is not perfect, and at times
it can be difficult to construct the query you want. For example, this query
gets data from the last day from the measurements table, sorts the data by the
time column, calculates the delta between the values, takes the absolute value
of the delta, and then takes the sum of the result of the previous steps:
sql SELECT device id, sum(abs_delta) as volatility FROM ( SELECT device_id, abs(val - lag(val) OVER last_day) as abs_delta FROM measurements WHERE ts >= now()-'1 day'::interval) calc_delta GROUP BY device_id;
You can express the same query with a function pipeline like this:
sql SELECT device_id,
toolkit_experimental.timevector(ts, val)
-> toolkit_experimental.sort()
-> toolkit_experimental.delta()
-> toolkit_experimental.abs()
-> toolkit_experimental.sum() as volatility
FROM measurements WHERE ts >= now()-'1 day'::interval GROUP BY device_id;
Function pipelines are completely SQL compliant, meaning that any tool that
speaks SQL is able to support data analysis using function pipelines.
## Anatomy of a function pipeline
Function pipelines are built as a series of elements that work together to
create your query. The most important part of a pipeline is a custom data type
called a `timevector`. The other elements then work on the `timevector` to build
your query, using a custom operator to define the order in which the elements
are run.
### Timevectors
A `timevector` is a collection of time,value pairs with a defined start and end
time, that could something like this:
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/timevector.webp"
alt="An example timevector"/>
Your entire database might have time,value pairs that go well into the past and
continue into the future, but the `timevector` has a defined start and end time
within that dataset, which could look something like this:
<img class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/timeseries_vector.webp"
alt="An example of a timevector within a larger dataset"/>
To construct a `timevector` from your data, use a custom aggregate and pass
in the columns to become the time,value pairs. It uses a `WHERE` clause to
define the limits of the subset, and a `GROUP BY` clause to provide identifying
information about the time-series. For example, to construct a `timevector` from
a dataset that contains temperatures, the SQL looks like this:
sql SELECT device_id, toolkit_experimental.timevector(ts, val) FROM measurements WHERE ts >= now() - '1 day'::interval GROUP BY device_id;
### Custom operator
Function pipelines use a single custom operator of `->`. This operator is used
to apply and compose multiple functions. The `->` operator takes the inputs on
the left of the operator, and applies the operation on the right of the
operator. To put it more plainly, you can think of it as "do the next thing."
A typical function pipeline could look something like this:
sql SELECT device_id, toolkit_experimental.timevector(ts, val)
-> toolkit_experimental.sort()
-> toolkit_experimental.delta()
-> toolkit_experimental.abs()
-> toolkit_experimental.sum() as volatility
FROM measurements WHERE ts >= now() - '1 day'::interval GROUP BY device_id;
While it might look at first glance as though `timevector(ts, val)` operation is
an argument to `sort()`, in a pipeline these are all regular function calls.
Each of the calls can only operate on the things in their own parentheses, and
don't know about anything to the left of them in the statement.
Each of the functions in a pipeline returns a custom type that describes the
function and its arguments, these are all pipeline elements. The `->` operator
performs one of two different types of actions depending on the types on its
right and left sides:
* Applies a pipeline element to the left hand argument: performing the
function described by the pipeline element on the incoming data type directly.
* Compose pipeline elements into a combined element that can be applied at
some point in the future. This is an optimization that allows you to nest
elements to reduce the number of passes that are required.
The operator determines the action to perform based on its left and right
arguments.
### Pipeline elements
There are two main types of pipeline elements:
* Transforms change the contents of the `timevector`, returning
the updated vector.
* Finalizers finish the pipeline and output the resulting data.
Transform elements take in a `timevector` and produce a `timevector`. They are
the simplest element to compose, because they produce the same type.
For example:
sql SELECT device_id, toolkit_experimental.timevector(ts, val)
-> toolkit_experimental.sort()
-> toolkit_experimental.delta()
-> toolkit_experimental.map($$ ($value^3 + $value^2 + $value * 2) $$)
-> toolkit_experimental.lttb(100)
FROM measurements
Finalizer elements end the `timevector` portion of a pipeline. They can produce
an output in a specified format. or they can produce an aggregate of the
`timevector`.
For example, a finalizer element that produces an output:
sql SELECT device_id, toolkit_experimental.timevector(ts, val)
-> toolkit_experimental.sort()
-> toolkit_experimental.delta()
-> toolkit_experimental.unnest()
FROM measurements
Or a finalizer element that produces an aggregate:
sql SELECT device_id, toolkit_experimental.timevector(ts, val)
-> toolkit_experimental.sort()
-> toolkit_experimental.delta()
-> toolkit_experimental.time_weight()
FROM measurements
The third type of pipeline elements are aggregate accessors and mutators. These
work on a `timevector` in a pipeline, but they also work in regular aggregate
queries. An example of using these in a pipeline:
sql SELECT percentile_agg(val) -> toolkit_experimental.approx_percentile(0.5) FROM measurements
## Transform elements
Transform elements take a `timevector`, and produce a `timevector`.
### Vectorized math functions
Vectorized math function elements modify each `value` inside the `timevector`
with the specified mathematical function. They are applied point-by-point and
they produce a one-to-one mapping from the input to output `timevector`. Each
point in the input has a corresponding point in the output, with its `value`
transformed by the mathematical function specified.
Elements are always applied left to right, so the order of operations is not
taken into account even in the presence of explicit parentheses. This means for
a `timevector` row `('2020-01-01 00:00:00+00', 20.0)`, this pipeline works:
bash timevector('2021-01-01 UTC', 10) -> add(5) -> (mul(2) -> add(1))
And this pipeline works in the same way:
bash timevector('2021-01-01 UTC', 10) -> add(5) -> mul(2) -> add(1)
Both of these examples produce `('2020-01-01 00:00:00+00', 31.0)`.
If multiple arithmetic operations are needed and precedence is important,
consider using a [Lambda](#lambda-elements) instead.
### Unary mathematical functions
Unary mathematical function elements apply the corresponding mathematical
function to each datapoint in the `timevector`, leaving the timestamp and
ordering the same. The available elements are:
|Element|Description|
|-|-|
|`abs()`|Computes the absolute value of each value|
|`cbrt()`|Computes the cube root of each value|
|`ceil()`|Computes the first integer greater than or equal to each value|
|`floor()`|Computes the first integer less than or equal to each value|
|`ln()`|Computes the natural logarithm of each value|
|`log10()`|Computes the base 10 logarithm of each value|
|`round()`|Computes the closest integer to each value|
|`sign()`|Computes +/-1 for each positive/negative value|
|`sqrt()`|Computes the square root for each value|
|`trunc()`|Computes only the integer portion of each value|
Even if an element logically computes an integer, `timevectors` only deal with
double precision floating point values, so the computed value is the
floating point representation of the integer. For example:
sql -- NOTE: the (pipeline -> unnest()).* allows for time, value columns to be produced without a subselect SELECT (
toolkit_experimental.timevector(time, value)
-> toolkit_experimental.abs()
-> toolkit_experimental.unnest()).*
FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-06 00:00:00+00 | 0 2021-01-01 00:00:00+00 | 25 2021-01-02 00:00:00+00 | 0.1 2021-01-04 00:00:00+00 | 10 2021-01-05 00:00:00+00 | 3.3 (5 rows)
### Binary mathematical functions
Binary mathematical function elements run the corresponding mathematical function
on the `value` in each point in the `timevector`, using the supplied number as
the second argument of the function. The available elements are:
|Element|Description|
|-|-|
|`add(N)`|Computes each value plus `N`|
|`div(N)`|Computes each value divided by `N`|
|`logn(N)`|Computes the logarithm base `N` of each value|
|`mod(N)`|Computes the remainder when each number is divided by `N`|
|`mul(N)`|Computes each value multiplied by `N`|
|`power(N)`|Computes each value taken to the `N` power|
|`sub(N)`|Computes each value less `N`|
These elements calculate `vector -> power(2)` by squaring all of the `values`,
and `vector -> logn(3)` gives the log-base-3 of each `value`. For example:
sql SELECT (
toolkit_experimental.timevector(time, value)
-> toolkit_experimental.power(2)
-> toolkit_experimental.unnest()).*
FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+---------------------- 2021-01-06 00:00:00+00 | 0 2021-01-01 00:00:00+00 | 625 2021-01-02 00:00:00+00 | 0.010000000000000002 2021-01-04 00:00:00+00 | 100 2021-01-05 00:00:00+00 | 10.889999999999999 (5 rows)
### Compound transforms
Mathematical transforms are applied only to the `value` in each
point in a `timevector` and always produce one-to-one output `timevectors`.
Compound transforms can involve both the `time` and `value` parts of the points
in the `timevector`, and they are not necessarily one-to-one. One or more points
in the input can be used to produce zero or more points in the output. So, where
mathematical transforms always produce `timevectors` of the same length,
compound transforms can produce larger or smaller `timevectors` as an output.
#### Delta transforms
A `delta()` transform calculates the difference between consecutive `values` in
the `timevector`. The first point in the `timevector` is omitted as there is no
previous value and it cannot have a `delta()`. Data should be sorted using the
`sort()` element before passing into `delta()`. For example:
sql SELECT (
toolkit_experimental.timevector(time, value)
-> toolkit_experimental.sort()
-> toolkit_experimental.delta()
-> toolkit_experimental.unnest()).*
FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-02 00:00:00+00 | -24.9 2021-01-04 00:00:00+00 | -10.1 2021-01-05 00:00:00+00 | 13.3 2021-01-06 00:00:00+00 | -3.3 (4 rows)
The first row of the output is missing, as there is no way to compute a delta
without a previous value.
#### Fill method transform
The `fill_to()` transform ensures that there is a point at least every
`interval`, if there is not a point, it fills in the point using the method
provided. The `timevector` must be sorted before calling `fill_to()`. The
available fill methods are:
|fill_method|description|
|-|-|
|LOCF|Last object carried forward, fill with last known value prior to the hole|
|Interpolate|Fill the hole using a collinear point with the first known value on either side|
|Linear|This is an alias for interpolate|
|Nearest|Fill with the matching value from the closer of the points preceding or following the hole|
For example:
sql SELECT (
toolkit_experimental.timevector(time, value)
-> toolkit_experimental.sort()
-> toolkit_experimental.fill_to('1 day', 'LOCF')
-> toolkit_experimental.unnest()).*
FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-01 00:00:00+00 | 25 2021-01-02 00:00:00+00 | 0.1 2021-01-03 00:00:00+00 | 0.1 2021-01-04 00:00:00+00 | -10 2021-01-05 00:00:00+00 | 3.3 2021-01-06 00:00:00+00 | 0 (6 rows)
#### Largest triangle three buckets (LTTB) transform
The largest triangle three buckets (LTTB) transform uses the LTTB graphical
downsampling algorithm to downsample a `timevector` to the specified resolution
while maintaining visual acuity.
<!---- Insert example here. --LKB 2021-10-19-->
#### Sort transform
The `sort()` transform sorts the `timevector` by time, in ascending order. This
transform is ignored if the `timevector` is already sorted. For example:
sql SELECT (
toolkit_experimental.timevector(time, value)
-> toolkit_experimental.sort()
-> toolkit_experimental.unnest()).*
FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-01 00:00:00+00 | 25 2021-01-02 00:00:00+00 | 0.1 2021-01-04 00:00:00+00 | -10 2021-01-05 00:00:00+00 | 3.3 2021-01-06 00:00:00+00 | 0 (5 rows)
### Lambda elements
The Lambda element functions use the Toolkit's experimental Lambda syntax to transform
a `timevector`. A Lambda is an expression that is applied to the elements of a `timevector`.
It is written as a string, usually `$$`-quoted, containing the expression to run.
For example:
sql $$ let $is_relevant = $time > '2021-01-01't and $time < '2021-10-14't; let $is_significant = abs(round($value)) >= 0; $is_relevant and $is_significant $$
A Lambda expression can be constructed using these components:
* **Variable declarations** such as `let $foo = 3; $foo * $foo`. Variable
declarations end with a semicolon. All Lambdas must end with an
expression, this does not have a semicolon. Multiple variable declarations
can follow one another, for example:
`let $foo = 3; let $bar = $foo * $foo; $bar * 10`
* **Variable names** such as `$foo`. They must start with a `$` symbol. The
variables `$time` and `$value` are reserved; they refer to the time and
value of the point in the vector the Lambda expression is being called on.
* **Function calls** such as `abs($foo)`. Most mathematical functions are
supported.
* **Binary operations** containing the arithmetic binary operators `and`,
`or`, `=`, `!=`, `<`, `<=`, `>`, `>=`, `^`, `*`, `/`, `+`, and `-` are
supported.
* **Interval literals** are expressed with a trailing `i`. For example,
`'1 day'i`. Except for the trailing `i`, these follow the Postgres
`INTERVAL` input format.
* **Time literals** such as `'2021-01-02 03:00:00't` expressed with a
trailing `t`. Except for the trailing `t` these follow the Postgres
`TIMESTAMPTZ` input format.
* **Number literals** such as `42`, `0.0`, `-7`, or `1e2`.
Lambdas follow a grammar that is roughly equivalent to EBNF. For example:
ebnf Expr = ('let' Variable '=' Tuple ';')* Tuple Tuple = Binops (',' Binops)* Binops = Unaryops (Binop Unaryops)* UnaryOps = ('-' | 'not') UnaryOps | Term Term = Variable | Time | Interval | Number | Function | '(' Expr ')' Function = FunctionName '(' (Binops ',')* ')' Variable = ? described above ? Time = ? described above ? Interval = ? described above ? Number = ? described above ?
#### Map Lambda
The `map()` Lambda maps each element of the `timevector`. This Lambda must
return either a `DOUBLE PRECISION`, where only the values of each point in the
`timevector` is altered, or a `(TIMESTAMPTZ, DOUBLE PRECISION)`, where both the
times and values are changed. An example of the `map()` Lambda with a
`DOUBLE PRECISION` return:
sql SELECT ( toolkit_experimental.timevector(time, value) -> toolkit_experimental.map($$ $value + 1 $$) -> toolkit_experimental.unnest()).* FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-06 00:00:00+00 | 1 2021-01-01 00:00:00+00 | 26 2021-01-02 00:00:00+00 | 1.1 2021-01-04 00:00:00+00 | -9 2021-01-05 00:00:00+00 | 4.3 (5 rows)
An example of the `map()` Lambda with a `(TIMESTAMPTZ, DOUBLE PRECISION)`
return:
sql SELECT ( toolkit_experimental.timevector(time, value) -> toolkit_experimental.map($$ ($time + '1day'i, $value * 2) $$) -> toolkit_experimental.unnest()).* FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-07 00:00:00+00 | 0 2021-01-02 00:00:00+00 | 50 2021-01-03 00:00:00+00 | 0.2 2021-01-05 00:00:00+00 | -20 2021-01-06 00:00:00+00 | 6.6 (5 rows)
#### Filter Lambda
The `filter()` Lambda filters a `timevector` based on a Lambda expression that
returns `true` for every point that should stay in the `timevector` timeseries,
and `false` for every point that should be removed. For example:
sql SELECT ( toolkit_experimental.timevector(time, value) -> toolkit_experimental.filter($$ $time != '2021-01-01't AND $value > 0 $$) -> toolkit_experimental.unnest()).* FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
time | value
------------------------+------- 2021-01-02 00:00:00+00 | 0.1 2021-01-05 00:00:00+00 | 3.3 (2 rows)
## Finalizer elements
Finalizer elements complete the function pipeline, and output a value or an
aggregate.
### Output element
You can finalize a pipeline with a `timevector` output element. These are used
at the end of a pipeline to return a `timevector`. This can be useful if you
need to use them in another pipeline later on. The two types of output are:
* `unnest()`, which returns a set of `(TimestampTZ, DOUBLE PRECISION)` pairs.
* `materialize()`, which forces the pipeline to materialize a `timevector`.
This blocks any optimizations that lazily materialize a `timevector`.
### Aggregate output elements
These elements take a `timevector` and run the corresponding aggregate over it
to produce a result.. The possible elements are:
* `average()`
* `integral()`
* `counter_agg()`
* `hyperloglog()`
* `stats_agg()`
* `sum()`
* `num_vals()`
An example of an aggregate output using `num_vals()`:
sql SELECT toolkit_experimental.timevector(time, value) -> toolkit_experimental.num_vals() FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
5
(1 row)
An example of an aggregate output using `stats_agg()`:
sql SELECT
toolkit_experimental.timevector(time, value)
-> toolkit_experimental.stats_agg()
-> toolkit_experimental.stddev()
FROM (VALUES (TimestampTZ '2021-01-06 UTC', 0.0 ),
( '2021-01-01 UTC', 25.0 ),
( '2021-01-02 UTC', 0.10),
( '2021-01-04 UTC', -10.0 ),
( '2021-01-05 UTC', 3.3 )
) as v(time, value);
The output for this example:
sql
?column?
12.924666339987272 (1 row)
## Aggregate accessors and mutators
Aggregate accessors and mutators work in function pipelines in the same way as
they do in other aggregates. You can use them to get a value from the aggregate
part of a function pipeline. For example:
sql SELECT device_id, timevector(ts, val) -> sort() -> delta() -> stats_agg() -> variance() FROM measurements
When you use them in a pipeline instead of standard function accessors and
mutators, they can make the syntax clearer by getting rid of nested functions.
For example, the nested syntax looks like this:
sql SELECT approx_percentile(0.5, percentile_agg(val)) FROM measurements
Using a function pipeline with the `->` operator instead looks like this:
sql SELECT percentile_agg(val) -> approx_percentile(0.5) FROM measurements
### Counter aggregates
Counter aggregates handle resetting counters. Counters are a common type of
metric in application performance monitoring and metrics. All values have resets
accounted for. These elements must have a `CounterSummary` to their left when
used in a pipeline, from a `counter_agg()` aggregate or pipeline element. The
available counter aggregate functions are:
|Element|Description|
|-|-|
|`counter_zero_time()`|The time at which the counter value is predicted to have been zero based on the least squares fit of the points input to the `CounterSummary`(x intercept)|
|`corr()`|The correlation coefficient of the least squares fit line of the adjusted counter value|
|`delta()`|Computes the last - first value of the counter|
|`extrapolated_delta(method)`|Computes the delta extrapolated using the provided method to bounds of range. Bounds must have been provided in the aggregate or a `with_bounds` call.|
|`idelta_left()`/`idelta_right()`|Computes the instantaneous difference between the second and first points (left) or last and next-to-last points (right)|
|`intercept()`|The y-intercept of the least squares fit line of the adjusted counter value|
|`irate_left()`/`irate_right()`|Computes the instantaneous rate of change between the second and first points (left) or last and next-to-last points (right)|
|`num_changes()`|Number of times the counter changed values|
|`num_elements()`|Number of items - any with the exact same time have been counted only once|
|`num_changes()`|Number of times the counter reset|
|`slope()`|The slope of the least squares fit line of the adjusted counter value|
|`with_bounds(range)`|Applies bounds using the `range` (a `TSTZRANGE`) to the `CounterSummary` if they weren't provided in the aggregation step|
### Percentile approximation
Percentile approximation aggregate accessors are used to approximate
percentiles. Currently, only accessors are implemented for `percentile_agg` and
`uddsketch` based aggregates. We have not yet implemented the pipeline aggregate
for percentile approximation with `tdigest`.
|Element|Description|
|---|---|
|`approx_percentile(p)`| The approximate value at percentile `p` |
|`approx_percentile_rank(v)`|The approximate percentile a value `v` would fall in|
|`error()`|The maximum relative error guaranteed by the approximation|
|`mean()`| The exact average of the input values.|
|`num_vals()`| The number of input values|
### Statistical aggregates
Statistical aggregate accessors add support for common statistical aggregates.
These allow you to compute and `rollup()` common statistical aggregates like
`average` and `stddev`, more advanced aggregates like `skewness`, and
two-dimensional aggregates like `slope` and `covariance`. Because there are
both single-dimensional and two-dimensional versions of these, the accessors can
have multiple forms. For example, `average()` calculates the average on a
single-dimension aggregate, while `average_y()` and `average_x()` calculate the
average on each of two dimensions. The available statistical aggregates are:
|Element|Description|
|-|-|
|`average()/average_y()/average_x()`|The average of the values|
|`corr()`|The correlation coefficient of the least squares fit line|
|`covariance(method)`|The covariance of the values using either `population` or `sample` method|
| `determination_coeff()`|The determination coefficient (or R squared) of the values|
|`kurtosis(method)/kurtosis_y(method)/kurtosis_x(method)`|The kurtosis (fourth moment) of the values using either the `population` or `sample` method|
|`intercept()`|The intercept of the least squares fit line|
|`num_vals()`|The number of values seen|
|`skewness(method)/skewness_y(method)/skewness_x(method)`|The skewness (third moment) of the values using either the `population` or `sample` method|
|`slope()`|The slope of the least squares fit line|
|`stddev(method)/stddev_y(method)/stddev_x(method)`|The standard deviation of the values using either the `population` or `sample` method|
|`sum()`|The sum of the values|
|`variance(method)/variance_y(method)/variance_x(method)`|The variance of the values using either the `population` or `sample` method|
|`x_intercept()`|The x intercept of the least squares fit line|
### Time-weighted averages aggregates
The `average()` accessor can be called on the output of a `time_weight()`. For
example:
sql SELECT time_weight('Linear', ts, val) -> average() FROM measurements;
### Approximate count distinct aggregates
This is an approximation for distinct counts. The `distinct_count()` accessor
can be called on the output of a `hyperloglog()`. For example:
sql SELECT hyperloglog(device_id) -> distinct_count() FROM measurements;
## Formatting timevectors
You can turn a timevector into a formatted text representation. There are two
functions for turning a timevector to text:
* [`to_text`](#to-text), which allows you to specify the template
* [`to_plotly`](#to-plotly), which outputs a format suitable for use with the
[Plotly JSON chart schema][plotly]
### `to_text`
sql toolkit_experimental.to_text(
timevector(time, value),
format_string
)
This function produces a text representation, formatted according to the
`format_string`. The format string can use any valid Tera template
syntax, and it can include any of the built-in variables:
* `TIMES`: All the times in the timevector, as an array
* `VALUES`: All the values in the timevector, as an array
* `TIMEVALS`: All the time-value pairs in the timevector, formatted as
`{"time": $TIME, "val": $VAL}`, as an array
For example, given this table of data:
sql CREATE TABLE data(time TIMESTAMPTZ, value DOUBLE PRECISION);
INSERT INTO data VALUES
('2020-1-1', 30.0),
('2020-1-2', 45.0),
('2020-1-3', NULL),
('2020-1-4', 55.5),
('2020-1-5', 10.0);
You can use a format string with `TIMEVALS` to produce the following text:
sql SELECT toolkit_experimental.to_text(
timevector(time, value),
'{{TIMEVALS}}'
) FROM data;
txt [{\"time\": \"2020-01-01 00:00:00+00\", \"val\": 30}, {\"time\": \"2020-01-02 00:00:00+00\", \"val\": 45}, {\"time\": \"2020-01-03 00:00:00+00\", \"val\": null}, {\"time\": \"2020-01-04 00:00:00+00\", \"val\": 55.5}, {\"time\": \"2020-01-05 00:00:00+00\", \"val\": 10} ]
Or you can use a format string with `TIMES` and `VALUES` to produce the
following text:
sql SELECT toolkit_experimental.to_text(
timevector(time,value),
'{\"times\": {{ TIMES }}, \"vals\": {{ VALUES }}}'
) FROM data
txt {\"times\": [\"2020-01-01 00:00:00+00\",\"2020-01-02 00:00:00+00\",\"2020-01-03 00:00:00+00\",\"2020-01-04 00:00:00+00\",\"2020-01-05 00:00:00+00\"], \"vals\": [\"30\",\"45\",\"null\",\"55.5\",\"10\"]}
### `to_plotly`
This function produces a text representation, formatted for use with Plotly.
For example, given this table of data:
sql CREATE TABLE data(time TIMESTAMPTZ, value DOUBLE PRECISION);
INSERT INTO data VALUES
('2020-1-1', 30.0),
('2020-1-2', 45.0),
('2020-1-3', NULL),
('2020-1-4', 55.5),
('2020-1-5', 10.0);
You can produce the following Plotly-compatible text:
sql SELECT toolkit_experimental.to_plotly(
timevector(time, value)
) FROM data;
txt {\"times\": [\"2020-01-01 00:00:00+00\",\"2020-01-02 00:00:00+00\",\"2020-01-03 00:00:00+00\",\"2020-01-04 00:00:00+00\",\"2020-01-05 00:00:00+00\"], \"vals\": [\"30\",\"45\",\"null\",\"55.5\",\"10\"]}
## All function pipeline elements
This table lists all function pipeline elements in alphabetical order:
|Element|Category|Output|
|-|-|-|
|`abs()`|Unary Mathematical|`timevector` pipeline|
|`add(val DOUBLE PRECISION)`|Binary Mathematical|`timevector` pipeline|
|`average()`|Aggregate Finalizer|DOUBLE PRECISION|
|`cbrt()`|Unary Mathematical| `timevector` pipeline|
|`ceil()`|Unary Mathematical| `timevector` pipeline|
|`counter_agg()`|Aggregate Finalizer| `CounterAgg`|
|`delta()`|Compound|`timevector` pipeline|
|`div`|Binary Mathematical|`timevector` pipeline|
|`fill_to`|Compound|`timevector` pipeline|
|`filter`|Lambda|`timevector` pipeline|
|`floor`|Unary Mathematical|`timevector` pipeline|
|`hyperloglog`|Aggregate Finalizer|HyperLogLog|
|`ln`|Unary Mathematical|`timevector` pipeline|
|`log10`|Unary Mathematical|`timevector` pipeline|
|`logn`|Binary Mathematical|`timevector` pipeline|
|`lttb`|Compound|`timevector` pipeline|
|`map`|Lambda|`timevector` pipeline|
|`materialize`|Output|`timevector` pipeline|
|`mod`|Binary Mathematical|`timevector` pipeline|
|`mul`|Binary Mathematical|`timevector` pipeline|
|`num_vals`|Aggregate Finalizer|BIGINT|
|`power`|Binary Mathematical|`timevector` pipeline|
|`round`|Unary Mathematical|`timevector` pipeline|
|`sign`|Unary Mathematical|`timevector` pipeline|
|`sort`|Compound|`timevector` pipeline|
|`sqrt`|Unary Mathematical|`timevector` pipeline|
|`stats_agg`|Aggregate Finalizer|StatsSummary1D|
|`sub`|Binary Mathematical|`timevector` pipeline|
|`sum`|Aggregate Finalizer|`timevector` pipeline|
|`trunc`|Unary Mathematical|`timevector` pipeline|
|`unnest`|Output|`TABLE (time TIMESTAMPTZ, value DOUBLE PRECISION)`|
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/time-weighted-averages/ =====
# Time-weighted averages and integrals
Time weighted averages and integrals are used in cases where a time series is
not evenly sampled. Time series data points are often evenly spaced, for
example every 30 seconds, or every hour. But sometimes data points are recorded
irregularly, for example if a value has a large change, or changes quickly.
Computing an average using data that is not evenly sampled is not always useful.
For example, if you have a lot of ice cream in freezers, you need to make sure
the ice cream stays within a 0-10℉ (-20 to -12℃) temperature range. The
temperature in the freezer can vary if folks are opening and closing the door,
but the ice cream only has a problem if the temperature is out of range
for a long time. You can set your sensors in the freezer to sample every five
minutes while the temperature is in range, and every 30 seconds while the
temperature is out of range. If the results are generally stable, but with some
quick moving transients, an average of all the data points weights the transient
values too highly. A time weighted average weights each value by the duration
over which it occurred based on the points around it, producing much more
accurate results.
Time weighted integrals are useful when you need a time-weighted sum of
irregularly sampled data. For example, if you bill your users based on
irregularly sampled CPU usage, you need to find the total area under the graph
of their CPU usage. You can use a time-weighted integral to find the total
CPU-hours used by a user over a given time period.
* For more information about how time-weighted averages work, read our
[time-weighted averages blog][blog-timeweight].
* For more information about time-weighted average API calls, see the
[hyperfunction API documentation][hyperfunctions-api-timeweight].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/about-hyperfunctions/ =====
# About TimescaleDB hyperfunctions
TimescaleDB hyperfunctions are a specialized set of functions that power real-time analytics on time series and events.
IoT devices, IT systems, marketing analytics, user behavior, financial metrics, cryptocurrency - these are only a few examples of domains where
hyperfunctions can make a huge difference. Hyperfunctions provide you with meaningful, actionable insights in real time.
Tiger Cloud includes all hyperfunctions by default, while self-hosted TimescaleDB includes a subset of them. For
additional hyperfunctions, install the [TimescaleDB Toolkit][install-toolkit] Postgres extension.
## Available hyperfunctions
Here is a list of all the hyperfunctions provided by TimescaleDB. Hyperfunctions
with a tick in the `Toolkit` column require an installation of TimescaleDB Toolkit for self-hosted deployments. Hyperfunctions
with a tick in the `Experimental` column are still under development.
Experimental features could have bugs. They might not be backwards compatible,
and could be removed in future releases. Use these features at your own risk, and
do not use any experimental features in production.
When you upgrade the `timescaledb` extension, the experimental schema is removed
by default. To use experimental features after an upgrade, you need to add the
experimental schema again.
<HyperfunctionTable
includeExperimental
/>
For more information about each of the API calls listed in this table, see the
[hyperfunction API documentation][api-hyperfunctions].
## Function pipelines
Function pipelines are an experimental feature, designed to radically improve
the developer ergonomics of analyzing data in Postgres and SQL, by applying
principles from functional programming and popular tools like Python's Pandas,
and PromQL.
SQL is the best language for data analysis, but it is not perfect, and at times
can get quite unwieldy. For example, this query gets data from the last day from
the measurements table, sorts the data by the time column, calculates the delta
between the values, takes the absolute value of the delta, and then takes the
sum of the result of the previous steps:
SQL SELECT device id, sum(abs_delta) as volatility FROM ( SELECT device_id, abs(val - lag(val) OVER last_day) as abs_delta FROM measurements WHERE ts >= now()-'1 day'::interval) calc_delta GROUP BY device_id;
You can express the same query with a function pipeline like this:
SQL SELECT device_id, timevector(ts, val) -> sort() -> delta() -> abs() -> sum() as volatility FROM measurements WHERE ts >= now()-'1 day'::interval GROUP BY device_id;
Function pipelines are completely SQL compliant, meaning that any tool that
speaks SQL is able to support data analysis using function pipelines.
For more information about how function pipelines work, read our
[blog post][blog-function-pipelines].
## Toolkit feature development
TimescaleDB Toolkit features are developed in the open. As features are developed
they are categorized as experimental, beta, stable, or deprecated. This
documentation covers the stable features, but more information on our
experimental features in development can be found in the
[Toolkit repository][gh-docs].
## Contribute to TimescaleDB Toolkit
We want and need your feedback! What are the frustrating parts of analyzing
time-series data? What takes far more code than you feel it should? What runs
slowly, or only runs quickly after many rewrites? We want to solve
community-wide problems and incorporate as much feedback as possible.
* Join the [discussion][gh-discussions].
* Check out the [proposed features][gh-proposed].
* Explore the current [feature requests][gh-requests].
* Add your own [feature request][gh-newissue].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/approx-count-distincts/ =====
# Approximate count distincts
Approximate count distincts are typically used to find the number of unique
values, or cardinality, in a large dataset. When you calculate cardinality in a
dataset, the time it takes to process the query is proportional to how large the
dataset is. So if you wanted to find the cardinality of a dataset that contained
only 20 entries, the calculation would be very fast. Finding the cardinality of
a dataset that contains 20 million entries, however, can take a significant
amount of time and compute resources. Approximate count distincts do not
calculate the exact cardinality of a dataset, but rather estimate the number of
unique values, to reduce memory consumption and improve compute time by avoiding
spilling the intermediate results to the secondary storage.
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/gapfilling-interpolation/ =====
# Gapfilling and interpolation
Most time-series data analysis techniques aggregate data into fixed time
intervals, which smooths the data and makes it easier to interpret and analyze.
When you write queries for data in this form, you need an efficient way to
aggregate raw observations, which are often noisy and irregular, in to fixed
time intervals. TimescaleDB does this using time bucketing, which gives a clear
picture of the important data trends using a concise, declarative SQL query.
Sorting data into time buckets works well in most cases, but problems can arise
if there are gaps in the data. This can happen if you have irregular sampling
intervals, or you have experienced an outage of some sort. You can use a
gapfilling function to create additional rows of data in any gaps, ensuring that
the returned rows are in chronological order, and contiguous.
* For more information about how gapfilling works, read our
[gapfilling blog][blog-gapfilling].
* For more information about gapfilling and interpolation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-gapfilling].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/approximate-percentile/ =====
# Approximate percentiles
TimescaleDB uses approximation algorithms to calculate a percentile without
requiring all of the data. This also makes them more compatible with continuous
aggregates.
By default, TimescaleDB Toolkit uses `uddsketch`, but you can also choose to use
`tdigest`. For more information about these algorithms, see the
[advanced aggregation methods][advanced-agg] documentation.
## Run an approximate percentage query
In this procedure, we use an example table called `response_times` that contains
information about how long a server takes to respond to API calls.
### Running an approximate percentage query
1. At the `psql` prompt, create a continuous aggregate that computes the
daily aggregates:
```sql
CREATE MATERIALIZED VIEW response_times_daily
WITH (timescaledb.continuous)
AS SELECT
time_bucket('1 day'::interval, ts) as bucket,
percentile_agg(response_time_ms)
FROM response_times
GROUP BY 1;
```
1. Re-aggregate the aggregate to get the last 30 days, and look for the
ninety-fifth percentile:
```sql
SELECT approx_percentile(0.95, percentile_agg) as threshold
FROM response_times_daily
WHERE bucket >= time_bucket('1 day'::interval, now() - '30 days'::interval);
```
1. You can also create an alert:
```sql
WITH t as (SELECT approx_percentile(0.95, percentile_agg(percentile_agg)) as threshold
FROM response_times_daily
WHERE bucket >= time_bucket('1 day'::interval, now() - '30 days'::interval))
SELECT count(*)
FROM response_times
WHERE ts > now()- '1 minute'::interval
AND response_time_ms > (SELECT threshold FROM t);
```
For more information about percentile approximation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-approx-percentile].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/index/ =====
# Hyperfunctions
Real-time analytics demands more than basic SQL functions, efficient computation becomes essential as datasets grow in size and complexity. That’s where TimescaleDB hyperfunctions come in: high-performance, SQL-native functions purpose-built for time-series analysis. They are designed to process, aggregate, and analyze large volumes of data with maximum efficiency while maintaining consistently high performance. With hyperfunctions, you can run sophisticated analytical queries and extract meaningful insights in real time.
Hyperfunctions introduce partial aggregation, letting TimescaleDB store intermediate states instead of raw data or final results. These partials can be merged later for rollups (consolidation), eliminating costly reprocessing and slashing compute overhead, especially when paired with continuous aggregates.
Take tracking p95 latency across thousands of app instances as an example:
- With standard SQL, every rollup requires rescanning and resorting massive datasets.
- With TimescaleDB, the `percentile_agg` hyperfunction stores a compact state per minute, which you simply merge to get hourly or daily percentiles—no full reprocess needed.

The result? Scalable, real-time percentile analytics that deliver fast, accurate insights across high-ingest, high-resolution data, while keeping resource use lean.
Tiger Cloud includes all hyperfunctions by default, while self-hosted TimescaleDB includes a subset of them. To include all hyperfunctions with TimescaleDB, install the [TimescaleDB Toolkit][install-toolkit] Postgres extension on your self-hosted Postgres deployment.
For more information, read the [hyperfunctions blog post][hyperfunctions-blog].
## Learn hyperfunction basics and install TimescaleDB Toolkit
* [Learn about hyperfunctions][about-hyperfunctions] to understand how they
work before using them.
* Install the [TimescaleDB Toolkit extension][install-toolkit] to access more
hyperfunctions on self-hosted TimescaleDB.
## Browse hyperfunctions and TimescaleDB Toolkit features by category
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/hyperloglog/ =====
# Hyperloglog
Hyperloglog is typically used to find the cardinality of very large datasets. If
you want to find the number of unique values, or cardinality, in a dataset, the
time it takes to process this query is proportional to how large the dataset is.
So if you wanted to find the cardinality of a dataset that contained only 20
entries, the calculation would be very fast. Finding the cardinality of a
dataset that contains 20 million entries, however, can take a significant amount
of time and compute resources.
Hyperloglog does not calculate the exact cardinality of a dataset, but rather
estimates the number of unique values. It does this by converting the original
data into a hash of random numbers that represents the cardinality of the
dataset. This is not a perfect calculation of the cardinality, but it is usually
within a margin of error of 2%.
The benefit of hyperloglog on time-series data is that it can continue to
calculate the approximate cardinality of a dataset as it changes over time. It
does this by adding an entry to the hyperloglog hash as new data is retrieved,
rather than recalculating the result for the entire dataset every time it is
needed. This makes it an ideal candidate for using with continuous aggregates.
For more information about approximate count distinct API calls, see the
[hyperfunction API documentation][hyperfunctions-api-approx-count-distincts].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/time-bucket-gapfill/ =====
# Time bucket gapfill
Sometimes data sorted into time buckets can have gaps. This can happen if you
have irregular sampling intervals, or you have experienced an outage of some
sort. If you have a time bucket that has no data at all, the average returned
from the time bucket is NULL, which could cause problems. You can use a
gapfilling function to create additional rows of data in any gaps, ensuring that
the returned rows are in chronological order, and contiguous. The time bucket
gapfill function creates a contiguous set of time buckets but does not fill the
rows with data. You can create data for the new rows using another function,
such as last observation carried forward (LOCF), or interpolation.
For more information about gapfilling and interpolation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-gapfilling].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/percentile-approx/ =====
# Percentile approximation
In general, percentiles are useful for understanding the distribution of data.
The fiftieth percentile is the point at which half of your data is greater and
half is lesser. The tenth percentile is the point at which 90% of the data is
greater, and 10% is lesser. The ninety-ninth percentile is the point at which 1%
is greater, and 99% is lesser.
The fiftieth percentile, or median, is often a more useful measure than the average,
especially when your data contains outliers. Outliers can dramatically change
the average, but do not affect the median as much. For example, if you have
three rooms in your house and two of them are 40℉ (4℃) and one is 130℉ (54℃),
the average room temperature is 70℉ (21℃), which doesn't tell you much. However,
the fiftieth percentile temperature is 40℉ (4℃), which tells you that at least half
your rooms are at refrigerator temperatures (also, you should probably get your
heating checked!)
Percentiles are sometimes avoided because calculating them requires more CPU and
memory than an average or other aggregate measures. This is because an exact
computation of the percentile needs the full dataset as an ordered list.
TimescaleDB uses approximation algorithms to calculate a percentile without
requiring all of the data. This also makes them more compatible with continuous
aggregates. By default, TimescaleDB uses `uddsketch`, but you can also choose to
use `tdigest`. For more information about these algorithms, see the
[advanced aggregation methods][advanced-agg] documentation.
Technically, a percentile divides a group into 100 equally sized pieces, while a
quantile divides a group into an arbitrary number of pieces. Because we don't
always use exactly 100 buckets, "quantile" is the more technically correct term
in this case. However, we use the word "percentile" because it's a more common
word for this type of function.
* For more information about how percentile approximation works, read our
[percentile approximation blog][blog-percentile-approx].
* For more information about percentile approximation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-approx-percentile].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/advanced-agg/ =====
# Percentile approximation advanced aggregation methods
TimescaleDB uses approximation algorithms to calculate a percentile without
requiring all of the data. This also makes them more compatible with continuous
aggregates. By default, TimescaleDB uses `uddsketch`, but you can also choose to
use `tdigest`. This section describes the different methods, and helps you to
decide which one you should use.
`uddsketch` is the default algorithm. It uses exponentially sized buckets to
guarantee the approximation falls within a known error range, relative to the
true discrete percentile. This algorithm offers the ability to tune the size and
maximum error target of the sketch.
`tdigest` buckets data more aggressively toward the center of the quantile
range, giving it greater accuracy at the tails of the range, around 0.001 or
0.995.
## Choose the right algorithm
Each algorithm has different features, which can make one better than another
depending on your use case. Here are some of the differences to consider when
choosing an algorithm:
Before you begin, it is important to understand that the formal definition for
a percentile is imprecise, and there are different methods for determining what
the true percentile actually is. In Postgres, given a target percentile `p`,
[`percentile_disc`][pg-percentile] returns the smallest element of a set, so
that `p` percent of the set is less than that element. However,
[`percentile_cont`][pg-percentile] returns an interpolated value between the two
nearest matches for `p`. In practice, the difference between these methods is
very small but, if it matters to your use case, keep in mind that `tdigest`
approximates the continuous percentile, while `uddsketch` provides an estimate
of the discrete value.
Think about the types of percentiles you're most interested in. `tdigest` is
optimized for more accurate estimates at the extremes, and less accurate
estimates near the median. If your workflow involves estimating ninety-ninth
percentiles, then choose `tdigest`. If you're more concerned about getting
highly accurate median estimates, choose `uddsketch`.
The algorithms differ in the way they estimate data. `uddsketch` has a stable
bucketing function, so it always returns the same percentile estimate for
the same underlying data, regardless of how it is ordered or re-aggregated. On
the other hand, `tdigest` builds up incremental buckets based on the average of
nearby points, which can result in some subtle differences in estimates based on
the same data unless the order and batching of the aggregation is strictly
controlled, which is sometimes difficult to do in Postgres. If stable
estimates are important to you, choose `uddsketch`.
Calculating precise error bars for `tdigest` can be difficult, especially when
merging multiple sub-digests into a larger one. This can occur through summary
aggregation, or parallelization of the normal point aggregate. If you need to
tightly characterize your errors, choose `uddsketch`. However, because
`uddsketch` uses exponential bucketing to provide a guaranteed relative error,
it can cause some wildly varying absolute errors if the dataset covers a large
range. For example, if the data is evenly distributed over the range `[1,100]`,
estimates at the high end of the percentile range have about 100 times the
absolute error of those at the low end of the range. This gets much more extreme
if the data range is `[0,100]`. If having a stable absolute error is important to
your use case, choose `tdigest`.
While both algorithms are likely to get smaller and faster with future
optimizations, `uddsketch` generally requires a smaller memory footprint than
`tdigest`, and a correspondingly smaller disk footprint for any continuous
aggregates. Regardless of the algorithm you choose, the best way to improve the
accuracy of your percentile estimates is to increase the number of buckets,
which is simpler to do with `uddsketch`. If your use case does not get a clear
benefit from using `tdigest`, the default `uddsketch` is your best choice.
For some more technical details and usage examples of the different algorithms,
see the developer documentation for [uddsketch][gh-uddsketch] and
[tdigest][gh-tdigest].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/locf/ =====
# Last observation carried forward
Last observation carried forward (LOCF) is a form of linear interpolation used
to fill gaps in your data. It takes the last known value and uses it as a
replacement for the missing data.
For more information about gapfilling and interpolation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-gapfilling].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/stats-aggs/ =====
# Statistical aggregation
To make common statistical aggregates easier to work with in window functions
and continuous aggregates, TimescaleDB provides common statistical aggregates in
a slightly different form than otherwise available in Postgres.
This example calculates the average, standard deviation, and kurtosis of
a value in the `measurements` table:
sql SELECT
time_bucket('10 min'::interval, ts),
average(stats_agg(val)),
stddev(stats_agg(val), 'pop'),
kurtosis(stats_agg(val), 'pop')
FROM measurements GROUP BY 1;
This uses a two-step aggregation process. The first step is an aggregation step (`stats_agg(val)`),
which creates a machine-readable form of the aggregate. The second step is an accessor.
The available accessors are `average`, `stddev`, and `kurtosis`. The accessors
run final calculations and output the calculated value in a human-readable way.
This makes it easier to construct your queries, because it distinguishes the
parameters, and makes it clear which aggregates are being re-aggregated or
rolled up. Additionally, because this query syntax is used in all TimescaleDB Toolkit queries, when you are used to it, you can use it to construct more and
more complicated queries.
A more complex example uses window functions to calculate tumbling window
statistical aggregates. The statistical aggregate is first calculated over each
minute in the subquery and then the `rolling` aggregate is used to re-aggregate
it over each 15 minute period preceding. The accessors remain the same as the
previous example:
sql SELECT
bucket,
average(rolling(stats_agg) OVER fifteen_min),
stddev(rolling(stats_agg) OVER fifteen_min, 'pop'),
kurtosis(rolling(stats_agg) OVER fifteen_min, 'pop')
FROM (SELECT
time_bucket('1 min'::interval, ts) AS bucket,
stats_agg(val)
FROM measurements
GROUP BY 1) AS stats
WINDOW fifteen_min as (ORDER BY bucket ASC RANGE '15 minutes' PRECEDING);
For some more technical details and usage examples of the two-step aggregation
method, see the [blog post on aggregates][blog-aggregates] or the
[developer documentation][gh-two-step-agg].
The `stats_agg` aggregate is available in two forms, a one-dimensional
aggregate shown earlier in this section, and a two-dimensional aggregate.
The two-dimensional aggregate takes in two variables `(Y, X)`, which are
dependent and independent variables respectively. The two-dimensional
aggregate performs all the same calculations on each individual variable
as performing separate one-dimensional aggregates would, and
additionally performs linear regression on the two variables. Accessors
for one-dimensional values append a `_y` or `_x` to the name. For
example:
sql SELECT
average_y(stats_agg(val2, val1)), -- equivalent to average(stats_agg(val2))
stddev_x(stats_agg(val2, val1)), -- equivalent to stddev(stats_agg(val1))
slope(stats_agg(val2, val1)) -- the slope of the least squares fit line of the values in val2 & val1
FROM measurements_multival;
For more information about statistical aggregation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-stats-agg].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/counter-aggregation/ =====
# Counter aggregation
When you are monitoring application performance, there are two main types of
metrics that you can collect: gauges, and counters. Gauges fluctuate up and
down, like temperature or speed, while counters always increase, like the total
number of miles travelled in a vehicle.
When you process counter data, it is usually assumed that if the value of the
counter goes down, the counter has been reset. For example, if you wanted to
count the total number of miles travelled in a vehicle, you would expect the
values to continuously increase: 1, 2, 3, 4, and so on. If the counter reset to
0, you would expect that this was a new trip, or an entirely new vehicle. This
can become a problem if you want to continue counting from where you left off,
rather than resetting to 0. A reset could occur if you have had a short server
outage, or any number of other reasons. To get around this, you can analyze
counter data by looking at the change over time, which accounts for resets.
Accounting for resets can be difficult to do in SQL, so TimescaleDB has developed
aggregate and accessor functions that handle calculations for counters in a more
practical way.
Counter aggregates can be used in continuous aggregates, even though they are
not parallelizable in Postgres. For more information, see the section on
parallelism and ordering.
For more information about counter aggregation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-counter-agg].
## Run a counter aggregate query using a delta function
In this procedure, we are using an example table called `example` that contains
counter data.
### Running a counter aggregate query using a delta function
1. Create a table called `example`:
```sql
CREATE TABLE example (
measure_id BIGINT,
ts TIMESTAMPTZ ,
val DOUBLE PRECISION,
PRIMARY KEY (measure_id, ts)
);
```
1. Create a counter aggregate and the delta accessor function. This gives you
the change in the counter's value over the time period, accounting for any
resets. This allows you to search for fifteen minute periods where the
counter increased by a larger or smaller amount:
```sql
SELECT measure_id,
delta(
counter_agg(ts, val)
)
FROM example
GROUP BY measure_id;
```
1. You can also use the `time_bucket` function to produce a series of deltas
over fifteen minute increments:
```sql
SELECT measure_id,
time_bucket('15 min'::interval, ts) as bucket,
delta(
counter_agg(ts, val)
)
FROM example
GROUP BY measure_id, time_bucket('15 min'::interval, ts);
```
## Run a counter aggregate query using an extrapolated delta function
If your series is less regular, the deltas are affected by the number of samples
in each fifteen minute period. You can improve this by using the
`extrapolated_delta` function. To do this, you need to provide bounds that
define where to extrapolate to. In this example, we use the `time_bucket_range`
function, which works in the same way as `time_bucket` but produces an open
ended range of all the times in the bucket. This example also uses a CTE to do
the counter aggregation, which makes it a little easier to understand what's
going on in each part.
### Running a counter aggregate query using an extrapolated delta function
1. Create a hypertable called `example`:
```sql
CREATE TABLE example (
measure_id BIGINT,
ts TIMESTAMPTZ ,
val DOUBLE PRECISION,
PRIMARY KEY (measure_id, ts)
) WITH (
tsdb.hypertable,
tsdb.partition_column='ts',
tsdb.chunk_interval='15 days'
);
```
If you are self-hosting TimescaleDB v2.19.3 and below, create a [Postgres relational table][pg-create-table],
then convert it using [create_hypertable][create_hypertable]. You then enable hypercore with a call
to [ALTER TABLE][alter_table_hypercore].
1. Create a counter aggregate and the extrapolated delta function:
```sql
with t as (
SELECT measure_id,
time_bucket('15 min'::interval, ts) as bucket,
counter_agg(ts, val, toolkit_experimental.time_bucket_range('15 min'::interval, ts))
FROM example
GROUP BY measure_id, time_bucket('15 min'::interval, ts))
SELECT time_bucket,
extrapolated_delta(counter_agg, method => 'prometheus')
FROM t ;
```
In this procedure, `Prometheus` is used to do the extrapolation. TimescaleDB's
current `extrapolation` function is built to mimic the Prometheus project's
`increase` function, which measures the change of a counter extrapolated to the
edges of the queried region.
## Run a counter aggregate query with a continuous aggregate
Your counter aggregate might be more useful if you make a continuous aggregate
out of it.
1. Create the continuous aggregate:
```sql
CREATE MATERIALIZED VIEW example_15
WITH (timescaledb.continuous)
AS SELECT measure_id,
time_bucket('15 min'::interval, ts) as bucket,
counter_agg(ts, val, time_bucket_range('15 min'::interval, ts))
FROM example
GROUP BY measure_id, time_bucket('15 min'::interval, ts);
```
1. You can also re-aggregate from the continuous aggregate into a larger
bucket size:
```sql
SELECT
measure_id,
time_bucket('1 day'::interval, bucket),
delta(
rollup(counter_agg)
)
FROM example_15
GROUP BY measure_id, time_bucket('1 day'::interval, bucket);
```
## Parallelism and ordering
The counter reset calculations require a strict ordering of inputs, which means
they are not parallelizable in Postgres. This is because Postgres handles
parallelism by issuing rows randomly to workers. However, if your parallelism
can guarantee sets of rows that are disjointed in time, the algorithm can be
parallelized, as long as it is within a time range, and all rows go to the same
worker. This is the case for both continuous aggregates and for distributed
hypertables, as long as the partitioning keys are in the `group by`, even though
the aggregate itself doesn't really make sense otherwise.
For more information about parallelism and ordering, see our
[developer documentation][gh-parallelism-ordering]
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/heartbeat-agg/ =====
# Heartbeat aggregation
Given a series of timestamped health checks, it can be tricky to determine the
overall health of a system over a given interval. Postgres provides window
functions that you use to get a sense of where unhealthy gaps are, but they can
be somewhat awkward to use efficiently.
This is one of the many cases where hyperfunctions provide an efficient, simple solution for
a frequently occurring problem. Heartbeat aggregation helps analyze event-based time-series data with intermittent or irregular signals.
This example uses the [SustData public dataset][sustdata]. This dataset tracks
the power usage of a small number of apartments and houses over four different
deployment intervals. The data is collected in one-minute samples from each
unit.
When you have loaded the data into hypertables, you can create a materialized
view containing weekly heartbeat aggregates for each of the units:
sql CREATE MATERIALIZED VIEW weekly_heartbeat AS SELECT
time_bucket('1 week', tmstp) as week,
iid as unit,
deploy,
heartbeat_agg(tmstp, time_bucket('1w', tmstp), '1w', '2m')
FROM power_samples GROUP BY 1,2,3;
The heartbeat aggregate takes four parameters: the timestamp column, the start
of the interval, the length of the interval, and how long the aggregate is
considered live after each timestamp. This example uses 2 minutes as the
heartbeat lifetime to give some tolerance for small gaps.
You can use this data to see when you're receiving data for a particular unit.
This example rolls up the weekly aggregates into a single aggregate, and then
views the live ranges:
sql SELECT live_ranges(rollup(heartbeat_agg)) FROM weekly_heartbeat WHERE unit = 17;
output
live_ranges
("2010-09-18 00:00:00+00","2011-03-27 01:01:50+00") ("2011-03-27 03:00:52+00","2011-07-03 00:01:00+00") ("2011-07-05 00:00:00+00","2011-08-21 00:01:00+00") ("2011-08-22 00:00:00+00","2011-08-25 00:01:00+00") ("2011-08-27 00:00:00+00","2011-09-06 00:01:00+00") ("2011-09-08 00:00:00+00","2011-09-29 00:01:00+00") ("2011-09-30 00:00:00+00","2011-10-04 00:01:00+00") ("2011-10-05 00:00:00+00","2011-10-17 00:01:00+00") ("2011-10-19 00:00:00+00","2011-11-09 00:01:00+00") ("2011-11-10 00:00:00+00","2011-11-14 00:01:00+00") ("2011-11-15 00:00:00+00","2011-11-18 00:01:00+00") ("2011-11-20 00:00:00+00","2011-11-23 00:01:00+00") ("2011-11-24 00:00:00+00","2011-12-01 00:01:00+00") ("2011-12-02 00:00:00+00","2011-12-12 00:01:00+00") ("2011-12-13 00:00:00+00","2012-01-12 00:01:00+00") ("2012-01-13 00:00:00+00","2012-02-03 00:01:00+00") ("2012-02-04 00:00:00+00","2012-02-10 00:01:00+00") ("2012-02-11 00:00:00+00","2012-03-25 01:01:50+00") ("2012-03-25 03:00:51+00","2012-04-11 00:01:00+00")
You can construct more elaborate queries. For example, to return the 5 units with the
lowest uptime during the third deployment:
sql SELECT unit, uptime(rollup(heartbeat_agg)) FROM weekly_heartbeat WHERE deploy = 3 GROUP BY unit ORDER BY uptime LIMIT 5;
output unit | uptime ------+------------------- 31 | 203 days 22:05:00 34 | 222 days 22:05:00 32 | 222 days 22:05:00 35 | 222 days 22:05:00 30 | 222 days 22:05:00
Combine aggregates from different units to get the combined
coverage. This example queries the interval where any part of a deployment was
active:
sql SELECT deploy, live_ranges(rollup(heartbeat_agg)) FROM weekly_heartbeat group by deploy order by deploy;
output deploy | live_ranges --------+-----------------------------------------------------
1 | ("2010-07-29 00:00:00+00","2010-11-26 00:01:00+00")
2 | ("2010-11-25 00:00:00+00","2011-03-27 01:01:59+00")
2 | ("2011-03-27 03:00:00+00","2012-03-25 01:01:59+00")
2 | ("2012-03-25 03:00:26+00","2012-04-17 00:01:00+00")
2 | ("2012-04-20 00:00:00+00","2012-04-21 00:01:00+00")
2 | ("2012-05-11 00:00:00+00","2012-05-13 00:01:00+00")
2 | ("2013-02-20 00:00:00+00","2013-02-21 00:01:00+00")
3 | ("2012-08-01 00:00:01+00","2013-03-31 01:01:16+00")
3 | ("2013-03-31 03:00:03+00","2013-05-22 00:01:00+00")
4 | ("2013-07-31 00:00:00+00","2014-03-30 01:01:49+00")
4 | ("2014-03-30 03:00:01+00","2014-04-25 00:01:00+00")
Then use this data to make observations and draw conclusions:
- The second deployment had a lot more problems than the other ones.
- There were some readings from February 2013 that were incorrectly categorized as
a second deployment.
- The timestamps are given in a local time without time zone, resulting in some missing hours around springtime
daylight savings time changes.
For more information about heartbeat aggregation API calls, see the
[hyperfunction API documentation][hyperfunctions-api-heartbeat-agg].
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/troubleshoot-hyperfunctions/ =====
# Troubleshooting hyperfunctions and TimescaleDB Toolkit
This section contains some ideas for troubleshooting common problems experienced
with hyperfunctions and Toolkit.
<!---
* Keep this section in alphabetical order
* Use this format for writing troubleshooting sections:
- Cause: What causes the problem?
- Consequence: What does the user see when they hit this problem?
- Fix/Workaround: What can the user do to fix or work around the problem? Provide a "Resolving" Procedure if required.
- Result: When the user applies the fix, what is the result when the same action is applied?
* Copy this comment at the top of every troubleshooting page
-->
## Updating the Toolkit extension fails with an error saying `no update path`
In some cases, when you create the extension, or use the `ALTER EXTENSION timescaledb_toolkit UPDATE` command to
update the Toolkit extension, it might fail with an error like this:
sql ERROR: extension "timescaledb_toolkit" has no update path from version "1.2" to version "1.3"
This occurs if the list of available extensions does not include the version you
are trying to upgrade to, and it can occur if the package was not installed
correctly in the first place. To correct the problem, install the upgrade
package, restart Postgres, verify the version, and then attempt the update
again.
#### Troubleshooting Toolkit setup
1. If you're installing Toolkit from a package, check your package manager's
local repository list. Make sure the TimescaleDB repository is available and
contains Toolkit. For instructions on adding the TimescaleDB repository, see
the installation guides:
* [Debian/Ubuntu installation guide][deb-install]
* [RHEL/CentOS installation guide][rhel-install]
1. Update your local repository list with `apt update` or `yum update`.
1. Restart your Postgres service.
1. Check that the right version of Toolkit is among your available extensions:
```sql
SELECT * FROM pg_available_extensions
WHERE name = 'timescaledb_toolkit';
```
The result should look like this:
```
-[ RECORD 1 ]-----+--------------------------------------------------------------------------------------
name | timescaledb_toolkit
default_version | 1.6.0
installed_version | 1.6.0
comment | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities
```
1. Retry `CREATE EXTENSION` or `ALTER EXTENSION`.
===== PAGE: https://docs.tigerdata.com/use-timescale/hyperfunctions/time-weighted-average/ =====
# Time-weighted average
Time weighted average in TimescaleDB is implemented as an aggregate that
weights each value using last observation carried forward (LOCF), or linear
interpolation. The aggregate is not parallelizable, but it is supported with
[continuous aggregation][caggs].
## Run a time-weighted average query
In this procedure, we are using an example table called `freezer_temps` that
contains data about internal freezer temperatures.
### Running a time-weighted average query
1. At the `psql`prompt, find the average and the time-weighted average of
the data:
```sql
SELECT freezer_id,
avg(temperature),
average(time_weight('Linear', ts, temperature)) as time_weighted_average
FROM freezer_temps
GROUP BY freezer_id;
```
1. To determine if the freezer has been out of temperature range for more
than 15 minutes at a time, use a time-weighted average in a window function:
```sql
SELECT *,
average(
time_weight('Linear', ts, temperature) OVER (PARTITION BY freezer_id ORDER BY ts RANGE '15 minutes'::interval PRECEDING )
) as rolling_twa
FROM freezer_temps
ORDER BY freezer_id, ts;
```
For more information about time-weighted average API calls, see the
[hyperfunction API documentation][hyperfunctions-api-timeweight].
===== PAGE: https://docs.tigerdata.com/use-timescale/services/service-management/ =====
# Service management
In the `Service management` section of the `Operations` dashboard, you can fork
your service, reset the password, pause, or delete the service.
## Fork a service
When you a fork a service, you create its exact copy including
the underlying database. This allows you to create a copy that you can use for
testing purposes, or to prepare for a major version upgrade. The only difference
between the original and the forked service is that the `tsdbadmin` user has a
different password.
The fork is created by restoring from backup and applying the write-ahead log.
The data is fetched from Amazon S3, so forking doesn't tax the running instance.
You can fork services that have a status of `Running` or `Paused`. You cannot
fork services while they have a status of `In progress`. Wait for the service to
complete the transition before you start forking.
Forks only have data up to the point when the original service was forked. Any
data written to the original service after the time of forking does not appear
in the fork. If you want the fork to assume operations from the original
service, pause your main service before forking to avoid any
data discrepancy between services.
1. In Tiger Cloud Console, from the `Services` list, ensure the service
you want to form has a status of `Running` or `Paused`, then click the name
of the service you want to fork.
1. Navigate to the `Operations` tab.
1. In the `Service management` section, click `Fork service`. In the dialog,
confirm by clicking `Fork service`. The forked service takes a few minutes
to start.
1. [](#)To change the configuration of your fork, click
`Advanced options`. You can set different compute and storage options,
separate from your original service.
1. Confirm by clicking `Fork service`. The forked service takes a few minutes
to start.
1. The forked service shows in the `Services` dashboard with a label stating
which service it has been forked from.
<img
class="main-content__illustration"
width={1375} height={944}
src="https://assets.timescale.com/docs/images/tsc-forked-service.webp"
alt="Fork a Tiger Cloud service"
/>
## Create a service fork using the CLI
To manage development forks:
1. **Install Tiger CLI**
Use the terminal to install the CLI:
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.deb.sh | sudo os=any dist=any bash
sudo apt-get install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
curl -s https://packagecloud.io/install/repositories/timescale/tiger-cli/script.rpm.sh | sudo os=rpm_any dist=rpm_any bash
sudo yum install tiger-cli
```
```shell
brew install --cask timescale/tap/tiger-cli
```
```shell
curl -fsSL https://cli.tigerdata.com | sh
```
1. **Set up API credentials**
1. Log Tiger CLI into your Tiger Data account:
```shell
tiger auth login
```
Tiger CLI opens Console in your browser. Log in, then click `Authorize`.
You can have a maximum of 10 active client credentials. If you get an error, open [credentials][rest-api-credentials]
and delete an unused credential.
1. Select a Tiger Cloud project:
```terminaloutput
Auth URL is: https://console.cloud.timescale.com/oauth/authorize?client_id=lotsOfURLstuff
Opening browser for authentication...
Select a project:
> 1. Tiger Project (tgrproject)
2. YourCompany (Company wide project) (cpnproject)
3. YourCompany Department (dptproject)
Use ↑/↓ arrows or number keys to navigate, enter to select, q to quit
```
If only one project is associated with your account, this step is not shown.
Where possible, Tiger CLI stores your authentication information in the system keychain/credential manager.
If that fails, the credentials are stored in `~/.config/tiger/credentials` with restricted file permissions (600).
By default, Tiger CLI stores your configuration in `~/.config/tiger/config.yaml`.
1. **Test your authenticated connection to Tiger Cloud by listing services**
```bash
tiger service list
```
This call returns something like:
- No services:
```terminaloutput
🏜️ No services found! Your project is looking a bit empty.
🚀 Ready to get started? Create your first service with: tiger service create
```
- One or more services:
```terminaloutput
┌────────────┬─────────────────────┬────────┬─────────────┬──────────────┬──────────────────┐
│ SERVICE ID │ NAME │ STATUS │ TYPE │ REGION │ CREATED │
├────────────┼─────────────────────┼────────┼─────────────┼──────────────┼──────────────────┤
│ tgrservice │ tiger-agent-service │ READY │ TIMESCALEDB │ eu-central-1 │ 2025-09-25 16:09 │
└────────────┴─────────────────────┴────────┴─────────────┴──────────────┴──────────────────┘
```
1. **Fork the service**
shell
tiger service fork tgrservice --now --no-wait --name bob
By default a fork matches the resource of the parent Tiger Cloud services. For paid plans specify `--cpu` and/or `--memory` for dedicated resources.
You see something like:
```terminaloutput
🍴 Forking service 'tgrservice' to create 'bob' at current state...
✅ Fork request accepted!
📋 New Service ID: <service_id>
🔐 Password saved to system keyring for automatic authentication
🎯 Set service '<service_id>' as default service.
⏳ Service is being forked. Use 'tiger service list' to check status.
┌───────────────────┬──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ PROPERTY │ VALUE │
├───────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────┤
│ Service ID │ <service_id> │
│ Name │ bob │
│ Status │ │
│ Type │ TIMESCALEDB │
│ Region │ eu-central-1 │
│ CPU │ 0.5 cores (500m) │
│ Memory │ 2 GB │
│ Direct Endpoint │ <service-id>.<project-id>.tsdb.cloud.timescale.com:<port> │
│ Created │ 2025-10-08 13:58:07 UTC │
│ Connection String │ postgresql://tsdbadmin@<service-id>.<project-id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require │
└───────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────┘
When you are done, delete your forked service
Use the CLI to request service delete:
tiger service delete <service_id>
Validate the service delete:
Are you sure you want to delete service '<service_id>'? This operation cannot be undone.
Type the service ID '<service_id>' to confirm:
<service_id>
You see something like:
```terminaloutput
🗑️ Delete request accepted for service '<service_id>'.
✅ Service '<service_id>' has been successfully deleted.
```
You can reset your service password from the Operations dashboard. This is the
password you use to connect to your service, not the password for Tiger Cloud Console. To reset your Console password, navigate to the Account page.
When you reset your service password, you are prompted for your Console password. When you have authenticated, you can create a new service password, ask Console to auto-generate a password, or switch your authentication type between SCRAM and MD5.
SCRAM (salted challenge response authentication mechanism) and MD5 (message digest algorithm 5) are cryptographic authentication mechanisms. Tiger Cloud Console uses SCRAM by default. It is more secure and strongly recommended. The MD5 option is provided for compatibility with older clients.
You can pause a service if you want to stop it running temporarily. When you pause a service, you are no longer billed for compute resources. However, you do need to continue paying for any storage you are using. Pausing a service ensures that it is still available, and is ready to be restarted at any time.
You can delete a service to remove it completely. This removes the service and its underlying data from the server. You cannot recover a deleted service.
===== PAGE: https://docs.tigerdata.com/use-timescale/services/connection-pooling/ =====
You can scale your Tiger Cloud service connections and improve its performance by
using connection poolers. Tiger Cloud uses pgBouncer for connection pooling.
If your service needs a large number of short-lived connections, a connection pooler is a great way to improve performance. For example, web, serverless, and IoT applications often use an event-based architecture where data is read or written from the database for a very short amount of time.
Your application rapidly opens and closes connections while the pooler maintains a set of long-running connections to the service. This improves performance because the pooler opens the connections in advance, allowing the application to open many short-lived connections, while the service opens few, long-lived connections.
By default, the poolers have authentication to the service, so you can use any
custom users you already have set up without further configuration. You can
continue using the tsdbadmin user if that is your preferred method. However,
you might need to add custom configurations for some cases such as
statement_timeout for a pooler user.
Connect to your service as the tsdbadmin user, and create a new role named
<MY_APP> with the password as <PASSWORD>:
CREATE ROLE <MY_APP> LOGIN PASSWORD '<PASSWORD>';
Change the statement_timeout settings to 2 seconds for this user:
ALTER ROLE my_app SET statement_timeout TO '2s';
In a new terminal window, connect on the pooler with the new user <MY_APP>:
❯ PGPASSWORD=<NEW_PASSWORD> psql 'postgres://my_app@service.project.tsdb.cloud.timescale.com:30477/tsdb?sslmode=require'
The output looks something like this:
Check that the settings are correct by logging in as the <MY_APP> user:
SELECT current_user;
┌──────────────┐
│ current_user │
├──────────────┤
│ my_app │
└──────────────┘
(1 row)
Check the statement_timeout setting is correct for the <MY_APP> user:
tsdb=> show statement_timeout;
┌───────────────────┐
│ statement_timeout │
├───────────────────┤
│ 2s │
└───────────────────┘
(1 row)
When you create a connection pooler, there are two pool types to choose from: session or transaction. Each pool type uses a different mode to handle connections.
Session pools allocate a connection from the pool until they are closed by the application, similar to a regular Postgres connection. When the application closes the connection, it is sent back to the pool.
Transaction pool connections are allocated only for the duration of the transaction, releasing the connection back to the pool when the transaction ends. If your application opens and closes connections frequently, choose the transaction pool type.
By default, the pooler supports both modes simultaneously. However, the connection string you use to connect your application is different, depending on whether you want a session or transaction pool type. When you create a connection pool in the Tiger Cloud Console, you are given the correct connection string for the mode you choose.
For example, a connection string to connect directly to your service looks a bit like this:
:@service.example.cloud.timescale.com:30133/tsdb?sslmode=require `} />
A session pool connection string is the same, but uses a different port number, like this:
:@service.example.cloud.timescale.com:29303/tsdb?sslmode=require `} />
The transaction pool connection string uses the same port number as a session pool connection, but uses a different database name, like this:
:@service.example.cloud.timescale.com:29303/tsdb_transaction?sslmode=require `} />
Make sure you check the Tiger Cloud Console output for the correct connection string to use in your application.
A connection pooler manages connections to both the service itself, and the client application. It keeps a fixed number of connections open with the service, while allowing clients to open and close connections. Clients can request a connection from the session pool or the transaction pool. The connection pooler will then allocate the connection if there is one free.
The number of client connections allowed to each pool is proportional to the
max_connections parameter set for the service. The session pool can have a
maximum of max_connections - 17 client connections, while the transaction
pool can have a maximum of (max_connections - 17) * 20 client connections.
Of the 17 reserved connections that are not allocated to either pool, 12 are reserved for the database superuser by default, and another 5 for Tiger Cloud operations.
For example, if max_connections is set to 500, the maximum number of client
connections for your session pool is 483 (500 - 17) and 9,660 (483 * 20) for
your transaction pool. The default value of max_connections varies depending
on your service's compute size.
When you create a new service, you can also create a connection pooler. Alternatively, you can add a connection pooler to an existing service in Console.
In Operations, click Connection pooling > Add pooler.
Your pooler connection details are displayed
in the Connection pooling tab. Use this information to connect to your transaction or session
pooler. For more information about the
different pool types, see the pool types
section.
If you no longer need a connection pooler, you can remove it in Console. When you have removed your connection pooler, make sure that you also update your application to adjust the port it uses to connect to your service.
Operations, then Connection pooling.Remove connection pooler.Confirm that you want to remove the connection pooler.
After you have removed a pooler, if you add it back in the future, it uses the same connection string and port that was used before.
pgbouncer database: \c pgbouncerSHOW STATS;).VPCs are supported with connection pooling. It does not matter the order you add the pooler or connect to a VPC. Your connection strings will automatically be updated to use the VPC connection string.
===== PAGE: https://docs.tigerdata.com/use-timescale/services/service-explorer/ =====
Service explorer in Tiger Cloud Console provides a rich administrative dashboard for understanding the state of your database instance. The explorer gives you insight into the performance of your database, giving you greater confidence and control over your data.
The explorer works like an operations center as you develop and run your applications with Tiger Cloud. It gives you quick access to the key properties of your database, like table sizes, schema definitions, and foreign key references, as well as information specific to Tiger Cloud, like information on your hypertables and continuous aggregates.
To see the explorer, select your service in Console and click Explorer.
In the General information section, you can see a high-level
summary of your service, including all your hypertables and
relational tables. It summarizes your overall compression ratios, and other
policy and continuous aggregate data. And, if you aren't already using key features like continuous aggregates, columnstore compression, or other automation policies and actions, it provides pointers to tutorials and documentation to help you get started.
You can have a detailed look into all your tables, including information about table schemas, table indexes, and foreign keys. For your hypertables, it shows details about chunks, continuous aggregates, and policies such as data retention policies and data reordering. You can also inspect individual hypertables, including their sizes, dimension ranges, and columnstore compression status.
From this section, you can also set an automated policy to compress chunks into the columnstore. For more information, see the hypercore documentation.
For more information about hypertables, see the hypertables section.
In the Continuous aggregate section, you can see all your continuous
aggregates, including top-level information such as their size, whether they are
configured for real-time aggregation, and their refresh periods.
For more information about continuous aggregates, see the continuous aggregates section.
===== PAGE: https://docs.tigerdata.com/use-timescale/services/service-overview/ =====
You manage your Tiger Cloud services and interact with your data in Tiger Cloud Console using the following modes:
When you log into Tiger Cloud Console, you see the
project overview. Click a service to view run-time data and connection information.
Click Operations to configure your service.
Each service hosts a single database managed for you by Tiger Cloud. If you need more than one database, create a new service.
By default, when you create a new service, a new tsdbadmin user is created.
This is the user that you use to connect to your new service.
The tsdbadmin user is the owner of the database, but is not a superuser. You
cannot access the postgres user. There is no superuser access to Tiger Cloud databases.
In your service, the tsdbadmin user can create another user
with any other role. For a complete list of roles available, see the
Postgres role attributes documentation.
You cannot create multiple databases in a single service. If you need data isolation, use schemas or create additional services.
===== PAGE: https://docs.tigerdata.com/use-timescale/services/change-resources/ =====
Tiger Cloud charges are based on the amount of storage you use. You don't pay for fixed storage size, and you don't need to worry about scaling disk size as your data grows—we handle it all for you. To reduce your data costs further, combine hypercore, a data retention policy, and tiered storage.
You use Tiger Cloud Console to resize the compute (CPU/RAM) resources available to your Tiger Cloud services at any time, with a short downtime.
You can change the CPU and memory allocation for your service at any time with minimal downtime, usually less than a minute. The new resources become available as soon as the service restarts. You can change the CPU and memory allocation up or down, as frequently as required.
Note that:
There is momentary downtime while the new compute settings are applied. In most cases, this is less than a minute. However, before making changes to your service, best practice is to enable HA replication on the service. When you resize a service with HA enabled, Tiger Cloud:
HA reduce downtime in the case of resizes or maintenance window restarts, from a minute or so to a couple of seconds.
When you change resource settings, the current and new charges are displayed immediately so that you can verify how the changes impact your costs.
Because compute changes require an interruption to your services, plan accordingly so that the settings are applied during an appropriate service window.
Operations > Compute and storage.CPU / Memory allocation.
You see the allocation and costs in the comparison chartApply.
Your service goes down briefly while the changes are applied.If you run intensive queries on your services, you might encounter out of memory (OOM) errors. This occurs if your query consumes more memory than is available.
When this happens, an OOM killer process shuts down Postgres processes using
SIGKILL commands until the memory usage falls below the upper limit. Because
this kills the entire server process, it usually requires a restart.
To prevent service disruption caused by OOM errors, Tiger Cloud attempts to shut down only the query that caused the problem. This means that the problematic query does not run, but that your service continues to operate normally.
If the normal OOM killer is triggered, the error log looks like this:
2021-09-09 18:15:08 UTC [560567]:TimescaleDB: LOG: server process (PID 2351983) was terminated by signal 9: Killed
Wait for the service to come back online before reconnecting.
If Tiger Cloud successfully guards the service against the OOM killer, it shuts down only the client connection that was using too much memory. This prevents the entire service from shutting down, so you can reconnect immediately. The error log looks like this:
2022-02-03 17:12:04 UTC [2253150]:TimescaleDB: tsdbadmin@tsdb,app=psql [53200] ERROR: out of memory
===== PAGE: https://docs.tigerdata.com/use-timescale/time-buckets/use-time-buckets/ =====
The time_bucket function helps you group in a hypertable so you can
perform aggregate calculations over arbitrary time intervals. It is usually used
in combination with GROUP BY for this purpose.
This section shows examples of time_bucket use. To learn how time buckets
work, see the about time buckets section.
Group data into time buckets and calculate a summary value for a column. For
example, calculate the average daily temperature in a table named
weather_conditions. The table has a time column named time and a
temperature column:
SELECT time_bucket('1 day', time) AS bucket,
avg(temperature) AS avg_temp
FROM weather_conditions
GROUP BY bucket
ORDER BY bucket ASC;
The time_bucket function returns the start time of the bucket. In this
example, the first bucket starts at midnight on November 15, 2016, and
aggregates all the data from that day:
bucket | avg_temp
-----------------------+---------------------
2016-11-15 00:00:00+00 | 68.3704391666665821
2016-11-16 00:00:00+00 | 67.0816684374999347
By default, the time_bucket column shows the start time of the bucket. If you
prefer to show the end time, you can shift the displayed time using a
mathematical operation on time.
For example, you can calculate the minimum and maximum CPU usage for 5-minute
intervals, and show the end of time of the interval. The example table is named
metrics. It has a time column named time and a CPU usage column named cpu:
SELECT time_bucket('5 min', time) + '5 min' AS bucket,
min(cpu),
max(cpu)
FROM metrics
GROUP BY bucket
ORDER BY bucket DESC;
The addition of + '5 min' changes the displayed timestamp to the end of the
bucket. It doesn't change the range of times spanned by the bucket.
To change the time range spanned by the buckets, use the offset parameter,
which takes an INTERVAL argument. A positive offset shifts the start and end
time of the buckets later. A negative offset shifts the start and end time of
the buckets earlier.
For example, you can calculate the average CPU usage for 5-hour intervals, and shift the start and end times of all buckets 1 hour later:
SELECT time_bucket('5 hours', time, '1 hour'::INTERVAL) AS bucket,
avg(cpu)
FROM metrics
GROUP BY bucket
ORDER BY bucket DESC;
Time buckets are usually used together with GROUP BY to aggregate data. But
you can also run time_bucket on a single time value. This is useful for
testing and learning, because you can see what bucket a value falls into.
For example, to see the 1-week time bucket into which January 5, 2021 would fall, run:
SELECT time_bucket(INTERVAL '1 week', TIMESTAMP '2021-01-05');
The function returns 2021-01-04 00:00:00. The start time of the time bucket is
the Monday of that week, at midnight.
===== PAGE: https://docs.tigerdata.com/use-timescale/time-buckets/about-time-buckets/ =====
Time bucketing is essential for real-time analytics. The time_bucket function enables you to aggregate data in a hypertable into buckets of time. For example, 5 minutes, 1 hour, or 3 days.
It's similar to Postgres's date_bin function, but it gives you more
flexibility in the bucket size and start time.
You can use it to roll up data for analysis or downsampling. For example, you can calculate 5-minute averages for a sensor reading over the last day. You can perform these rollups as needed, or pre-calculate them in continuous aggregates.
This section explains how time bucketing works. For examples of the
time_bucket function, see the section on
Aggregate time-series data with time_bucket.
Time bucketing groups data into time intervals. With time_bucket, the interval
length can be any number of microseconds, milliseconds, seconds, minutes, hours,
days, weeks, months, years, or centuries.
The time_bucket function is usually used in combination with GROUP BY to
aggregate data. For example, you can calculate the average, maximum, minimum, or
sum of values within a bucket.

The origin determines when time buckets start and end. By default, a time bucket
doesn't start at the earliest timestamp in your data. There is often a more
logical time. For example, you might collect your first data point at 00:37,
but you probably want your daily buckets to start at midnight. Similarly, you
might collect your first data point on a Wednesday, but you might want your
weekly buckets calculated from Sunday or Monday.
Instead, time is divided into buckets based on intervals from the origin. The
following diagram shows how, using the example of 2-week buckets. The first
possible start date for a bucket is origin. The next possible start date for a
bucket is origin + bucket interval. If your first timestamp does not fall
exactly on a possible start date, the immediately preceding start date is used
for the beginning of the bucket.

For example, say that your data's earliest timestamp is April 24, 2020. If you bucket by an interval of two weeks, the first bucket doesn't start on April 24, which is a Friday. It also doesn't start on April 20, which is the immediately preceding Monday. It starts on April 13, because you can get to April 13, 2020, by counting in two-week increments from January 3, 2000, which is the default origin in this case.
For intervals that don't include months or years, the default origin is January 3, 2000. For month, year, or century intervals, the default origin is January 1,
These choices make the time ranges of time buckets more intuitive. Because January 3, 2000, is a Monday, weekly time buckets start on Monday. This is compliant with the ISO standard for calculating calendar weeks. Monthly and yearly time buckets use January 1, 2000, as an origin. This allows them to start on the first day of the calendar month or year.
If you prefer another origin, you can set it yourself using the origin
parameter. For example, to start weeks on Sunday, set the origin to
Sunday, January 2, 2000.
The origin time depends on the data type of your time values.
If you use TIMESTAMP, by default, bucket start times are aligned with
00:00:00. Daily and weekly buckets start at 00:00:00. Shorter buckets start
at a time that you can get to by counting in bucket increments from 00:00:00
on the origin date.
If you use TIMESTAMPTZ, by default, bucket start times are aligned with
00:00:00 UTC. To align time buckets to another timezone, set the timezone
parameter.
===== PAGE: https://docs.tigerdata.com/mst/vpc-peering/vpc-peering-gcp/ =====
You can configure VPC peering for your Managed Service for TimescaleDB project, using VPC provided by GCP.
Project ID.VPC Networks, find the VPC that you want to
connect, and make a note of the network name for that VPC.To set up VPC peering for your project:
In MST Console, click VPC and select the VPC connection that you
created.
Type the project ID of your GCP project in GCP Project ID.
Type the network name of the VPC in GCP in GCP VPC network name.
Click Add peering connection.
A new connection with a status of Pending Peer is listed in your GCP
console. Make a note of the project name and the network name.
In the GCP console, go to VPC > VPC network peering and select
Create Connection.
Type a name for the peering connection and type the project ID and network name that you made a note of.
Click Create.
After the peering is successful, it is active in both MST_CONSOLE_SHORT and your GCP console.
===== PAGE: https://docs.tigerdata.com/mst/vpc-peering/vpc-peering/ =====
You can Configure VPC peering for your Managed Service for TimescaleDB project, using the VPC section of the dashboard for your project. VPC peering setup is a per project and per region setting. This means that all services created and running utilize the same VPC peering connection. If needed, you can have multiple projects that peer with different connections.
You can configure VPC peering as a project and region-specific setting. This means that all services created and running use the same VPC peering connection. If necessary, you can use different connections for VPC peering across multiple projects. Only Admin and operator user roles can create a VPC.
To set up VPC peering for your project:
In MST Console, click VPC.
Click Create VPC.
Choose a cloud provider in the Cloud list.
In the IP range field, type the IP range that you want to use for the VPC connection.
Use an IP range that does not overlap with any networks that you want to connect
through VPC peering. For example, if your own networks use the range 10.0.0.0/8,
you could set the range for your Managed Service for TimescaleDB project VPC to 192.168.0.0/24.
Click Create VPC.
The state of the VPC is listed in the table.
===== PAGE: https://docs.tigerdata.com/mst/vpc-peering/vpc-peering-aws-transit/ =====
AWS Transit Gateway (TGW) enables transitive routing from on-premises networks through VPN and from other VPC. By creating a Transit Gateway VPC attachment, services in an MST Project VPC can route traffic to all other networks attached - directly or indirectly - to the Transit Gateway.
My Account and make a note of your account ID.Transit Gateways, find the transit gateway that
you want to attach, and make a note of the ID.To set up VPC peering for your project:
VPC and select the VPC connection that you
created.In the VPC Peering connections page select Transit Gateway VPC Attachment.
Type the account ID of your AWS account in AWS Account ID.
Type the ID of the Transit Gateway of AWS in Transit Gateway ID.
Type the IP range in the Network cidrs field.
Each Transit Gateway has a route table of its own, and by default routes traffic to each attached network directly to attached VPCs or indirectly through VPN attachments. The attached VPCs' route tables need to be updated to include the TGW as a target for any IP range (CIDR) that should be routed using the VPC attachment. These IP ranges must be configured when creating the attachment for an MST Project VPC.
Click Add peering connection.
A new connection with a status of Pending Acceptance is listed in your
AWS console. Verify that the account ID and transit gateway ID match those
listed in MST Console.
In the AWS console, go to Actions and select Accept Request. Update your
AWS route tables to match your Managed Service for TimescaleDB CIDR settings.
After you accept the request in AWS Console, the peering connection is active in the MST Console.
===== PAGE: https://docs.tigerdata.com/mst/vpc-peering/vpc-peering-aws/ =====
You can configure VPC peering for your Managed Service for TimescaleDB project, using the VPC on AWS.
My Account and make a note of your account ID.Peering connections, find the VPC that you want to
connect, and make a note of the ID for that VPC.To set up VPC peering for your project:
In MST Console, click VPC and select the VPC connection that you
created.
Type the account ID of your AWS account in AWS Account ID.
Type the ID of the VPC in AWS in AWS VPC ID.
Click Add peering connection.
A new connection with a status of Pending Acceptance is listed in your
AWS console. Verify that the account ID and VPC ID match those listed in MST Console.
In the AWS console, go to Actions and select Accept Request. Update your
AWS route tables to match your Aiven CIDR settings.
After you accept the request in AWS Console, the peering connection is active in the MST portal.
===== PAGE: https://docs.tigerdata.com/mst/vpc-peering/vpc-peering-azure/ =====
You can Configure VPC peering for your Managed Service for TimescaleDB project, using the VPC on Azure.
Log in with an Azure administration account, using the Azure CLI:
az account clear
az login
This should open a window in your browser prompting you to choose an Azure account to log in with. You need an account with at least the Application administrator role to create VPC peering. If you manage multiple Azure subscriptions, configure the Azure CLI to default to the correct subscription using the command:
az account set --subscription <subscription name or id>
Create an application object in your AD tenant, using the Azure CLI:
az ad app create --display-name "<NAME>" --sign-in-audience AzureADMultipleOrgs --key-type Password
This creates an entity to your AD that can be used to log into multiple AD
tenants (--sign-in-audience AzureADMultipleOrgs), but only the home tenant (the
tenant the app was created in) has the credentials to authenticate the app.
Save the appId field from the output - this is referred to as
$user_app_id.
Create a service principal for your app object. Ensure that the service principal is created to the Azure subscription containing the VNet you wish to peer:
az ad sp create --id $user_app_id
This creates a service principal to your subscription that may have
permissions to peer your VNet. Save the objectId field from the output - this
is referred to as $user_sp_id.
Set a password for your app object:
az ad app credential reset --id $user_app_id
Save the password field from the output - this is referred to as $user_app_secret.
Find the ID properties of your virtual network:
az network vnet list
Make a note of these:
$user_vnet_id/subscriptions/ in the
resource ID. This is referred to as $user_subscription_id.resourceGroup field in the output.
This is referred to as $user_resource_group.The Vnet name or the name field from the output as $user_vnet_name
The $user_vnet_id should have the format:
/subscriptions/$user_subscription_id/resourceGroups/$user_resource_group/providers/Microsoft.Network/virtualNetworks/$user_vnet_name.
Grant your service principal permissions to peer. The service principal that
you created needs to be assigned a role that has permission for the
Microsoft.Network/virtualNetworks/virtualNetworkPeerings/write action on
the scope of your VNet. To limit the permissions granted to the app object
and service principal, you can create a custom role with just that
permission. The built-in Network Contributor role includes that
permission, and can be found using az role definition list --name "Network
Contributor" The id field from the output is used as
$network_contributor_role_id to assign the service principal that role:
az role assignment create --role $network_contributor_role_id --assignee-object-id $user_sp_id --scope $user_vnet_id
This allows the application object to manage the network in the --scope.
Because you control the application object, it may also be given permission
for the scope of an entire resource group, or the whole subscription to
allow create other peerings later without assigning the role again for each
VNet separately.
Create a service principal for the Managed Service for TimescaleDB application object
The Managed Service for TimescaleDB AD tenant contains an application object similar to the one you created, and Managed Service for TimescaleDB uses it to create a peering from the Project VPC VNet in Managed Service for TimescaleDB to the VNet in Azure. For this, the Managed Service for TimescaleDB app object needs a service principal in your subscription:
az ad sp create --id <ID_OF_THE_TIMESCALE_APPLICATION_OBJECT>
Save the objectId field from the output - it is referred to as $aiven_sp_id.
If this fails with the error "When using this permission, the backing application of the service principal being created must in the local tenant" then your account does not have the correct permissions. Use an account with at least the Application administrator role assigned.
Create a custom role for the Managed Service for TimescaleDB application object
The Managed Service for TimescaleDB application now has a service principal that can be given permissions. In order to target a network in your subscription with a peering and nothing else, you can create a custom role definition, with only a single action allowing to do that and only that:
az role definition create --role-definition '{"Name": "<name of your choosing>",
"Description": "Allows creating a peering to vnets in scope (but not from)",
"Actions": ["Microsoft.Network/virtualNetworks/peer/action"],
"AssignableScopes": ["/subscriptions/'$user_subscription_id'"]}'
Creating a custom role must include your subscription's id in
AssignableScopes . This in itself does not give permissions to your
subscription - it merely restricts which scopes a role assignment can
include. Save the id field from the output - this is referred to as
$aiven_role_id.
Assign the custom role to the service principal to peer with your VNet. Assign the role that you created in the previous step to the Managed Service for TimescaleDB service principal with the scope of your VNet:
az role assignment create --role $aiven_role_id --assignee-object-id $aiven_sp_id --scope $user_vnet_id
Get your Azure Active Directory (AD) tenant id:
az account list
Make note of the tenantId field from the output. It is referred to as $user_tenant_id.
Create a peering connection from the Managed Service for TimescaleDB Project VPC using Aiven CLI:
avn vpc peering-connection create --project-vpc-id $aiven_project_vpc_id --peer-cloud-account $user_subscription_id --peer-resource-group $user_resource_group --peer-vpc $user_vnet_name --peer-azure-app-id $user_app_id --peer-azure-tenant-id $user_tenant_id
$aiven_project_vpc_id is the ID of the Managed Service for TimescaleDB project VPC, and can be
found using the avn vpc list command.
Managed Service for TimescaleDB creates a peering from the VNet in the Managed Service for TimescaleDB
Project VPC to the VNet in your subscription. In addition, it creates a
service principal for the application object in your tenant
`--peer-azure-app-id $user_app_id`, giving it permission to target the
Managed Service for TimescaleDB subscription VNet with a peering. Your AD tenant ID is also needed
in order for the Managed Service for TimescaleDB application object to authenticate with your
tenant to give it access to the service principal that you created
`--peer-azure-tenant-id $user_tenant_id`.
Ensure that the arguments starting with `$user_` are in lower case. Azure
resource names are case-agnostic, but the Aiven API currently only accepts
names in lower case. If no error is shown, the peering connection is being set
up by Managed Service for TimescaleDB.
Run the following command until the state is no longer APPROVED , but
PENDING_PEER:
avn vpc peering-connection get -v --project-vpc-id $aiven_project_vpc_id --peer-cloud-account $user_subscription_id --peer-resource-group $user_resource_group --peer-vpc $user_vnet_name
A state such as INVALID_SPECIFICATION or REJECTED_BY_PEER may be shown
if the VNet specified did not exist, or the Managed Service for TimescaleDB app object wasn't
given permissions to peer with it. If that occurs, check your configuration
and then recreate the peering connection. If everything went as expected,
the state changes to PENDING_PEER within a couple of minutes showing
details to set up the peering connection from your VNet to the Project VPC's
VNet in Managed Service for TimescaleDB.
Save the to-tenant-id field in the output. It is referred to as the
aiven_tenant_id. The to-network-id field from the output is referred to
as the $aiven_vnet_id.
Log out the Azure user you logged in using:
az account clear
Log in the application object you created to your AD tenant using:
az login --service-principal -u $user_app_id -p $user_app_secret --tenant $user_tenant_id
Log in the same application object to the Managed Service for TimescaleDB AD tenant:
az login --service-principal -u $user_app_id -p $user_app_secret --tenant
$aiven_tenant_id
Now your application object has a session with both AD tenants
Create a peering from your VNet to the VNet in the Managed Service for TimescaleDB subscription:
az network vnet peering create --name <peering name of your choosing> --remote-vnet $aiven_vnet_id --vnet-name $user_vnet_name --resource-group $user_resource_group --subscription $user_subscription_id --allow-vnet-access
If you do not specify --allow-vnet-access no traffic is allowed to flow
from the peered VNet and services cannot be reached through the
peering. After the peering has been created, the peering should be in the state
connected.
In case you get the following error, it's possible the role assignment hasn't taken effect yet. If that is the case, try logging in again and creating the peering again after waiting a bit by repeating the commands in this step. If the error message persists, check the role assignment was correct.
The client `<random uuid>` with object id `<another random uuid>` does not have
authorization to perform action
`Microsoft.Network/virtualNetworks/virtualNetworkPeerings/write` over scope
'$user_vnet_id' If access was recently granted, refresh your credentials.
In the Aiven CLI, check if the peering connection is ACTIVE:
avn vpc peering-connection get -v --project-vpc-id $aiven_project_vpc_id --peer-cl
Managed Service for TimescaleDB polls peering connections in state PENDING_PEER
regularly to see if your subscription has created a peering connection to
the Managed Service for TimescaleDB Project VPC's VNet. After this is detected, the state changes from
`PENDING_PEER` to `ACTIVE`. After this services in the Project VPC can be
reached through the peering.
===== PAGE: https://docs.tigerdata.com/mst/integrations/grafana-mst/ =====
You can integrate Managed Service for TimescaleDB with Grafana to visualize your data. Grafana service in MST has built-in Prometheus, Postgres, Jaeger, and other data source plugins that allow you to query and visualize data from a compatible database.
Before you begin, make sure you have:
You can configure a service as a data source to a Grafana service to query and visualize the data from the database.
Overview tab for the service go to the Service Integrations
section.Set up integration button.Available service integrations for TimescaleDB dialog, click
the Use Integration button for Datasource.Enable button.Services view, click the Grafana service to which you added the MST
service as a data source.Overview tab for the Grafana service, make a note of the User and
Password fields.Overview tab for the Grafana service, click the link in the
Service URI field to open Grafana.Configuration → Data sources. The data sources page lists
Managed Service for TimescaleDB as a configured data source for the Grafana instance.When you have configured Managed Service for TimescaleDB as a data source in Grafana, you can create panels that are populated with data using SQL.
===== PAGE: https://docs.tigerdata.com/mst/integrations/google-data-studio-mst/ =====
You can create reports or perform some analysis on data you have in Managed Service for TimescaleDB using Google Data Studio. You can use Data Studio to integrate other data sources, such as YouTube Analytics, MySQL, BigQuery, AdWords, and others.
ca.pem for your service.Host, Port, Database name, User, and Password
fields for the service.Create + button and choose Data source.PostgreSQL as the Google Connector.Database Authentication tab, type details for the Host Name,
Port, Database, Username, and Password fields.Enable SSL and upload your server certificate file, ca.pem.AUTHENTICATE.CUSTOM QUERY to create an SQL query.CONNECT.===== PAGE: https://docs.tigerdata.com/mst/integrations/logging/ =====
There are a number of different ways to review logs and metrics for your services. You can use the native logging tool in MST Console, retrieve details logs using the Aiven CLI tool, or integrate a third-party service, such as SolarWinds Loggly.
To see the most recent logged events for your service.
Services tab, find the service you want to review, and check it is
marked as Running.Navigate to the Logs tab to see a constantly updated list of logged events.

If you want to dump your Managed Service for TimescaleDB logs to a text file or an archive for use later on, you can use the Aiven CLI.
Sign in to your Managed Service for TimescaleDB account from the Aiven CLI tool,
and use this command to dump your logs to a text file called tslogs.txt:
avn service logs -S desc -f --project <project name> <service_name> > tslogs.txt
For more information about the Aiven CLI tool, see the Aiven CLI section.
If you need to access logs for your services regularly, or if you need more detailed logging than Managed Service for TimescaleDB can provide in MST Console, you can connect your Managed Service for TimescaleDB to a logging service such as SolarWinds Loggly.
This section covers how to create a service integration to Loggly with Managed Service for TimescaleDB.
Logs→Source Setup. Click
Customer Tokens from the top menu bar.Customer Tokens page, click Add New to create a new token. Give your
token a name, and click Save. Copy your new token to your clipboard.Service Integrations.Service Integrations page, navigate to Syslog, and click
Add new endpoint.In the Create new syslog endpoint dialog, complete these fields:
Endpoint name field, type a name for your endpoint.Server field, type logs-01.loggly.com.Port field, type 514.TLS checkbox.Format field, select rfc5425.Structured Data field, type <LOGGLY_TOKEN>@41058, using the
Loggly token you copied earlier. You can also add a tag here, which
you can use to more easily search for your logs in Loggly. For
example,
8480330f5-aa09-46b0-b220-a0efa372b17b@41058 TAG="example-tag".Click Create to create the endpoint. When the endpoint has been created,
it shows as an enabled service integration, with a green active indicator.
In the Loggly dashboard, navigate to Search to see your incoming logs.
From here, you can create custom dashboards and view reports for your logs.

===== PAGE: https://docs.tigerdata.com/mst/integrations/metrics-datadog/ =====
Datadog is a popular cloud-based monitoring service. You can send metrics to Datadog using a metrics collection agent for graphing, service dashboards, alerting, and logging. Managed Service for TimescaleDB (MST) can send data directly to Datadog for monitoring. Datadog integrations are provided free of charge on Managed Service for TimescaleDB.
You need to create a Datadog API key, and use the key to enable metrics for your service.
Datadog logging is not currently supported on MST.
Before you begin, make sure you have:
To integrate MST with Datadog you need to upload the API key that you generated in your Datadog account to MST.
Integration Endpoints.Datadog, then choose Create new.Add new Datadog service integration. complete these details:
Endpoint integration section, give your endpoint a name, and
paste the API key from your Datadog dashboard. Ensure you choose the
site location that matches where your Datadog service is hosted.Endpoint tags section, you can add custom tags
to help you manage your integrations.Add endpoint to save the integration.

When you have successfully added the endpoint, you can set up one of your service to send data to Datadog.
Services, and select the service you want to monitor.Integrations tab, go to External integrations section and select
Datadog Metrics.Datadog integration dialog, select the Datadog endpoint
that you created.Click Enable.
The Datadog endpoint is listed under Enabled integrations for the
service.
When you have your Datadog integration set up successfully, you can use the Datadog dashboard editor to configure your visualizations. For more information, see the Datadog Dashboard documentation.
===== PAGE: https://docs.tigerdata.com/mst/integrations/prometheus-mst/ =====
You can get more insights into the performance of your service by monitoring it using Prometheus, a popular open source metrics-based systems monitoring solution.
Before you begin, make sure you have:
Port and Host for your service.Integration Endpoints.Integration endpoints page, navigate to Prometheus, and click
Create new.In the Create new Prometheus endpoint dialog, complete these fields:
Endpoint name field, type a name for your endpoint.Username field, type your username.Password field, type your password.Create to create the endpoint.These details are used when setting up your Prometheus installation, in the
prometheus.yml configuration file. This allows you to make this Managed Service for TimescaleDB endpoint a target for Prometheus to scrape.
Use this sample configuration file to set up your Prometheus installation,
by substituting <PORT>, <HOST>, <USER>, and <PASSWORD> with those of
your service:
global:
scrape_interval: 10s
evaluation_interval: 10s
scrape_configs:
- job_name: prometheus
scheme: https
static_configs:
- targets: ['<HOST>:<PORT>']
tls_config:
insecure_skip_verify: true
basic_auth:
username: <USER>
password: <PASSWORD>
remote_write:
- url: "http://<HOST>:9201/write"
remote_read:
- url: "http://<HOST>:9201/read"
In the MST Console, navigate to Services and
select the service you want to monitor.
In the Integrations tab, go to External integrations section and select
Prometheus.
In the Prometheus integrations dialog, select the Prometheus endpoint
that you created.
Click Enable.
The Prometheus endpoint is listed under Enabled integrations for the
service.
===== PAGE: https://docs.tigerdata.com/mst/aiven-client/replicas-cli/ =====
Read-only replicas enable you to perform read-only queries against the replica and reduce the load on the primary server. It is also a good way to optimize query response times across different geographical locations, because the replica can be placed in different regions or even different cloud providers.
Before you begin, make sure you have:
In the Aiven client, connect to your service.
Switch to the project that contains the service you want to create a read-only replica for:
avn project switch <PROJECT>
List the MST_SERVICE_SHORTs in the project, and make a note of the service that you
want to create a read-only replica for. It is listed under theSERVICE_NAME
column in the output:
avn service list
Get the details of the service that you want to fork:
avn service get <SERVICE_NAME>
Create a read-only replica:
avn service create <NAME_OF_REPLICA> --project <PROJECT_ID>\
-t pg --plan <PLAN_TYPE> --cloud timescale-aws-us-east-1\
-c pg_read_replica=true\
-c service_to_fork_from=<NAME_OF_SERVICE_TO_FORK>\
-c pg_version=11 -c variant=timescale
To create a fork named replica-fork for a service named timescaledb with
these parameters:
PROJECT_ID: fork-projectCLOUD_NAME: timescale-aws-us-east-1PLAN_TYPE: timescale-basic-100-compute-optimized
avn service create replica-fork --project fork-project\
-t pg --plan timescale-basic-100-compute-optimized\
--cloud timescale-aws-us-east-1 -c pg_read_replica=true\
-c service_to_fork_from=timescaledb -c\
pg_version=11 -c variant=timescale
You can switch to project-fork and view the newly created replica-fork using:
avn service list
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-docker-based/ =====
Run the TimescaleDB Docker image
The TimescaleDB HA Docker image offers the most complete TimescaleDB experience. It uses Ubuntu, includes TimescaleDB Toolkit, and support for PostGIS and Patroni.
To install the latest release based on Postgres 17:
docker pull timescale/timescaledb-ha:pg17
TimescaleDB is pre-created in the default Postgres database and is added by default to any new database you create in this image.
Run the container
Replace </a/local/data/folder> with the path to the folder you want to keep your data in the following command.
docker run -d --name timescaledb -p 5432:5432 -v </a/local/data/folder>:/pgdata -e PGDATA=/pgdata -e POSTGRES_PASSWORD=password timescale/timescaledb-ha:pg17
If you are running multiple container instances, change the port each Docker instance runs on.
On UNIX-based systems, Docker modifies Linux IP tables to bind the container. If your system uses Linux Uncomplicated Firewall (UFW), Docker may
override your UFW port binding settings. To prevent this, add DOCKER_OPTS="--iptables=false" to /etc/default/docker.
Connect to a database on your Postgres instance
The default user and database are both postgres. You set the password in POSTGRES_PASSWORD in the previous step. The default command to connect to Postgres is:
psql -d "postgres://postgres:password@localhost/postgres"
Check that TimescaleDB is installed
\dx
You see the list of installed extensions:
Name | Version | Schema | Description
---------------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.20.3 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
timescaledb_toolkit | 1.21.0 | public | Library of analytical hyperfunctions, time-series pipelining, and other SQL utilities
(3 rows)
Press q to exit the list of extensions.
If you want to access the container from the host but avoid exposing it to the
outside world, you can bind to 127.0.0.1 instead of the public interface, using this command:
docker run -d --name timescaledb -p 127.0.0.1:5432:5432 \
-v </a/local/data/folder>:/pgdata -e PGDATA=/pgdata -e POSTGRES_PASSWORD=password timescale/timescaledb-ha:pg17
If you don't want to install psql and other Postgres client tools locally,
or if you are using a Microsoft Windows host system, you can connect using the
version of psql that is bundled within the container with this command:
docker exec -it timescaledb psql -U postgres
When you install TimescaleDB using a Docker container, the Postgres settings
are inherited from the container. In most cases, you do not need to adjust them.
However, if you need to change a setting, you can add -c setting=value to your
Docker run command. For more information, see the
Docker documentation.
The link provided in these instructions is for the latest version of TimescaleDB on Postgres 17. To find other Docker tags you can use, see the Dockerhub repository.
If you have TimescaleDB installed in a Docker container, you can view your logs
using Docker, instead of looking in /var/lib/logs or /var/logs. For more
information, see the Docker documentation on logs.
Run the TimescaleDB Docker image
The light-weight TimescaleDB Docker image uses Alpine and does not contain TimescaleDB Toolkit or support for PostGIS and Patroni.
To install the latest release based on Postgres 17:
docker pull timescale/timescaledb:latest-pg17
TimescaleDB is pre-created in the default Postgres database and added by default to any new database you create in this image.
Run the container
docker run -v </a/local/data/folder>:/pgdata -e PGDATA=/pgdata \
-d --name timescaledb -p 5432:5432 -e POSTGRES_PASSWORD=password timescale/timescaledb:latest-pg17
If you are running multiple container instances, change the port each Docker instance runs on.
On UNIX-based systems, Docker modifies Linux IP tables to bind the container. If your system uses Linux Uncomplicated Firewall (UFW), Docker may override your UFW port binding settings. To prevent this, add DOCKER_OPTS="--iptables=false" to /etc/default/docker.
Connect to a database on your Postgres instance
The default user and database are both postgres. You set the password in POSTGRES_PASSWORD in the previous step. The default command to connect to Postgres in this image is:
psql -d "postgres://postgres:password@localhost/postgres"
Check that TimescaleDB is installed
\dx
You see the list of installed extensions:
```sql
Name | Version | Schema | Description
---------------------+---------+------------+---------------------------------------------------------------------------------------
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
timescaledb | 2.20.3 | public | Enables scalable inserts and complex queries for time-series data (Community Edition)
```
Press `q` to exit the list of extensions.
If you want to access the container from the host but avoid exposing it to the
outside world, you can bind to 127.0.0.1 instead of the public interface, using this command:
docker run -v </a/local/data/folder>:/pgdata -e PGDATA=/pgdata \
-d --name timescaledb -p 127.0.0.1:5432:5432 \
-e POSTGRES_PASSWORD=password timescale/timescaledb:latest-pg17
If you don't want to install psql and other Postgres client tools locally,
or if you are using a Microsoft Windows host system, you can connect using the
version of psql that is bundled within the container with this command:
docker exec -it timescaledb psql -U postgres
Existing containers can be stopped using docker stop and started again with
docker start while retaining their volumes and data. When you create a new
container using the docker run command, by default you also create a new data
volume. When you remove a Docker container with docker rm, the data volume
persists on disk until you explicitly delete it. You can use the docker volume
ls command to list existing docker volumes. If you want to store the data from
your Docker container in a host directory, or you want to run the Docker image
on top of an existing data directory, you can specify the directory to mount a
data volume using the -v flag:
docker run -d --name timescaledb -p 5432:5432 \
-v </your/data/dir>:/pgdata -e PGDATA=/pgdata \
-e POSTGRES_PASSWORD=password timescale/timescaledb:latest-pg17
When you install TimescaleDB using a Docker container, the Postgres settings
are inherited from the container. In most cases, you do not need to adjust them.
However, if you need to change a setting, you can add -c setting=value to your
Docker run command. For more information, see the
Docker documentation.
The link provided in these instructions is for the latest version of TimescaleDB on Postgres 16. To find other Docker tags you can use, see the Dockerhub repository.
If you have TimescaleDB installed in a Docker container, you can view your logs
using Docker, instead of looking in /var/log. For more
information, see the Docker documentation on logs.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-source-based/ =====
Install the latest Postgres source
At the command prompt, clone the TimescaleDB GitHub repository:
git clone https://github.com/timescale/timescaledb
Change into the cloned directory:
cd timescaledb
Checkout the latest release. You can find the latest release tag on our Releases page:
git checkout 2.17.2
This command produces an error that you are now in detached head state. It
is expected behavior, and it occurs because you have checked out a tag, and
not a branch. Continue with the steps in this procedure as normal.
Build the source
Bootstrap the build system:
./bootstrap
bootstrap.bat
For installation on Microsoft Windows, you might need to add the pg_config
and cmake file locations to your path. In the Windows Search tool, search
for system environment variables. The path for pg_config should be
C:\Program Files\PostgreSQL\<version>\bin. The path for cmake is within
the Visual Studio directory.
Build the extension:
cd build && make
cmake --build ./build --config Release
Install TimescaleDB
make install
cmake --build ./build --config Release --target install
Configure Postgres
If you have more than one version of Postgres installed, TimescaleDB can only
be associated with one of them. The TimescaleDB build scripts use pg_config to
find out where Postgres stores its extension files, so you can use pg_config
to find out which Postgres installation TimescaleDB is using.
Locate the postgresql.conf configuration file:
psql -d postgres -c "SHOW config_file;"
Open the postgresql.conf file and update shared_preload_libraries to:
shared_preload_libraries = 'timescaledb'
If you use other preloaded libraries, make sure they are comma separated.
Tune your Postgres instance for TimescaleDB
sudo timescaledb-tune
This script is included with the timescaledb-tools package when you install TimescaleDB.
For more information, see configuration.
Restart the Postgres instance:
service postgresql restart
pg_ctl restart
Set the user password
Log in to Postgres as postgres
sudo -u postgres psql
You are in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-homebrew-based/ =====
Install Homebrew, if you don't already have it:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
For more information about Homebrew, including installation instructions, see the Homebrew documentation.
At the command prompt, add the TimescaleDB Homebrew tap:
brew tap timescale/tap
Install TimescaleDB and psql:
brew install timescaledb libpq
Update your path to include psql.
brew link --force libpq
On Intel chips, the symbolic link is added to /usr/local/bin. On Apple
Silicon, the symbolic link is added to /opt/homebrew/bin.
Run the timescaledb-tune script to configure your database:
timescaledb-tune --quiet --yes
Change to the directory where the setup script is located. It is typically,
located at /opt/homebrew/Cellar/timescaledb/<VERSION>/bin/, where
<VERSION> is the version of timescaledb that you installed:
cd /opt/homebrew/Cellar/timescaledb/<VERSION>/bin/
Run the setup script to complete installation.
./timescaledb_move.sh
Log in to Postgres as postgres
sudo -u postgres psql
You are in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-macports-based/ =====
Install MacPorts by downloading and running the package installer.
For more information about MacPorts, including installation instructions, see the MacPorts documentation.
Install TimescaleDB and psql:
sudo port install timescaledb libpqxx
To view the files installed, run:
port contents timescaledb libpqxx
MacPorts does not install the timescaledb-tools package or run the timescaledb-tune
script. For more information about tuning your database, see the TimescaleDB tuning tool.
Log in to Postgres as postgres
sudo -u postgres psql
You are in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== PAGE: https://docs.tigerdata.com/_partials/_install-self-hosted-windows-based/ =====
Install the latest version of Postgres and psql
Download Postgres, then run the installer.
In the Select Components dialog, check Command Line Tools, along with any other components
you want to install, and click Next.
Complete the installation wizard.
Check that you can run pg_config.
If you cannot run pg_config from the command line, in the Windows
Search tool, enter system environment variables.
The path should be C:\Program Files\PostgreSQL\<version>\bin.
Install TimescaleDB
Unzip the TimescaleDB installer to <install_dir>, that is, your selected directory.
Best practice is to use the latest version.
In <install_dir>\timescaledb, right-click setup.exe, then choose Run as Administrator.
Complete the installation wizard.
If you see an error like could not load library "C:/Program Files/PostgreSQL/17/lib/timescaledb-2.17.2.dll": The specified module could not be found., use
Dependencies to ensure that your system can find the compatible DLLs for this release of TimescaleDB.
Tune your Postgres instance for TimescaleDB
Run the timescaledb-tune script included in the timescaledb-tools package with TimescaleDB. For more
information, see [configuration][config].
Log in to Postgres as postgres
sudo -u postgres psql
You are in the psql shell.
Set the password for postgres
\password postgres
When you have set the password, type \q to exit psql.
===== LINK REFERENCES =====